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Abstract

This paper describes the model proposed and submitted by our RIJP team to SemEval 2020
Task1: Unsupervised Lexical Semantic Change Detection. In the model, words are represented by
Gaussian distributions. For Subtask 1, the model achieved average scores of 0.51 and 0.70 in the
evaluation and post-evaluation processes, respectively. The higher score in the post-evaluation
process than that in the evaluation process was achieved owing to appropriate parameter tuning.
The results indicate that the proposed Gaussian-based embedding model is able to express semantic
shifts while having a low computational complexity.

1 Introduction

Words change their meaning over time. Long- and short-term semantic shifts relate to cultural and social
changes (Blank and Koch, 1999; Grzega and Schöner, 2007; Garg et al., 2018). Semantic shifts have been
actively studied as evidenced by recent comprehensive survey papers (Tahmasebi et al., 2018; Kutuzov et
al., 2018) and the success of the workshop on lexical-semantic change held as part of the ACL 2019. In
particular, many teams participated in the SemEval-2020 Task 1: Unsupervised Lexical Semantic Change
Detection (Schlechtweg et al., 2014).

In this task, participants are required to devise an automated system for finding semantic shift in four
languages: English, German, Swedish, and Latin. It consists of two subtasks: classification and ranking.
In the classification task, words are categorized by the change in their meaning in two corpora, C1 and C2,
for periods t1 and t2. In the ranking task, words are sorted by the degree of their semantic shift between
periods t1 and t2.

The focus of this study is on detecting semantic shifts using word embedding. To tackle this task,
our RIJP team represented words by Gaussian distributions, taking an inspiration from Gaussian em-
bedding (Vilnis and McCallum, 2015). In Gaussian embedding, words are represented by one Gaussian
distribution with mean vectors and covariance matrices. The mean vectors map the words in embedding
space, while the covariance matrices represent about word hierarchies.

Instead of obtaining the variance using a trained model as suggested by existing studies, it is derived
directly from the word frequency. It particular, two embeddings are created using each of the two corpora,
and the semantic change is calculated based on the Kullback-Leiblar (KL) divergence. The proposed
model achieved scores of 0.51 and 0.14 in the evaluation period for Subtasks 1 and 2, respectively. After
parameter tuning in the post-evaluation process, scores of 0.70 and 0.41 were achieved in Subtask 1 and 2.
Experimental results demonstrated that the proposed Gaussian-based embedding model can successfully
detect various types of semantic shifts such as narrowing and widening. The code of the model will be
releasing shortly.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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2 Related Work

Word senses generate and disappear over time (Basile et al., 2015). Distributed representations have
made significant advances in the field of natural language processing. Word embeddings such as
word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) allow representing semantic
patterns through vectors. Hamilton (2016) applied the word embedding method to several corpora, each
covering ten year, to detect semantic shifts. Semantic changes of a word can be captured by the difference
of collocation of other words. The majority of studies on semantic shift detection represent a word by a
single vector, few studies use different embedding types such as Gaussian (Vilnis and McCallum, 2015)
and Poincaré embeddings (Nickel and Kiela, 2017).

Semantic shifts are often measured in terms of the similarity of the word vectors between two periods
with the cosine similarity and Euclidean distance being the most widely used metric. Only a few
papers (Vilnis and McCallum, 2015; Athiwaratkun and Wilson, 2017) acknowledge similarity metrics
suitable for Gaussian embedding.

3 Model Description

This study employs an improved structure of Gaussian embedding for detecting semantic shifts. According
to this structure, each word is represented by a mean vector and a covariance matrix. To reduce the
computational complexity, only the mean vectors are learned using the word2vec framework. The
covariance matrices of words are obtained directly from their frequencies, i.e., they are not learned.

3.1 Types of Semantic Shifts

This study aims discovering those semantic shifts that are hard to find using only word2vec. Bloomfield’s
categorization (Bloomfield, 1934) dividing semantic shifts into nine types is used to illustrate how
semantic changes can be detected using the proposed method. The mahority semantic shifts such as
metaphor and metonymy can be identified based on word co-occurrence changes. The type of semantic
change, narrowing or widening, is difficult to detect using only co-occurrence information. Narrowing
and widening are phenomena, in which a word sense becomes embodied or abstracted from its original
sense. For example, meat (mete in old German/English) has changed from “food” to “edible flesh”, and
deer (dēor in old English) changed from “animal” to “deer”.

Word co-occurrences do not change significantly through narrowing and widening. They are based
on the distributional inclusion hypothesis (Geffet and Dagan, 2005), according to which the hyponym
appears in the similar contexts of its hypernym. Therefore, such semantic shifts can be detected using the
frequency information as covariance matrices.

3.2 Gaussian Embedding

According to the proposed method, words are modeled using Gaussian distributions as follows:

N (x, µ,Σ) =
1√

2πd|Σ|
exp−1

2
(x− µ)TΣ−1 (x− µ), (1)

where µ is the mean vector of dimension d, and Σ is the covariance matrix of d rows and columns. The
idea is to use the mean vector to detect major semantic shift and the variance to detect word hierarchy
shifts.

A previous study (Vilnis and McCallum, 2015) reported high accuracy in the word similarity task by
learning both the mean vector and variance. However, the method has a high computational complexity
and is sensitive to initial values. The variance differs greatly depending on the learning time and initial
values of the variance and mean vector. The authors suggested that their method is suitable for small
dataset and a small number of parameters. Therefore, only the mean vector is learned using word2vec in
this study, while the word variance is obtained from frequency differences.

It has been pointed out that word embeddings and frequencies are useful for detecting semantic changes.
The normalized frequency difference is used in this study as a baseline of the task. Mean vectors and
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method dimension similarity threshold F1

frequency 100
1.40 0.726
no 0.690

learning 100
1.37 0.735
no 0.699

Table 1: Hypernym detection with BLESS dataset using Gaussian embeddings. The method using
variances generated from word frequencies achieves an accuracy comparable to another method by using
variances obtained from the learning process.

covariance matrices are combined, while the KL divergence is used for measuring semantic shifts with
Gaussian embedding.

3.3 Preliminary experiment
Before applying the proposed model to semantic shift detection, the importance of the frequency informa-
tion for determining the hypernym-hyponym relations was investigated first, In particular, the performance
of the word similarity metric on hierarchical datasets was evaluated in a preliminary experiment.

In the experiment, words were represented by mean vectors, and variances learned based on the Text8 1

corpus. The mean vectors were learned using the word2vec algorithm, and evaluated on SimLex-999 (Hill
et al., 2015) and WordSim353 (Finkelstein et al., 2001). The scores were 0.260 and 0.613 for SimLex-
999 and WordSim353, respectively. The word vectors were used as mean vectors while they captured
the word relevance sufficiently. Two variances of the proposed model were explored, one generated
from frequency counts and the other initialized with frequencies and learned using the loss function of
Gaussian embeddings. The BLESS dataset (Baroni and Lenci, 2011) was used as an evaluation dataset for
hypernym-hyponym detection. Hypernym-hyponym relationships were assumed to exist only when two
words had related meanings to each other. A word wi is a hypernym of a word wj if (1) the variance of wi

is greater than the variance of wj , and (2) the Euclidean distance of the mean vectors of wi and wj is
smaller than a given threshold.

The results of the preliminary experiment are shown in Table 3.4. It can be noticed from the table that
the F1 score with thresholds is higher than that without thresholds. In particular, the words are assumed
not to have a hierarchical relationship when the Euclidean distance between them is large. An existing
method used concatenated ukWaC and WaCkypedia corpora (Baroni et al., 2009) with 3 billion tokens,
while this study employed Text8 with 17 million tokens. A small corpus was used in the preliminary
experiment as large corpora with semantic shift are often unavailable. The results demonstrate that the
model can detect word hierarchies using variances without learning.

3.4 Similarity measure
While the preliminary experiment focused on capturing the hierarchical relations of words, the purpose of
the next experiment was to evaluate the performance of the proposed model in detecting various semantic
changes. The KL divergence was employed as the similarity measure of word embedding between two
periods. Let the Gaussian distributions of a word learned from corpora C1 and C2 be N (x;µ1,Σ1) and
N (x;µ2,Σ2) , respectively. The KL divergence for these two multivariate Gaussian distributions can be
expressed as

DKL (N (x;µ1,Σ1)|N (x;µ2,Σ2)) =

∫
R
N (x;µ1,Σ1) log

N (x;µ2,Σ2)

N (x;µ1,Σ1)
dx (2)

=
1

2

[
log
|Σ2|
|Σ1|

− d + Tr
(

Σ2
(−1)Σ1

)
+ (µ2 − µ1)TΣ2

−1 (µ2 − µ1)

]
.

The KL divergence is zero when the two distributions are equal, and it increases as the difference between
the two distributions becomes larger.

1http://mattmahoney.net/dc/textdata.html
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For our experiments, we set the covariance matrix to Σ = σI for some σ > 0. The variances σ1 and σ2
for Σ1 and Σ2 must be positive, and if the meaning does not change, σ2 should be close to σ1. Semantic
changes were categorized in various types (Traugott, 2017) as described in the previous section. It is
difficult to determine which changes affect the annotation score, core meaning (mean vector) and word
abstractness. The ratio of mean vectors and variances should be adjusted depending on the data so that
both of them have an appropriate effect on the KL divergence.

3.5 Learning process
According to the proposed method, mean vectors and covariance matrices are computed separately. Mean
vectors are learned using the Kim (2014)’s method. First, distributed representations are learned using
only corpus C1. Distributed representations are obtained using the corpus C2 with pretrained embeddings
as the initial vectors.

For training word embeddings, word2vec was used to obtain d-dimensional normalized vectors. Since
word2vec updates word vectors in each iteration, the difference between the word vectors obtained from
the two corpora is non-zero even if the words are assumed to have no semantic change. This does not
matter because the purpose of this experiment is to measure the degree of the semantic shift compared to
other words.

To obtain the variance, the frequency of the word is calculated and normalized according to the size of
corpora C1 and C2 fir eacg period t1 and t2. There is no need to compute the variance for each word; it
should be calculated only for target words.

Given the normalized frequencies f1 and f2 of a target word, the covariance matrices can be calculated
as

Σ1 =

(
1 + α log

(
β +

f1
f2

))
I,Σ2 = I. (3)

The logarithm of the normalized frequency is taken to make the variance be positive and not impact the
KL divergence too much. Based on the formula of the KL divergence in Equation 2, Σ2 is set to the
identity matrix to reduce the range of the KL divergence. To simplify the comparison of semantic changes
across two periods, t1 and t2, if the variance of one of them (period t2) is set to be fixed.

4 Experimental Setup

In the experiment, corpora C1 and C2 were used to create the Gaussian embedding, while the KL
divergence was adopted as the criterion for measuring the semantic shift. The obtained scores were sorted
for Subtask1: ranking and the classification task was solved with appropriate thresholds for each language.

Parameters allowing to achieve the highest accuracy in the post-evaluation period were employed in the
proposed method. For learning mean vectors, the embedding size d was set to 300, while the window size
was set to 5. The other parameters were set to the default values of the gensim library. The settings for
Equation 3 were α = 0.02 and β = 3.

Two other methods were employed for comparison with the proposed method. In the first method, only
the mean vectors were used and the cosine similarity was employed to measure the semantic shift. In
the second method, only covariance matrices were used, while the semantic shift was measured based
on the difference in covariances between t1 and t2. The same parameters were used in all methods. The
threshold of subtask 1 was set to maximize the classification score. While the threshold was set for each
language separately, the number or parameters can be reduced the parameters by considering moving the
seed words (e.g. country names) as future work.

5 Results

The results are shown in Table 5. We show our proposed model, compared models and the highest model.
We supplement here that various models achieves higher scores in the post-evaluation process than the
models in the evaluation process. There are no significant differences between the frequency-based method
and other methods including word2vec and proposed (E) in Subtask 1. In contrast, the frequency-based
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Subtask Method Measure average English German Latin Swedish

1

proposed (PE) KL 0.701 0.676 0.729 0.650 0.741
UWB (E) - 0.687 0.622 0.750 0.700 0.677
word2vec cosine 0.686 0.676 0.708 0.650 0.710
frequency difference 0.581 0.568 0.625 0.550 0.581

proposed (E) KL 0.511 0.541 0.500 0.550 0.452
subtask2 gold threshold 0.848 0.811 0.854 0.825 0.903

UG Student Intern(E) - 0.527 0.422 0.725 0.412 0.547

2

proposed (PE) KL 0.410 0.358 0.578 0.329 0.373
word2vec cosine 0.402 0.358 0.576 0.336 0.337

proposed (E) KL 0.087 0.157 0.099 0.065 0.028
frequency difference 0.028 0.070 -0.049 0.157 -0.067

Table 2: Results for Unsupervised Semantic Shift Detection. PE is post evaluation process, and E is
evaluation process. - is unknown measurement. The word embedding is useful to capture semantic shift,
and adding frequency information to it improve the performance slightly.

method does not capture the degree of semantic shifts in Subtask 2. As a comparison, the results are
listed using the gold data from Subtask 2 for Subtask 1. Even if the degree of a semantic shift is perfectly
predicted (i.e., even if the model achieves a correlation of 1.000 in Subtask 2), the result of the model is
0.848 in Subtask 1, which means 1.000 cannot be achieved in both subtasks using the same model. In
addition, the bias of the classification labels caused a significant difference in the results between Subtask
1 and 2. As described in the task description paper, the results between Subtask 1 and 2 do not have strong
relationship. Therefore, we focus on the results obtained for Subtask 2 given that the word ranking labels
are more informative than classification labels.

It can be noticed from Table 5 that the obtained distributed representation (using word2vec in this case)
roughly captures the semantic shifts. The result indicates that the KL divergence works as a criterion for
semantic shift detection. When comparing the proposed embedding method with Kim’s (2014) method, it
can be concluded that including the frequency information can yield a similar or even higher Spearman’s
rank-order correlation coefficient.

The relationship between the frequency information and Spearman’s coefficient is analyzed. We focused
on German and English because the proposed method achieved a higher Spearman’s coefficient on the
German dataset but not the English dataset. For example, the obtained embedding could detect the
semantic change of a noun Knotenpunkt from “junction” to “hub” in German. This noun was first used to
mean junction but then changed its meaning to hub, and was used with that letter meaning more often
compared to the earlier meaning. Thus, the frequency information is useful for identifying semantic shifts.
The verb abdecken“uncover” is an example, where both the word2vec and the proposed methods were
able to detect a semantic shift. The old meaning of this verb referred to taking the skin off an animal
carcass, whereas now it refers to covering up. If the old meaning disappeared, it would be possible to
detect the meaning using only word2vec.

The Spearman’s coefficients obtained using the word2vec and proposed method did not change for
the English dataset. There were few examples in the dataset that could be identified as changes in
the hypernym-hyponym semantic shift of words. Word2vec and the proposed embedding could detect
semantic shifts for the noun “graft”, which was first used to mean a grafting tree but later was used to
mean an implant. This is an example of the development of another meaning of a word.

The proposed method was found to be able to capture semantic shifts of narrowing and widening with
variances. It would be desirable to find a way to reducing the number of parameters when no test data is
available, which was the case in the evaluation process of this study. The majority of existing machine
learning methods require parameter tuning. Only a few of them play a major role in the task of detecting
semantic shift, where the correct answer is unknown in advance.
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6 Conclusion

This paper described the systems submitted to SemEval 2020 Task1: Unsupervised Lexical Semantic
Change Detection. We designed to detect semantic shifts based on an improved Gaussian embedding
method. According to the proposed method, the mean vectors are trained using the word2vec algorithm,
while the variances are obtained from word frequencies. The computational complexity and parameter
sensitivity to initial values of the proposed method is reduced compared to the traditional Gaussian
embedding method.

The proposed method that used mean vectors and variances achieved higher Spearman’s coefficients
for several languages in Subtask 2 compared to the technique that used only mean vectors (word2vec).
This result indicates that variances are effective for detetcting the changes of word abstractness. As part
of our future work, we plan to focus on semantic shift detection across multiple languages and detailed
classification of semantic shift types.
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