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Abstract

Expert search aims to find and rank experts
based on a user’s query. In academia, re-
trieving experts is an efficient way to navigate
through a large amount of academic knowl-
edge. Here, we study how different distributed
representations of academic papers (i.e. em-
beddings) impact academic expert retrieval.
We use the Microsoft Academic Graph dataset
and experiment with different configurations
of a document-centric voting model for re-
trieval. In particular, we explore the impact
of the use of contextualized embeddings on
search performance. We also present results
for paper embeddings that incorporate cita-
tion information through retrofitting. Addi-
tionally, experiments are conducted using dif-
ferent techniques for assigning author weights
based on author order. We observe that using
contextual embeddings produced by a trans-
former model trained for sentence similarity
tasks produces the most effective paper rep-
resentations for document-centric expert re-
trieval. However, retrofitting the paper embed-
dings and using elaborate author contribution
weighting strategies did not improve retrieval
performance.

1 Introduction

To help navigate a large body of academic knowl-
edge, it can be useful to identify expert individ-
uals. Identifying such individuals may be useful
to find collaborators (Zhan et al., 2011; Schleyer
et al., 2012; Sziklai, 2018), to find paper review-
ers (Silva, 2014; Price and Flach, 2017), to find
supervisors (Alarfaj et al., 2012a), or to investi-
gate literature in a certain domain. This process
of identifying experts given a particular topic is
called expert finding (Balog et al., 2009), exper-
tise retrieval (Gonçalves and Dorneles, 2019), or
expert search. Expert search systems are informa-
tion retrieval systems that can automatically rank

candidate experts based on their expertise on a cer-
tain subject (Husain et al., 2019). In this study, we
target the domain of retrieving academic experts
based on papers they authored.

Given the central role of papers to defining exper-
tise in this domain, we focus on document-centric
expert search systems (Balog et al., 2006). These
systems largely rely on statistical language model-
ing, topic modeling, or term frequency-based ap-
proaches to represent documents (Gonçalves and
Dorneles, 2019; Husain et al., 2019). Surprisingly,
given the rapid advances in the field of contextu-
alized text embeddings (Wang et al., 2020b), little
work has been done in applying these approaches to
document representation for this task. We hypothe-
size that considering single words, which is com-
mon in the bag-of-words and probabilistic term-
based approaches, may significantly reduce the
system’s “understanding” of the underlying aca-
demic documents. To achieve a potentially deeper
understanding of these papers, contextualized text
embeddings could be used.

Thus, in this paper, we explore the impact of
contextualized text embeddings on the performance
of the expert search. Specifically, we make the
following contributions:

• a comparison of expert search performance
using token-based (i.e. BERT (Devlin et al.,
2018)) and sentence-based (Sentence-BERT
(Reimers and Gurevych, 2019)) contextual-
ized embeddings, non-contextualized embed-
dings (e.g. GloVe (Pennington et al., 2014))
and classic term frequency representations;

• measurement of the impact on perfor-
mance when incorporating citation infor-
mation into contextualized representations
through retrofitting (Faruqui et al., 2015); and
(Zhang, 2019).
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• a comparison of two different strategies for
combining embeddings of the title and ab-
stract of papers.

Additionally, all experiments are conducted
using different techniques for assigning author
weightings based on author order. Overall, this
paper provides evidence for the efficacy of con-
textualized embeddings for the task of academic
expert search. Note that this paper primarily fo-
cuses on investigating the performance of various
contextualized embeddings and expert ranking ag-
gregation methods within expert retrieval, and not
on the entire retrieval process. Therefore, some as-
pects of neural information retrieval systems such
as query understanding, query expansion, or re-
ranking are out of the scope of this study.

Source code for the methods and data processing
used in this paper can be found at https://github.
com/mabergerx/SDP500_expert_search. The
processed data used by our methods is available at
(Berger, 2020).

The rest of this paper is organized as follows.
We begin with a discussion of related work. Af-
terwards, the data used in this study is described.
This is followed by a description of the various
embeddings used and our approach to author rank-
ing. Section 6 defines the evaluation and Section
7 details its results. We, then, briefly describe a
prototype implementation using these representa-
tions. Finally, we discuss the limitations of the
work, potential future work and conclude.

2 Related work

In this section, we introduce the primary paradigm
for expert search. We then discuss work on voting
models, document representations, and the use of
text embedding techniques within expert search.

Probabilistic models A driving force behind ex-
pertise retrieval research was the launch of the
TREC Enterprise Track in 2005 (Craswell et al.,
2005). This evaluation campaign led to the emer-
gence of probabilistic models, in particular in the
form of language models, as the primary paradigm
for expertise retrieval. The core idea behind these
approaches is to estimate a language model for
each document and then rank the documents by
the likelihood of the user query according to the
language models (Balog et al., 2009).

Voting models We can see documents authored
by experts as evidence for their expertise. A partic-

ular type of models, based on data fusion methods
that aggregate document scores into expert rank-
ings, are called voting models (Husain et al., 2019;
Balog et al., 2012).

Given a query, the retrieved documents are as-
sumed to provide evidence about a possible rank-
ing of the authors. This aggregation of the final
author list can then be modelled as a voting pro-
cess, where the document scores are aggregated
into author scores (Macdonald, 2009; Macdonald
and Ounis, 2008, 2006b,a).

Paper embeddings Document-centric expert
search systems rely on the documents to aggregate
an expert ranking. However, effectively embedding
longer documents is still an open research problem
(Beltagy et al., 2020; Zhang et al., 2016; Liu and
Lapata, 2017).

Unsupervised document embedding techniques
include Sent2Vec (Pagliardini et al., 2018) and
Doc2VecC (Chen, 2017), while supervised doc-
ument embedding techniques include the Universal
Sentence Encoder (Cer et al., 2018) and InferSent
(Conneau et al., 2018). Recently, the Longformer
(Beltagy et al., 2020) was proposed to embed even
longer sequences of text than sentences. One re-
search proposed evaluating various sentence en-
coding techniques in re-ranking of BM25-based
research paper recommendations and found that
the sentence encoding could be a beneficial method
in addition to the BM25 retrieval, but not on its own
(Hassan et al., 2019). Adding the BERT [CLS] to-
ken embedding into other ranking model’s signal
has been proposed and is shown to improve the un-
derlying neural ranking architecture (MacAvaney
et al., 2019).

As for the embedding of academic papers, most
of the research focuses on learning the paper em-
beddings using linkage information and considers
this a graph problem (Wang et al., 2016; Zhang
et al., 2019; Mai et al., 2018).

Embedding expertise Given the amount of re-
search on document embedding techniques, there
has been surprisingly little attention given to the ap-
plication of contextualized embedding techniques
in the field of expertise retrieval. Three recent
surveys and reviews on the field of expertise re-
trieval (Gonçalves and Dorneles, 2019; Husain
et al., 2019; Lin et al., 2017) contained little to
no information about the application of embedding
techniques.

https://github.com/mabergerx/SDP500_expert_search
https://github.com/mabergerx/SDP500_expert_search
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One of the first works to introduce this concept
into expertise retrieval was Author2Vec (J et al.,
2016), which uses two models, the content-info
model and the link-info model within the context
of the co-authorship network. In the context-info
model, the text of the written papers is represented
using Paragraph2Vec (Le and Mikolov, 2014).

As briefly mentioned in the introduction, authors
that cite each other can be considered having simi-
lar interests (Tho et al., 2007; Shibata et al., 2008).
Zhang (Zhang, 2019) suggested using retrofitting
in the domain of academic papers as a means of
introducing this network information into the rep-
resentation of a paper. Retrofitting is a concept
introduced by Faruqui et al. (Faruqui et al., 2015)
which proposes the incorporation of the informa-
tion from semantic lexicons such as WordNet into
word embeddings.

3 Data description

The Microsoft Academic Graph (MAG) (Wang
et al., 2020a) was used at the primary data source.
The data consists of over 200 million papers (titles
& abstracts) as well as a variety of metadata. We
accessed the November 2018 snapshot of the MAG
data through the Open Academic Graph initiative1,
in particular the OAG v2 release.

Due to the very large size of the MAG, we cre-
ated a custom subset of the data that mainly con-
sisted of Computer Science (CS) related papers.
This domain allows us to interpret results better
than other science domains.

Our approach in extracting Computer Science
(CS) related papers was to take the 113.864 paper
titles obtained from arXiv2 - a widely used preprint
server - and do an exhaustive title matching on the
full MAG dataset. This search resulted in 29.237
exact title matches, which corresponds to 26,6%
of the arXiv data. This set provided us with a
substantial initial seed of papers to extract more CS
papers from the MAG data.

To allow retrofitting later in the process and cre-
ate a larger dataset, we expanded this set with the
references of all the 29.237 papers, which resulted
in a set of 221.347 papers. These references were
retrieved by accessing the references field of each
of the 29.237 paper in the MAG data. Note that
these references are not necessarily always com-
plete: some cited articles may not be present in

1https://www.openacademic.ai/oag/
2https://arxiv.org

our data due to incompleteness of the source MAG
data.

From these 221.347 papers, we then performed
bounded stratified sampling for the authors to re-
trieve a subset of 5.000 authors who are represen-
tative of both highly-, medium- and less prolific
author populations. The full sampling method is de-
scribed in Algorithm 5 in the Algorithms appendix.

This set of 5.000 authors served as a starting
point for a second, final round of data retrieval. For
these authors, we retrieved all their papers and ref-
erences, resulting in a set of 127.716 papers, which
included authors of the referenced papers. For all
these new authors, we collected the metadata from
the MAG authors dataset and aggregated this in-
formation into a single final authors dataset. The
reason for expanding the set of authors beyond the
5.000 sampled authors is that a larger pool of pa-
pers is beneficial for the retrieval due to the larger
search space.

For all titles and abstracts in our dataset, we
performed data cleaning. Specifically, (corpus-
specific) stopwords were removed, redundant
whitespace and Unicode characters were both nor-
malized. URLs and e-mails were removed.

4 Paper embedding methodology

In this section, we describe the paper embedding
techniques employed and discuss our approach
to embedding indexing and search, as well as
retrofitting embeddings.

4.1 Embedding techniques
Various approaches have been used to embed the
papers. We divide our approaches into the custom
contextual approach and the baseline approaches.
In all our baseline approaches, we use the concate-
nation of the title and the abstract to represent the
paper.

Custom contextual approach We use the title
and the abstract as representative texts for a paper.
Although the title and abstract of a paper are both
relevant representations, they may contain informa-
tion that differs in importance and granularity. In
order to capture the possible semantic weight differ-
ences between the title and the abstract, we deploy
two different embedding combination strategies:
the merge strategy and the separate strategy.

In the merge strategy, we assume that the seman-
tic weights of the title sentence and the abstract
sentences are equal. That means that we want to

https://www.openacademic.ai/oag/
https://arxiv.org
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take the average over the title- and abstract sentence
embeddings without assigning any extra weight to
neither. A detailed specification is given in the
Algorithm 1 in the appendix.

In the separate strategy, we do want to differenti-
ate between the title and the abstract. In particular,
we want to assign more weight to the title than to
the individual abstract sentences. We achieve this
by first computing the average abstract embedding
and then taking the average between that and the
title embedding. A detailed specification is given
in the Algorithm 3 in the appendix.

We refer to the actual text embedding model as
the embedder. The embedder of choice is Sentence-
BERT (Reimers and Gurevych, 2019), which is
specifically designed for producing meaningful
sentence-level embeddings, suited for Semantic
Textual Similarity (STS). Specifically, we make
use of the RoBERTa-base model fine-tuned on the
combination of NLI datasets, and then further fine-
tuned on the STS benchmark training set 3.

Baseline approach: Latent Semantic Indexing
(LSI) (Deerwester et al., 1990) TF-IDF vectors
with applied singular value decomposition. For
our experiments, we chose to set the LSI vector’s
dimensionality to 768 dimensions, the same as the
Sentence-BERT embedding dimensionality.

Baseline approach: BERT- and GloVe pool-
ing To provide a comparison between specifically
tuned for document-level representations Sentence-
BERT and conventional pooling document embed-
ding techniques, we produced paper embeddings
by averaging both BERT and GloVe token embed-
dings. In both averaging operations, we perform
double pooling: first, all tokens within each sen-
tence are embedded and averaged into a single sen-
tence embedding, and then these sentence embed-
dings are once again averaged into a single paper
embedding. The details of this embedding process
are shown in Algorithm 2 in the appendix and is
identical for both BERT and GloVe embeddings.
For both BERT (bert-base-uncased) and GloVe
embedding calculations, we used the Flair (Akbik
et al., 2018) Python library.

4.2 Retrofitting

Authors that cite each other can be considered as
having similar interests. In the context of having

3https://github.com/UKPLab/
sentence-transformers

a semantic representation of expertise, it could be
helpful to “expand” a paper embedding to broaden
the expertise scope of the author beyond a partic-
ular paper. To achieve this broadening, we use
a technique called retrofitting, which introduces
network information into the embeddings.

Inspired by (Zhang, 2019), we adapt the origi-
nal implementation4 of retrofitting (Faruqui et al.,
2015) to work with academic papers that have been
contextually embedded. The retrofitting process is
performed for ten iterations. Algorithm 4 in the
appendix shows the details about the algorithm.

4.3 Embedding storage and search

We chose the FAISS (Johnson et al., 2017) library
by Facebook for our indexing purposes. It is opti-
mized for memory usage and speed and can handle
a large number of vectors.

For our embeddings, we chose the IndexHN-
SWFlat index 5. We use cosine similarity as the
measure of similarity between the query embed-
ding ~Q and any of the indexed embeddings ~V .

5 Author ranking via voting

From the FAISS index we can, given a query, re-
trieve top N similar papers. To produce a final
author ranking, we adopt a voting model based ap-
proach.

We can consider the retrieved paper results as
the “expertise evidence” for the authors of these
papers. A range of different voting approaches
based on data fusion techniques has been proposed
(Macdonald and Ounis, 2008; Afzal and Maurer,
2011; Alarfaj et al., 2012b) to produce an author
ranking given the documents.

Each retrieved document d from the set of re-
trieved documents R(Q) has an associated similar-
ity score s(d,Q) to it, with regard to the query Q.
We can then combine these document scores into
aggregated author scores using the ExpCombSUM
(eCS) data fusion function (Macdonald, 2009):

eCS(C,Q) =
∑

d∈R(Q)∩DC

e(s(d,Q))) (1)

where C is a candidate expert, DC is the set of
documents associated with candidate C.

4https://github.com/mfaruqui/
retrofitting

5https://github.com/facebookresearch/
faiss/wiki/Faiss-indexes

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/mfaruqui/retrofitting
https://github.com/mfaruqui/retrofitting
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
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This algorithm (Macdonald and Ounis, 2008;
Macdonald, 2009), assumes that each document
produces a static score per related author. In the
case of academic papers, that is not the case, as
most papers have multiple authors. These authors
mostly have a different level of involvement in a
particular paper and, therefore, may have a differ-
ent vote produced by the document, depending on
their authorship role. Recent research has shown
that because the research is increasingly more inter-
disciplinary, evaluating authors based on their rank
within the order of authors is becoming increas-
ingly difficult (Júnior et al., 2017). Therefore, it
could be valuable to assign different weights to dif-
ferent authors of the same document. To the best of
our knowledge, no previous work has been done on
exactly defining weights on the authorship scores
within a voting model. We define four different
weighting strategies:

1. Binary weighting. Each author gets the full
score for a document. This strategy assumes
that each author contributed equally.

2. Uniform weighting. Each author gets
fullScore
# authors for a document. This strategy as-
sumes that each author contributed equally
but does normalize the score by the number
of authors.

3. Descending weighting. The first author gets
the full document score. Each following au-
thor gets fullScore ∗ decayFactor, where
decayFactor starts at 0.8 and decreases with
0.2 for each consecutive author. This strategy
assumes that the authors are listed in descend-
ing involvement order.

4. Parabolic weighting. The first and last au-
thor get the full document score. All authors
in between follow the descending weighting.
This strategy assumes that the first author is
similar to the descending weighting, but also
takes the possible importance of the last au-
thor as the project supervisor.

Using these data fusion approaches, a fairness
problem may occur: highly prolific authors, that
may be associated with many documents (for in-
stance, because they are the head of a lab) may
receive an unfairly large number of votes, which
does not necessarily indicate their expertise. Candi-
date length normalization is proposed to deal with

this unfairness, just as document length normal-
ization is often performed in document retrieval
systems (Macdonald, 2009).

The use of a classical document normalization
technique based on the Divergence From Random-
ness framework (Amati, 2003) is proposed (Mac-
donald, 2009), and has the following formula:

sN (C,Q) = s(C,Q) · log2(1 + α · aL
lP

) (2)

where α is a hyperparameter controlling the
amount of normalization, aL is the average amount
of publications, and lP is the length of the profile
of the candidate C. The lower the α parameter is,
the more less prolific authors are boosted, and the
more highly prolific authors are suppressed.

In practice, we discovered that because of the
nature of our dataset, if we apply the above nor-
malization technique, many authors from the long
tail are retrieved, even when we use high α values.
Therefore, we experimented with introducing an-
other term to the equation: β, which serves as a
profile length “booster”:

sN (C,Q) = s(C,Q) · log2(1 + α · aL

lP + β
) (3)

While it does introduce bias and eases the nor-
malization, in our case, it provided an extra param-
eter to tune and resulted in a better mix of well-
and lesser-known authors.

6 Evaluation methods

To evaluate the different retrieval strategies, we
developed a method which uses the field of work
tags present in the MAG dataset for the authors as
a proxy for evaluating the relevance of an author.
Because we use a document-centric retrieval strat-
egy which uses strictly only the embeddings of the
paper’s title and abstract, the field of work tags are
not used in the retrieval process, allowing us to use
these tags in the evaluation process.

The query test set for our research was selected
from the full distribution of author tags. The final
query test set contained a hundred Computer Sci-
ence related queries. The set is available in Table 3
in the appendix.

6.1 Relevance metrics
Before we can use any of the existing binary infor-
mation retrieval metrics, we need to define a notion
of relevance of an author given a query.
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Based on the field of work tags, we define two
relevance checks:

1. Exact topic query evaluation (Brochier
et al., 2018). This approach takes a descrip-
tion of a topic and uses it directly as a query.
The experts associated with that topic are then
the ground truth list of candidates to be re-
trieved. In our case, the field of work tags
of the authors are used as queries, and the
retrieved authors are labelled relevant if they
have that tag.

2. Approximate topic query evaluation.
Sometimes, a query retrieves authors who
have an incomplete field of work tag list
or have tags which are very similar to the
query but do not exactly match it. For
instance, author A may have “automatic
summarization” in their tags list, while the
query was “automatic text summarization”.
This author is clearly highly relevant to the
query but would be labelled as irrelevant
by the exact topic query evaluation method.
Therefore, we introduce a fuzzy relevance
checking method which, given a query,
calculates the cosine similarity between the
query embedding and each of the author’s
tags. If any of the similarities are higher than
a chosen threshold, then we deem the author
relevant.

Once we can label each retrieved author as
relevant or not relevant, we can use different
evaluation metrics. We evaluate our system by
using three binary relevance metrics, all mea-
sured @N and using both the exact and approx-
imate topic query evaluation: Mean Reciprocal
Rank (MRR@Nexact, MRR@Napprox), Mean
Precision @ N (MP@Nexact, MP@Napprox),
and Mean Average Precision (MAP@Nexact,
MAP@Napprox)

Some authors are more relevant than others.
To incorporate this into our evaluation, we also
use the Normalized discounted cumulative gain
(nDCG@N) score, which is sensitive to the posi-
tion of the relevant items in the produced ranking.

To produce the nDCG scores, we first need to
have the score for the ideal ranking given a query,
IDCG. To calculate the IDCG scores, for each
query in our test set, we created a mapping be-
tween the query and the corresponding top authors.

Each author in such mapping got a relevance la-
bel in relation to the query. In our implementation
of the author’s relevance, we use the citations of
the relevant papers of an author as a proxy for the
expertise. Although any expertise measure of an
author is not fully objective, and many factors seem
to have effect on the citation activity (Yan et al.,
2011), we chose the citation counts of the papers
as a proxy for expertise for the following reasons:

• This measure is explainable.

• It prevents highly prolific but rarely cited au-
thors to be labeled as highly relevant for mul-
tiple topics just based on their output

Given this final query-to-expert mapping, we
precalculated the IDCG@10 score for each of the
test queries in our dataset, so we could later cal-
culate the nDCG@10 score per query. Once we
calculated all the scores for our test set, we can
take the average of those scores to have a single
nDCG@10 score for our current system.

7 Results

In this section, first the overall quantitative evalua-
tion results are discussed and then we zoom in on
the performance of retrofitting and author contribu-
tion weighting.

7.1 Voting model results

The results of the voting model approach are pre-
sented in Table 1. Here we only present the exact
topic query evaluation results, as we observe that
approximate topic query evaluation results corre-
spond to the exact results but are overall higher. In
particular, for MRR, the approximate results are
0.06 higher on average; for MAP, the approximate
results are 0.16 higher; for MP@10 the approxi-
mate results are 0.15 higher; and finally the MP@5
approximate results are, again, 0.15 higher. The
full results table with the approximate query evalu-
ation results included, are presented in Table 2 in
the Appendix.

We can observe that the LSI baseline produces
strong results, outperforming both embedding pool-
ing baselines. From the four used author contribu-
tion weighting schemes, the binary score weighting
is the best performing weighting. However, the
overall performance difference between the weight-
ings is quite small.
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PAPER EMBEDDING KIND DATA FUSION TECHNIQUE MRR@10
EXACT

MAP@10
EXACT

MP@10
EXACT

MP@5
EXACT

NDCG
@10

NDCG
@5

LSI expCombSUMuniform 0.75 0.399 0.462 0.496 0.39 0.42
expCombSUMbinary 0.753 0.428 0.491 0.512 0.41 0.44
expCombSUMdescending 0.755 0.411 0.476 0.484 0.39 0.42
expCombSUMparabolic 0.763 0.392 0.457 0.482 0.39 0.42

Average pooled BERT expCombSUMuniform 0.554 0.117 0.198 0.206 0.1 0.11
expCombSUMbinary 0.558 0.12 0.203 0.222 0.12 0.13
expCombSUMdescending 0.556 0.117 0.2 0.208 0.11 0.12
expCombSUMparabolic 0.56 0.107 0.18 0.218 0.1 0.12

Average pooled GloVe expCombSUMuniform 0.626 0.272 0.369 0.398 0.27 0.29
expCombSUMbinary 0.672 0.304 0.402 0.414 0.3 0.31
expCombSUMdescending 0.661 0.286 0.383 0.398 0.28 0.3
expCombSUMparabolic 0.676 0.254 0.33 0.392 0.25 0.28

Merged Sentence-BERT expCombSUMuniform 0.834 0.419 0.491 0.528 0.43 0.47
expCombSUMbinary 0.83 0.437 0.509 0.546 0.42 0.46
expCombSUMdescending 0.818 0.419 0.493 0.526 0.41 0.46
expCombSUMparabolic 0.812 0.4 0.484 0.508 0.41 0.45

Separate Sentence-BERT expCombSUMuniform 0.838 0.495 0.572 0.616 0.53 0.58
expCombSUMbinary 0.837 0.518 0.59 0.626 0.54 0.6
Norm(expCombSUMbinary)
β = 0 and α = 1

0.619 0.174 0.282 0.272 0.15 0.14

Norm(expCombSUMbinary)
β = 0 and α = 1000

0.694 0.218 0.318 0.324 0.16 0.17

Norm(expCombSUMbinary)
β = 10 and α = 1000

0.777 0.293 0.381 0.406 0.22 0.25

Norm(expCombSUMbinary)
β = 50 and α = 1000

0.769 0.362 0.455 0.466 0.31 0.33

Norm(expCombSUMbinary)
β = 1000 and α = 1000

0.813 0.404 0.491 0.52 0.37 0.4

expCombSUMdescending 0.839 0.501 0.581 0.612 0.52 0.58
expCombSUMparabolic 0.819 0.486 0.565 0.592 0.52 0.56

Retrofitted merged Sentence-BERT expCombSUMuniform 0.792 0.384 0.45 0.482 0.38 0.42
expCombSUMbinary 0.83 0.404 0.467 0.496 0.39 0.44
expCombSUMdescending 0.813 0.39 0.454 0.486 0.38 0.42
expCombSUMparabolic 0.775 0.38 0.445 0.474 0.38 0.4

Retrofitted separate Sentence-BERT expCombSUMuniform 0.821 0.51 0.577 0.606 0.5 0.54
expCombSUMbinary 0.841 0.519 0.584 0.616 0.51 0.54
expCombSUMdescending 0.831 0.505 0.569 0.61 0.49 0.54
expCombSUMparabolic 0.808 0.509 0.583 0.596 0.5 0.53

Table 1: Results for the voting model author retrieval strategy. The best results are formatted in bold.

The best performing configuration is the separate
embedding strategy with the binary distributed pa-
per scores. We see that normalizing the expComb-
SUM function with a low α and β = 0 leads to
steep decrease in performance. With higher α and
β, the performance goes up but can be explained
by “cancelling out” the normalization effect. One
of the reasons for this bad performance could be
that the dataset contains many authors from the
long tail; some of the authors naturally may have
worse metadata resulting in missing expertise tags.
Moreover, for lesser-known authors in the MAG,
we have encountered a problem that the profiles
get deleted or get different author ids, which also
corrupts the metadata and the results.

Retrofitting the embeddings did not improve
the results, except for two evaluation metrics:
MRR@10exact and MAP@10exact in case of the
retrofitted separate embeddings.

7.2 Performance of retrofitting
Retrofitting the embeddings did not improve our
retrieval performance with the exception of two
metrics. One of the explanations could be that the
relatively small size of our dataset can hurt the
retrofitting process. Combined with the variance in
the number of neighbours per paper, some of the
resulting retrofitted embeddings might be driven
away too much from the original embedding, while
other embeddings are not modified “enough”.

7.3 Effect of different author contribution
weightings

Throughout the experiment, we observed that the
binary author contribution weighting performs the
best. Therefore, we can conclude that, for our
voting model configuration, introducing elaborate
author contribution combinations does not improve
the retrieval performance.
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8 Prototype implementation

We implemented our model int a prototype, which
consists of a REST API, where the users can, given
a search query, look for N most relevant experts.
Each individual expert representation is contained
within a JSON object which contains not only the
author’s name and MAG id, but also the authors
affiliation information (retrieved using GRID 6),
the list of papers which voted for the author and
their corresponding document scores in relation to
the query, and additional author information from
WikiData (Vrandečić and Krötzsch, 2014).

9 Discussion & Future work

This study faced multiple challenges regarding data
quality, data freshness, embedding strategy consid-
erations, and the retrieval base on embeddings. In
this section, we discuss these issues.

Data completeness and variability. The field-
of-work tags used in the evaluation are not always
complete and are subject to the specific format used
by the MAG. In addition, for some authors, no
tags are present in our snapshot of the MAG data.
This has an effect on the evaluation performance
by introducing both false positives and -negatives
into the relevancy determining process. Overall,
our system would profit significantly from a larger
pool of papers and authors.

Shifting expertise. Many authors have varying
interests during their academic career. Our system
is inherently a snapshot of their academic activity:
we only search and aggregate within a bounded
set of papers. Introducing temporal aspect into the
author search, which would intelligently account
for shifting expertise could improve the retrieval
results.

Representing expertise domains. Many authors
are not experts in just one niche field, but rather
are knowledgeable about a pretty broad field of sci-
ence, with more in-depth knowledge about a few
specific sub-fields. Clustering within the author
expertise to find expertise sub-clusters might help
to create more nuanced author representations by
taking the cluster centroids as the individual author
embeddings. This approach, while interesting, re-
quires more data, as clustering within the papers of
one author requires having a significant amount of
papers per author.

6https://www.grid.ac/

Performance of individual retrieval strategies.
Different types of embeddings may perform well in
different scenarios. For example, retrofitting of the
paper embeddings leads to the “widening” of the se-
mantic representation of a paper into the direction
of its neighbours. For example, retrofitted embed-
dings may perform better for more broad/general
queries and worse on more specific queries. The
same applies for normalization in the voting model:
retrieving less prolific authors may be beneficial
for some user’s needs, while it technically hurts the
quantitative performance of the system.

Document pooling strategies. In the two paper
embedding strategies, we perform pooling over
multiple sentence embeddings. While these strate-
gies seem to work well to represent the papers for
our task, it would still be interesting to use new,
state-of-the-art approaches for embedding longer
texts, such as the Longformer (Beltagy et al., 2020),
to avoid using any pooling strategies and loosing
semantic value. Techniques like the recently intro-
duced SPECTER (Cohan et al., 2020) could also
be used to produce better citation-informed docu-
ment embeddings. Finally, we could employ the
SciBERT (Beltagy et al., 2019) model in our base-
line pooling strategies or even fine-tune a SciBERT
model on longer sequences, similarly to Sentence-
BERT, as it is better suited for academic texts.

Graph embeddings. In our approach, we used
retrofitting to introduce citation network informa-
tion into our initial paper embeddings. However,
we could also go a step further and use graph em-
bedding techniques to create native graph-based
embeddings for our papers (Mai et al., 2018; Wang
et al., 2016; Zhang et al., 2019).

10 Conclusion

In this study, we investigated different approaches
for embedding academic papers and using the em-
beddings in an expert search task.

Overall, we found that Transformer-based con-
textual text embeddings work well on the domain
of academic papers. By using the Sentence-BERT
model trained on NLI and SNS tasks, we outper-
formed the strong LSI baseline often employed
in information retrieval systems on all ten evalua-
tion metrics. We also outperformed the baseline
strategies of average pooled BERT and GloVe em-
beddings.

Employing a weighted embedding combination
strategy to represent a paper can however be valu-

https://www.grid.ac/
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able, as we found that using a separate embedding
combination strategy outperformed the “default”
merged strategy on nine out of ten metrics.

We hypothesized that enriching the paper em-
beddings with citation information, in a process
called retrofitting, could improve improve retrieval
performance. Our experiments did not confirm
this hypothesis, as non-retrofitted embeddings per-
formed better in our task on all but two evaluation
metrics.

Finally, we employed various data fusion tech-
niques to convert the top N retrieved papers given
a query into a ranking of authors. A voting model
was used, where each document served as evidence
for the corresponding author’s expertise. We inves-
tigated whether using author contribution weight-
ing strategies within the voting process would im-
prove expertise retrieval. We observed no perfor-
mance gain over the “default” binary strategy.

Given the direction of this study, we think that
the most suitable application areas for the method-
ology we proposed are reviewer finding, supervisor
finding and investigating literature on a topic. The
reasoning behind this is that finding a collabora-
tor may require and involve more sophisticated
information about the institution, availability and
current field of interest of the found experts. The
proposed three areas, however, allow for less speci-
ficity and can better benefit from the improved re-
trieval.

While research in the field of expertise retrieval
is not as active in the second half of the 2010s as it
was in the first half, the area of text representations
and retrieval has seen dramatic improvements. This
study was an effort to apply these new techniques
into the field of expertise retrieval and has shown
that substantial improvements can be made over
the existing retrieval algorithms. We hope that this
study can contribute to a new research wave within
the field of (academic) expertise retrieval.
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tion for Computational Linguistics.

Fawaz Alarfaj, Udo Kruschwitz, David Hunter, and
Chris Fox. 2012b. Finding the right supervisor:
Expert-finding in a university domain. In Proceed-
ings of the 2012 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies: Student
Research Workshop, NAACL HLT ’12, page 1–6,
USA. Association for Computational Linguistics.

G Amati. 2003. Probabilistic Models for Information
Retrieval based on Divergence from Randomness.
University of Glasgow, UK. Ph.D. thesis, PhD The-
sis.

Krisztian Balog, Leif Azzopardi, and Maarten De Ri-
jke. 2006. Formal models for expert finding in en-
terprise corpora. Proceedings of the Twenty-Ninth
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
2006:43–50.

Krisztian Balog, Leif Azzopardi, and Maarten de Rijke.
2009. A language modeling framework for expert
finding. Information Processing and Management,
45(1):1–19.

Krisztian Balog, Yi Fang, Maarten De Rijke, Pavel
Serdyukov, and Luo Si. 2012. Expertise retrieval.
Foundations and Trends in Information Retrieval,
6(2-3):127–256.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: Pretrained language model for scientific text. In
EMNLP.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer.

Mark Berger. 2020. Datasets for effective distributed
representations for academic expert search.

Robin Brochier, Adrien Guille, Benjamin Rothan, and
Julien Velcin. 2018. Impact of the query set on the
evaluation of expert finding systems. CEUR Work-
shop Proceedings, 2132:32–45.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
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Algorithm 1: Paper embedding creation following the merge strategy.
Result: Paper embeddings ME following the merge strategy

Input: A set of paper titles T , a set of batches of abstract sentences A (with |T | = |A|) and an
embedder model Embedder

mergedEmbeddings← []
abstractEmbeddingBatches← []
titleEmbeddings← Embedder.embed(T )
for aBatch ∈ A do

batchEmbeddings← Embedder.embed(aBatch)
abstractEmbeddingBatches.append(batchEmbeddings)

end
assert |titleEmbeddings| = |abstractEmbeddingBatches|
for tE ∈ titleEmbeddings, aEB ∈ abstractEmbeddingBatches do

aEB.append(tE)
N← dim(aEB)

mergedEmbedding← 1
N

N∑
i=1

(embi ∈ aEB) . Take the element-wise average of all

the embeddings, resulting in one embedding

mergedEmbeddings.append(mergedEmbedding)
end
return mergedEmbeddings

Algorithm 2: Paper embedding creation following baseline BERT or GloVe strategy.
Result: Baseline paper embeddings ME created by either BERT or GloVe embedding model.

Input: A set of batches of abstract sentences A with elementwise appended corresponding paper
titles T (with |T | = |A|) and an embedder model Embedder (either BERT or GloVe)

embeddings← []
abstractEmbeddingBatches← []
for aBatch ∈ A do

batchEmbeddings← Embedder.embed(aBatch)
abstractEmbeddingBatches.append(batchEmbeddings)

end
for aEB ∈ abstractEmbeddingBatches do

N← dim(aEB)

pooledEmbedding← 1
N

N∑
i=1

(embi ∈ aEB) . Take the element-wise average of all

the embeddings, resulting in one embedding

embeddings.append(pooledEmbedding)
end
return embeddings
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Algorithm 3: Paper embedding creation following the separate strategy.
Result: Paper embeddings ME following the separate strategy

Input: A set of paper titles T , a set of batches of abstract sentences A (with |T | = |A|) and an
embedder model Embedder

mergedEmbeddings← []
abstractAverageEmbeddings← []
titleEmbeddings← Embedder.embed(T )
for aBatch ∈ A do

batchEmbeddings← Embedder.embed(aBatch)
N← dim(batchEmbeddings)

averageBatchEmbedding← 1
N

N∑
i=1

(embi ∈ batchEmbeddings) . Create an average

embedding for abstract sentences only.

abstractAverageEmbeddings.append(averageBatchEmbedding)
end
assert |titleEmbeddings| = |abstractAverageEmbeddings|
for tE ∈ titleEmbeddings, aE ∈ abstractAverageEmbeddings do

separateArray← [tE, aE] . Create a two item array consisting of the title

embedding and the average abstract embedding.

N← dim(separateArray)

separateEmbedding← 1
N

N∑
i=1

(embi ∈ separateArray) . Create an average embedding

over just two embeddings.

separateEmbeddings.append(separateEmbedding)
end
return separateEmbeddings
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Algorithm 4: The retrofitting algorithm.
Result: Retrofitted paper embeddings

Data: A mapping between paper id’s and their embeddings→ C (corpus), the mapping between
paper id’s in lexicon and their references→ L (lexicon), and the amount of algorithm
iterations→ numIter.

Retrofit (C,L, numIter)
newCorpus← deepcopy (C) . Deep copy the corpus into a new variable to alter

I ← newCorpus.keys() . Extract all the keys (paper id’s) from the corpus

corpusVocabulary← set (I) . Consider only the unique paper id’s

// Two lines below exist for the case where the paper id’s in lexicon differ from paper id’s in
corpus, normally not the case in our environment. Otherwise, they have not effect.

LI ← L.keys() . Extract all the keys (paper id’s) from the lexicon

relevantVocabulary← corpusVocabulary ∩ set (LI) . Consider only the overlapping

id’s from lexicon and corpus

for it← 0 to numIter do
foreach paper ∈ relevantVocabulary do

paperNeighbours← set (L[word]) ∩ corpusV ocabulary . Extract the set of

neighbours of the current paper that actually have an embedding in our corpus

numNeighbours← len (paperNeighbours)
if numNeighbours = 0 then

continue . If the paper has no neighbours, do not adjust the embedding and go to next paper

end
newEmbedding ← numNeighbours ∗ C[paper] . Initialize the new embedding by

weighing in the original embedding

foreach neighbour in paperNeighbours do
newEmbedding += newCorpus[neighbour] . Add the neighbour embedding with

weight 1.

end
newCorpus[paper]← newEmbedding

2∗numNeighbours . Finalize the new embedding by dividing the current

new embedding by (2 * number neighbours), essentially putting the embedding back in the same space.

end
end
return newCorpus
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Algorithm 5: The author sampling strategy from the arXiv subset.
Result: A stratified sample of authors randomAuthorSample of size s = 5000.

Input: A set of authors authorsArxiv extracted from the the arXiv subset with the corresponding
metadata and the final sample size s = 5000 (arbitrarily chosen).

1. Filter authorsArxiv to only contain authors which, for their papers, have references in the data.
That is needed to be able to do retrofitting later.

2. Given this new proper set of authors, properA, initialize four bins (strata) based on the amount of
author publications:

(a) 5 - 10 publications
(b) 10 - 50 publications
(c) 50 - 100 publications
(d) 100+ publications

3. Calculate the bin size for each bin and also the total amount of authors in all the bins.

4. Perform proportionate allocation using a sampling fraction in each of the strata that is proportional
to that of the total population. We went for a sample size of 5000 authors. For a single bin, the
allocation process is as following:

Bin 1 (5 - 10 publications) has 22.943 authors. The total population of authors in all the bins is
35.450 authors (|properA|). The share of Bin1 in the final 5.000 authors set is then

Bin 1 => 22.943 * (5.000 / 35.450) = 3.235 authors

5. Proceed doing a simple random sampling from those pools of authors, resulting in
randomAuthorSample.

return randomAuthorSample
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PAPER EMBEDDING KIND DATA FUSION TECHNIQUE MRR@10
EXACT

MRR@10
APPRX

MAP@10
EXACT

MAP@10
APPRX

MP@10
EXACT

MP@10
APPRX

MP@5
EXACT

MP@5
APPRX NDCG@10 NDCG@5

LSI expCombSUMuniform 0.75 0.864 0.399 0.603 0.462 0.662 0.496 0.696 0.39 0.42
expCombSUMbinary 0.753 0.844 0.428 0.626 0.491 0.693 0.512 0.708 0.41 0.44
expCombSUMdescending 0.755 0.857 0.411 0.603 0.476 0.668 0.484 0.684 0.39 0.42
expCombSUMparabolic 0.763 0.864 0.392 0.587 0.457 0.651 0.482 0.68 0.39 0.42

Average pooled BERT expCombSUMuniform 0.554 - 0.117 - 0.198 - 0.206 - 0.1 0.11
expCombSUMbinary 0.558 - 0.12 - 0.203 - 0.222 - 0.12 0.13
expCombSUMdescending 0.556 - 0.117 - 0.2 - 0.208 - 0.11 0.12
expCombSUMparabolic 0.56 - 0.107 - 0.18 - 0.218 - 0.1 0.12

Average pooled GloVe expCombSUMuniform 0.626 - 0.272 - 0.369 - 0.398 - 0.27 0.29
expCombSUMbinary 0.672 - 0.304 - 0.402 - 0.414 - 0.3 0.31
expCombSUMdescending 0.661 - 0.286 - 0.383 - 0.398 - 0.28 0.3
expCombSUMparabolic 0.676 - 0.254 - 0.33 - 0.392 - 0.25 0.28

Merged Sentence-BERT expCombSUMuniform 0.834 0.903 0.419 0.586 0.491 0.658 0.528 0.684 0.43 0.47
expCombSUMbinary 0.83 0.893 0.437 0.606 0.509 0.677 0.546 0.708 0.42 0.46
expCombSUMdescending 0.818 0.903 0.419 0.59 0.493 0.657 0.526 0.688 0.41 0.46
expCombSUMparabolic 0.812 0.869 0.4 0.555 0.484 0.634 0.508 0.666 0.41 0.45

Separate Sentence-BERT expCombSUMuniform 0.838 0.875 0.495 0.673 0.572 0.744 0.616 0.764 0.53 0.58
expCombSUMbinary 0.837 0.892 0.518 0.69 0.59 0.751 0.626 0.784 0.54 0.6
Norm(expCombSUMbinary)
β = 0 and α = 1

0.619 0.678 0.174 0.284 0.282 0.42 0.272 0.398 0.15 0.14

Norm(expCombSUMbinary)
β = 0 and α = 1000

0.694 0.737 0.218 0.331 0.318 0.452 0.324 0.456 0.16 0.17

Norm(expCombSUMbinary)
β = 10 and α = 1000

0.777 0.807 0.293 0.409 0.381 0.509 0.406 0.542 0.22 0.25

Norm(expCombSUMbinary)
β = 50 and α = 1000

0.769 0.81 0.362 0.49 0.455 0.589 0.466 0.602 0.31 0.33

Norm(expCombSUMbinary)
β = 1000 and α = 1000

0.813 0.853 0.404 0.548 0.491 0.638 0.52 0.658 0.37 0.4

expCombSUMdescending 0.839 0.894 0.501 0.666 0.581 0.737 0.612 0.758 0.52 0.58
expCombSUMparabolic 0.819 0.878 0.486 0.654 0.565 0.729 0.592 0.742 0.52 0.56

Retrofitted merged Sentence-BERT expCombSUMuniform 0.792 0.839 0.384 0.551 0.45 0.61 0.482 0.638 0.38 0.42
expCombSUMbinary 0.83 0.865 0.404 0.563 0.467 0.618 0.496 0.652 0.39 0.44
expCombSUMdescending 0.813 0.843 0.39 0.551 0.454 0.609 0.486 0.644 0.38 0.42
expCombSUMparabolic 0.775 0.847 0.38 0.542 0.445 0.598 0.474 0.638 0.38 0.4

Retrofitted separate Sentence-BERT expCombSUMuniform 0.821 0.893 0.51 0.658 0.577 0.716 0.606 0.732 0.5 0.54
expCombSUMbinary 0.841 0.893 0.519 0.661 0.584 0.718 0.616 0.75 0.51 0.54
expCombSUMdescending 0.831 0.895 0.505 0.647 0.569 0.702 0.61 0.734 0.49 0.54
expCombSUMparabolic 0.808 0.863 0.509 0.658 0.583 0.724 0.596 0.732 0.5 0.53

Table 2: Results for the voting model author retrieval strategy. The best results are formatted in bold.

Queries

’cluster analysis’ ’Bayesian statistics’ ’world wide web’ ’Novelty detection’

’Image segmentation’ ’kernel density estimation’ ’gibbs sampling’ ’semantic grid’

’Parallel algorithm’ ’learning to rank’ ’user interface’ ’Knowledge extraction’

’Monte Carlo method’ ’relational database’ ’belief propagation’ ’Computational biology’

’Convex optimization’ ’activity recognition’ ’interpolation’ ’Web 2.0’

’Dimensionality reduction’ ’wearable computer’ ’wavelet transform’ ’Network theory’

’Facial recognition system’ ’ensemble learning’ ’transfer of learning’ ’Video denoising’

’k-nearest neighbors algorithm’ ’wordnet’ ’topic model’ ’Quantum information science’

’Hierarchical clustering’ ’medical imaging’ ’clustering high-dimensional data’ ’Color quantization’

’Automatic text summarization’ ’deconvolution’ ’game theory’ ’social web’

’Dynamic programming’ ’Latent Dirichlet allocation’ ’biometrics’ ’entity linking’

’Genetic algorithm’ ’Euclidian distance’ ’constraint satisfaction’ ’information privacy’

’Human-computer interaction’ ’web service’ ’combinatorial optimization’ ’random forest’

’Categorial grammar’ ’multi-task learning’ ’speech processing’ ’cloud computing’

’Semantic Web’ ’Linear separability’ ’multi-agent system’ ’Knapsack problem’

’fuzzy logic’ ’OWL-S’ ’mean field theory’ ’Linear algebra’

’image restoration’ ’Wireless sensor network’ ’social network’ ’batch processing’

’generative model’ ’Semantic role labeling’ ’lattice model’ ’rule induction’

’search algorithm’ ’Continuous-time Markov chain’ ’automatic image annotation’ ’Uncertainty quantification’

’sample size determination’ ’Open Knowledge Base Connectivity’ ’computational geometry’ ’Computer architecture’

’anomaly detection’ ’Propagation of uncertainty’ ’Evolutionary algorithm’ ’Best-first search’

’sentiment analysis’ ’Fast Fourier transform’ ’web search query’ ’Gaussian random field’

’semantic similarity’ ’Security token’ ’eye tracking’ ’Support vector machine’

’logic programming’ ’machine translation’ ’query optimization’ ’ontology language’

’Hyperspectral imaging’ ’middleware’ ’Newton’s method’ ’big data’

Table 3: The full test queries set used for the system evaluation.


