ARTU / TU Wien and Artificial Researcher @ LongSumm 20

Alaa El-Ebshihy
TU Wien / Vienna, Austria

alaa.el-ebshihy@tuwien.ac.at

Linda Andersson

Artificial Researcher IT GmbH / Vienna, Austria

linda.andersson@artificialresearcher.com

Annisa Maulida Ningtyas
TU Wien / Vienna, Austria

annisa.ningtyas@student.tuwien.ac.at

Florina Piroi
TU Wien / Vienna, Austria

florina.piroi@tuwien.ac.at

Andreas Rauber
TU Wien / Vienna, Austria

andreas.rauber@tuwien.ac.at

Abstract

In this paper, we present our approach to solve
the LongSumm 2020 Shared Task, at the Ist
Workshop on Scholarly Document Processing.
The objective of the long summaries task is
to generate long summaries that cover salient
information in scientific articles. The task
is to generate abstractive and extractive sum-
maries of a given scientific article. In the pro-
posed approach, we are inspired by the con-
cept of Argumentative Zoning (AZ) that de-
fines the main rhetorical structure in scientific
articles. We define two aspects that should be
covered in scientific paper summary, namely
Claim/Method and Conclusion/Result aspects.
We use Solr index to expand the sentences of
the paper abstract. We formulate each abstract
sentence in a given publication as query to re-
trieve similar sentences from the text body of
the document itself. We utilize a sentence se-
lection algorithm described in previous litera-
ture to select sentences for the final summary
that covers the two aforementioned aspects.

1 Introduction

Scientific publications differ in structure, format,
and style when compared with other text works
(e.g. news articles). As a result, summarizing sci-
entific articles is a challenging task since exploiting
known summarization techniques, like those em-
ployed by the MEAD system (Radev et al., 2004),
that work well for general texts, cannot work well
when applied to scientific articles.

Summarization of texts, scientific of not, has
been of interest to researchers since the 1950s,
when Peter Luhn published his paper “The auto-
matic creation of literature abstracts”. One of the

most notable approaches to the summarization of
scientific papers introduces the concept of Argu-
mentative Zoning (Teufel et al., 1999) which refers
to the examination of the argumentative status of
sentences in scientific articles and their assignment
to specific argumentative categories (i.e. zones).
Building on this work, further research has been
done to design automatic techniques for argumenta-
tive zoning (Teufel and Moens, 2002; Teufel et al.,
2009; Liu, 2017).

A different and more recent approach to summa-
rization makes use of citations to construct a sum-
mary of the main concepts and contributions in sci-
entific articles (Qazvinian and Radev, 2008, 2010;
Abu-Jbara and Radev, 2011). Starting from this
research, since 2014, a series of pilot and shared
tasks on summarization have been organized with
some regularity. The CL-SciSumm Shared tasks
(Jaidka et al., 2014, 2016, 2019; Chandrasekaran
et al., 2019) require task participants to map cita-
tion sentences from a given scientific publication
to reference sentences in the original articles, and
generate a summary from those sentences using
predefined facets.

This year, 2020, the CL-SciSumm Shared Task
has introduced LongSumm as a new challenge
(Chandrasekaran et al., 2020). In this challenge,
given a scientific paper, it is required to generate
the extractive and the abstractive summaries of the
paper.

In this paper, we report on our approach to solv-
ing the LongSumm challenge of the CL-SciSumm
Shared Task. We are proposing a summarization
technique that builds on the concept of Argumen-
tative Zoning (Teufel et al., 1999) and uses a Solr

310

Proceedings of the First Workshop on Scholarly Document Processing, pages 310-317
Online, November 19, 2020. (©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17

index to expand the abstract of a scientific article
to obtain a summary of it. In this approach we
extract the main aspects of the scientific articles
into a summary by defining zones of interest in
the article: claims, methods, results and conclu-
sions. From our own experience we have observed
that these aspects are best to form an informative
summary for the researcher.

The rest of the paper is organized as follows:
Section 2 discusses the components of the process-
ing pipeline that constitute our approach in more
detail. In Section 3 we describe our experimental
settings and evaluation results for individual com-
ponents of our pipeline. Finally, we discuss the
conclusion and potential direction of future work
in Section 4.

2 Approach

In a nutshell, our approach to solve the LongSumm
Shared Task is to extract an article summary by
expanding its abstract. That is, for each sentence in
the article’s abstract we extract relevant paragraphs
from the same article employing a combination of
Language Model-based retrieval and then classifi-
cation to find similar paragraphs out of which, in a
final step, we select certain sentences to be part of
the article summary.

Figure 1 shows an overview of our proposed ap-
proach. In a first phase, we convert the PDF papers
to an XML format using the GROBID! PDF parser
(the box marked with 1 in figure 1). The output of
this step is split into the abstract of the article and
the article body. The latter is processed by a rule-
based annotation module (2) which will assign spe-
cific category labels to the individual paragraphs.
The paragraphs and their category annotations are
fed into a Solr? index (3). The abstract sentences
are classified into two categories, Claim/Method
and Conclusion/Result (block 5a in Figure 1).

In the next phase, the abstract sentences are sent
as queries to the Solr index in order to find para-
graphs that are similar to them (4). We note that
the abstract sentence annotations are not used in
this phase. These annotations will be used later in
the last phase of our summarization process. The
(sentence, paragraph) pairs that are the output
of the Solr retrieval step are now passed to a classi-
fier which will decide if the two are similar to each
other or not (5b). Pairs that are classified as similar

"https://grobid.readthedocs.io
*https://lucene.apache.org/solr/

311

are used to extract the final paper summary by ap-
plying the sentence selection algorithm mentioned
in (Abu-Jbara and Radev, 2011) (6).

The details for each module are discussed in the
following subsections.

2.1 PDF Parsing with GROBID

In order to process scientific publications stored as
PDF files, we need to convert them to a represen-
tation to which we can later apply further text pro-
cessing methods. We have explored various PDF
parsers and we settled to use GROBID? as a tool to
process scientific articles. GROBID takes as input
the PDF file and outputs its extracted content in an
XML format. We have chosen GROBID for several
reasons: i) it divides the paper to paragraphs; ii) it
sorts out special, non-visible characters (e.g. line
breaks “\n”); and iii) it identifies figures and tables
and places information about their occurrence in
the PDF file in special XML tags.

The XML output of the GROBID module (box
1 in Figure 1) differentiates between the abstract
text and the text in the article’s body, which will be
treated separately in the next steps of our pipeline
(see the next sections).

2.2 Rule-Based Annotation

Taking from the previous step the XML representa-
tion of the article body, we want to assign different
discourse categories to its paragraphs. We define
five categories, or discourse sections: Introduction,
Background, Method, Conclusion and Result. Each
paragraph in the article body will be assigned to one
of these discourse sections. The category assign-
ment is done by employing a rule-based annotation
module (box 2 in Figure 1), where the rules were
manually created by the authors of this paper. At
the end of this processing step, the paragraphs of
the article body will each have a discourse section
label attached to it, in addition to the paragraph
meta-data delivered by the GROBID tool. Fig-
ure 2 shows a sample of the rule-based annotation
step output, where the paragraph is categorized
as “Method” with the (discourse_section) XML
element.

The paragraphs annotated by this module are
now fed into a Solr index (box 3), together with the
meta-data provided by the GROBID tool.

3In our implementation, we use GROBID as a tool for PDF
parsing to convert PDF articles to an XML format

\/
\

Figure 1: Overview of the ARTU/TU Wien approach to the LongSumm challenge.

paragraph_id="16">
>

>
target="#b7"/>
>

section_id="METHOD" -section_name="Previous ‘Work"/>
entity="['Figure:1'1"/>
>

>

Thus, -these -definitions -only-allow-histories-that would-occur-in-a-system-using-long/short read/write-item/
predicate- locks. -Since- locking- serializes-transactions:by-preventing-certain-situations-(e.g., two-concurrent
transactions-both- -modifying:the same object), ‘we:refer-to-this-approach-asthe preventative approach.-Figure 1
summarizes- the isolation-levels-as-defined-in- [8] ‘and-relates:them: to-a- lock-based-implementation. - Thus - the -READ
UNCOMMITTED level proscribes-P@; -READ - COM-MITTED proscribes-P@-and P1; - the REPEATABLE READ level proscribes - P@

—P2; -and - SERIALIZABLE -proscribes - P@ - —P3.
</ >
</ >

Figure 2: Output sample of the rule-based annotation module.

2.3 Classification of Abstract Sentence,
Paragraph Text Pairs

One of the key ideas of our approach is to find a
summary of an article by expanding on the abstract
sentences. To this end, we have to first find the
paragraphs in the article body that are related to
the sentences in the abstract. Therefore, we use
the sentences in the abstract to formulate queries
and send them to the Solr index to get paragraphs
similar to the abstract sentence (box 4 in Figure
1). To further filter out paragraphs in the article
body that may not be useful in extracting the fi-
nal article summary, we send the obtained pairs
of (abstract_sentence, paragraph) to a classifier
(box 5 in Figure 1) that will decide whether the two
pair components are relevant to each other or not
(box 5b).

To train the classifier used in this phase we cre-
ated a training set by sampling 330 pairs of abstract
sentences and retrieved paragraphs, and by man-
ually annotating them as relevant or not relevant.
The annotation made use of a simple GUI imple-
mented by us (see Figure 3) where the annotator
could compare the abstract sentence to the para-
graph text part of its pair and decide whether the
paragraph is relevant to the abstract sentence or
not. Using this manually annotated set, we train
a Random Forest classifier to build the classifica-
tion model. Important features of this classifier are
the similarity score between the abstract sentences
and paragraph texts given by Solr, as well as the
discourse sections annotations (see Section 2.2).

The evaluation of this classification module is
presented later, in Section 3.3.

312

LongSumm Annotation

Home Guidelines Annotate

Our work shows that around 9 % of the sites in the Alexa Top 10,000 contain at least one
vulnerable page, out of which more than one third can be exploited.

[0 Select if the paragraph is similar to the sentence above

Rather than using layout-based information leaks to exfiltrate data from a page, Huang et al. [18] show how syntactically
lax parsing of CSS can be abused to make browsers interpret an HTML page as a "stylesheet." The attack assumes that
the page contains two injection sinks, one before and one after the location of the secret in the source code. The attacker
injects two CSS fragments such as {}*{background:url('//attacker.com/? and ');}, which make the secret a part of the URL
that will be loaded from the attacker's server when the directive is interpreted. It is assumed that the attacker cannot
inject markup, thus the injected directive is not interpreted as style when the site is conventionally opened in a browser.
However, the CSS standard mandates that browsers be very forgiving when parsing CSS, skipping over parts they do not
understand [49]. In practice, this means that an attacker can set up a site that loads the vulnerable third-party site as a
stylesheet. When the victim visits the attacker's site while logged in, the victim's browser loads the third-party site and
interprets the style directive, causing the secret to be sent to the attacker. To counter this attack, modern browsers do not
load documents with non-CSS content types and syntax errors as stylesheets when they originate from a different
domain than the including page. Yet, attacks based on tolerant CSS parsing are still feasible when both the including and
the included page are loaded from the same domain. Relative Path Overwrite attacks can abuse such a scenario [55].

Previous

101/330 Next

Figure 3: Paragraph to sentence relevance annotation sample.

2.4 Abstract sentences Classification

To make sure that a summary of the article equally
covers the discourse sections defined in Section
2.2, we have to attach the same categories to the
abstract sentences.

For this phase we decided, again, to use a clas-
sification model that would annotate the abstract
sentences with one of the discourse sections chosen
by us (box 5a in Figure 1). The training data to
build this classification model has been collected
by running an annotation task where we sampled
50 abstracts from the LongSumm data set and split
them by sentences. The annotators had to decide
which discourse category each abstract sentence
falls into. For this task, the annotators had to select
one of four categories: Claim, Method, Conclu-
sion and Result. The Introduction category was
left out as we consider it not to be relevant when
constructing a summary of a scientific article us-
ing our approach. We used the BRAT tool (Stene-
torp et al., 2012) to collect the annotations (see
Figure 4). Because the inter-annotator agreement
score turned out to be unsatisfactory, we have an-
alyzed in more detail the labels assigned by the
annotators to find a reason for the low score. We
have found that there were disagreements between
the Claim and the Method categories and between
the Conclusion and the Result categories as the
annotators could not clearly differentiate, for ex-
ample, whether a sentence should be considered
part of the Conclusion discourse or of the Result
discourse. Therefore we took the decision to com-
bine the Claim and the Method categories into one
category, Claim/Method, and the Conclusion and

the Result categories into the Conclusion/Result
category.

From the sentences manually classified into
one of these latter two categories, we extract key
phrases and build a lexicon, where each phrase in
the lexicon has two weights attached to it, one for
each of the two categories. These weights are based
on the key phrase occurrence frequency in the two
categories.

The classifier trained with the manually anno-
tated data just described will assign categories to
abstract sentences by summing the weights of the
lexicon key phrases that are part of the sentence,
and choosing the category with the highest sum.
In case of a tie, the sentence is classified as a
Method/Claim sentence.

2.5 Summary Extractor

Having completed the parsing, indexing, and clas-
sifying paragraphs and sentences, we are now in
the position of creating an article sumary (box 6
in Figure 1). The implementation of this module
follows the methodology described in (Abu-Jbara
and Radev, 2011) where, in our implementation,
we consider the abstract sentences to be the target
paper sentences, and the sentences similar to the
abstract sentences (as per Section 2.3) to be the
implicit citation sentences.

In our final processing step, we first split the
paragraphs similar to the abstract sentences into
single sentences. Then, we define a cluster for
each abstract sentence which collects all single
sentences split from all paragraphs similar to the
abstract sentence. Lastly, for each sentence in the
cluster, we calculate its LexRank score (Erkan and

313

Path queries on a knowledge graph can be used to answer compositional questions such as "What languages are spoken by people living in Lisbon?". However, knowledge graphs

Recent models for khowledgje base conﬁpletibn imphte missing facts by ‘embedding kndwledge tjraphs in \}ector spaces.

Method)

We show that these models can be recursively applied to answer path queries, but that they suffer from cascading errors.

This motivates a new "compositional" training objective, which dramatically improves all models' ability to answer path queries, in some cases more than doubling accurac;.

- Resulf]
On a standard knowledge base completion task, we also demonstrate that compositional training acts as a novel form of structural regularization, reliably improving performance

Figure 4: Abstract sentences annotation sample.

Radev, 2004).

To construct the final summary, similarly to
(Abu-Jbara and Radev, 2011), sentences are added
to the summary in the order of their category, the
size of their clusters, then their LexRank values.
The first category in our order is Claim/Method.
Clusters within the same category are ordered by
their size (i.e. the number of sentences in each
cluster) and finally the sentences in each cluster
are ordered by their LexRank values in descending
order.

According to the task description, the maximum
summary size allowed is 600 words. We extract
the sentences from the clusters in a round-robin se-
quence. In other words, we extract the first ranked
sentence in the largest cluster in the Claim/Method
category then the first ranked sentence in the largest
cluster in the Result/Conclusion category then the
first ranked sentence in the second largest cluster
in the Claim/Method category and so on. This pro-
cess continues until either the maximum size of the
summary is reached or we run out of sentences in
the clusters.

3 Experiments and Result

In this section, we discuss the experimental setup
and the evaluation results for the annotation tasks
and the classification modules described in the pre-
vious section. We close the section with an eval-
uation of the final summarization step in our ap-
proach.

3.1 Abstract Sentence Annotation

Two annotators have provided the category labels
for the abstract sentence annotation task discussed
earlier in section 2.4. To measure the effectiveness
of the annotation task, we computed Cohen’s kappa
coefficient of agreement between annotators, (k)
(Cohen, 1960). For this specific annotation task,
the coefficient (x) was 0.613. We considered this

agreement value to be acceptable for this task.

3.2 Abstract Sentence Classification

As described in section 2.4, we use a lexicon based
approach to assign one category to each sentence
in the abstract. To evaluate this module, we have
measured the Precision, Recall, F-measure and the
Accuracy of our approach on the annotated data set
from previous step. Table 1, shows the evaluation
results of Precision, Recall and F-measure for each
category. The Accuracy of the this approach is
81.5%.

Claim Conclusion Average

/Method /Result
Precision 0.875 0.613 0.744
Recall 0.883 0.597 0.739
F-measure 0.879 0.605 0.742
Table 1: Abstract sentences classification evaluation

results.

3.3 Abstract Sentence, Paragraph Text Pair
Annotation

Two annotators have participated in the annotation
task described in section 2.3. The value of the inter
annotation agreement, using the Cohen’s kappa
coefficient (k) (Cohen, 1960), is 0.361. We notice
that the inter annotation agreement is rather low.
Therefore, as a future work, we plan to analyze
the reasons for low agreement and design a second
annotation round after clarifying the task.

3.4 Abstract Sentence, Paragraph Text Pair
Classification

We use the data generated from the annotation task,
as discussed earlier in section 2.3, to build a clas-
sification model that determines whether, for an
abstract sentence the paired paragraph text is rel-
evant or not. We split the training data into 70%

314

training and 30% validation sets to determine the
best classification model and its parameters.

We have tested different classification models
including: linear SVM, Logistic Regression and
Random Forest algorithms. We decided to use the
model given by the Random Forest algorithm since
it gives the best evaluation results (see Table 2).

Similar Not Similar Average
Precision 0.755 0.474 0.624
Recall 0.861 0.333 0.597
F-measure 0.815 0.391 0.604

Table 2: Abstract sentence paragraph random forest
classification evaluation results.

3.5 Final Summary Evaluation

Our main goal was to develop an extractive
summarizer algorithm that starts from abstract
sentences pre-labeled as Method/Claims and Re-
sult/Conclusions, and thereafter extracts relevant
sentences from the remainder of a given publica-
tion. In order to quickly give the user the essence of
the paper, a secondary interest of our work was to
see if this method is applicable to abstractive sum-
marization as well. We compared the summaries
obtained by our approach with both the extractive
and the abstractive summaries available in the task
repository*. We used the provided evaluation script
(Chandrasekaran et al., 2020) to evaluate the sum-
maries given by our approach. As seen in Table 3
the method is more adapted to be extractive sum-
marization.

In Table 4, we compare our method with the
other submitted runs in the 2020 Longsumm task.
We see that our team (ARTU) holds the place 7-
9 depending on the descending order of different
rouge measurements.

4 Conclusion and Future work

We have presented an approach to solve the Long-
Summ’20 Shared Task. Our aim was to extract the
essence of a scientific paper in order to give the
reader a quick overview of its central aspects: the
authors’ hypothesis (the claim), the method used
test the hypothesis and the outcome of the experi-
ment.

In (Saggion and Lapalme, 2002), the authors pro-
pose to create Indicative-Informative summaries by

“https://github.com/guyfe/LongSummittraining-data
Maximum summary size for an article was of 600 words.

315

observing how professional abstractors generated
scientific summaries, and thereafter manually align
the professional abstract with the source data. An
Indicative Abstract is composed of the topic of the
document, i.e. the essence of the paper. Since we
did not have access to professional abstractors, we
have decided to use different approach to derive the
essence of a paper. We assumed that the existing ab-
stract is a very short summary focusing on the why,
the how, and on the general outcome of a scientific
work, which we organize into Claims, Methods,
Results and Conclusions using the Argumentative
Zoning schema.

In a first run we asked students to label abstract
sentences with these four categories. In order to
align the labeled abstract sentences with the body
text of an article, we have used a Language Model
where each abstract sentence is converted into a
query and the system retrieves similar sentences
from the body text of the same article. In a second
annotation task we have asked students to assess
if the retrieved sentence is relevant to the abstract,
and if it could be considered to be assigned to same
category as the abstract sentence.

Finally, we utilize the sentence selection method
described by (Abu-Jbara and Radev, 2011) to form
the final summary.

We have not yet explored the full potential of the
algorithm due to two main factors:

e Limited training data.

o Ambiguous annotation due to the low inter
annotator agreement score in the second anno-
tation task.

As future work, we plan to address these these
issues by clarifying the annotation guidelines and
test the anotators’ performance accross different
scientific fields. Other future work is to investi-
gate how changes in the round-robin sentence se-
lection algorithm may impact the quality of the
extracted summaries. More specifically, we may
look at recomputing the scores of the sentences in
the clusters after each sentence selection, where
scores could reflect not only relevance to the ab-
stract sentence, but also novelty compared to the
other sentences in the same cluster, as well as the
clusters of other abstract sentences of the same
category.

rougel f rougel r rouge2f rouge2r

rougelL f rougeL . r

0.411
0.548

Abstractive summaries
Extractive summaries

0.484
0.529

0.125
0.265

0.159 0.198
0.230 0.221

0.108
0.275

Table 3: The evaluation results of the proposed approach using rouge metrics against the abstractive and extractive

data sets.
Participant Team rougel f rougel r rouge2f rouge2r rougeL f rougeL. r
Summaformers 0.4938 0.439 0.1686 0.1498 0.2138 0.1898
GUIR 0.5311 0.546 0.1677 0.1728 0.2034 0.209
wing 0.5058 0.5116 0.1662 0.1675 0.205 0.2066
IIITBH-IITP 0.4903 0.4984 0.1574 0.16 0.2046 0.208
Auth-Team 0.5011 0.4693 0.1537 0.1423 0.1959 0.1818
CIST_BUPT 0.4899 0.4974 0.1506 0.1522 0.2013 0.2039
ARTU 0.4803 0.4678 0.1476 0.1428 0.1804 0.1743
IITP-AI-NLP-ML 0.4646 0.4743 0.1461 0.1486 0.1958 0.1995
Monash-Summ 0.4916 0.4935 0.128 0.1276 0.1831 0.1833
mummert 0.1232 0.0683 0.063 0.0349 0.0989 0.0549

Table 4: Submission results of all participating teams from the Longsumm 2020 leaderboard. Our team is ARTU.

References

Amjad Abu-Jbara and Dragomir Radev. 2011. Co-
herent citation-based summarization of scientific pa-
pers. In Proceedings of the 49th annual meeting of
the association for computational linguistics: Hu-
man language technologies, pages 500-509.

Muthu Kumar Chandrasekaran, Guy Feigenblat, Ed-
uard Hovy, Abhilasha Ravichander, Michal Shmueli-
Scheuer, and Anita De Waard. 2020. Overview
and insights from scientific document summariza-
tion shared tasks 2020: Cl-scisumm, laysumm and
longsumm. In Proceedings of the First Workshop on
Scholarly Document Processing (SDP 2020).

Muthu Kumar Chandrasekaran, Michihiro Yasunaga,
Dragomir Radev, Dayne Freitag, and Min-Yen Kan.
2019. Overview and results: Cl-scisumm shared
task 2019. arXiv preprint arXiv:1907.09854.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37-46.

Giines Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-

search, 22:457-479.

Kokil Jaidka, Muthu Kumar Chandrasekaran, Beat-
riz Fisas Elizalde, Rahul Jha, Christopher Jones,
Min-Yen Kan, Ankur Khanna, Diego Molla-Aliod,
Dragomir R Radev, Francesco Ronzano, et al. 2014.
The computational linguistics summarization pilot
task. In Proceedings of Text Ananlysis Conference,
Gaithersburg, USA.

Kokil Jaidka, Muthu Kumar Chandrasekaran, Sajal
Rustagi, and Min-Yen Kan. 2016. Overview of the

cl-scisumm 2016 shared task. In Proceedings of the
Jjoint workshop on bibliometric-enhanced informa-
tion retrieval and natural language processing for
digital libraries (BIRNDL), pages 93-102.

Kokil Jaidka, Michihiro Yasunaga, Muthu Ku-
mar Chandrasekaran, Dragomir Radev, and Min-
Yen Kan. 2019. The cl-scisumm shared task
2018: Results and key insights. arXiv preprint
arXiv:1909.00764.

Haixia Liu. 2017. Automatic argumentative-zoning us-
ing word2vec. CoRR, abs/1703.10152.

Vahed Qazvinian and Dragomir Radev. 2010. Identify-
ing non-explicit citing sentences for citation-based
summarization. In Proceedings of the 48th annual
meeting of the association for computational linguis-
tics, pages 555-564.

Vahed Qazvinian and Dragomir R Radev. 2008. Sci-
entific paper summarization using citation summary
networks. arXiv preprint arXiv:0807.1560.

Dragomir R. Radev, T. Allison, Sasha Blair-
Goldensohn, John Blitzer, A. elebi, S. Dimitrov,
E. Drabek, A. Hakim, W. Lam, D. Liu, Jahna
Otterbacher, H. Qi, Horacio Saggion, S. Teufel,
M. Topper, Adam Winkel, and Zhu Zhang. 2004.
MEAD - A Platform for Multidocument Multilin-
gual Text Summarization. In LREC.

Horacio Saggion and Guy Lapalme. 2002. Generat-
ing indicative-informative summaries with SumUM.
Computational Linguistics, 28(4):497-526.

Pontus Stenetorp, Sampo Pyysalo, Goran Topié,
Tomoko Ohta, Sophia Ananiadou, and Junichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted

316

http://arxiv.org/abs/1703.10152
http://arxiv.org/abs/1703.10152
https://doi.org/10.1162/089120102762671963
https://doi.org/10.1162/089120102762671963

text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102—-107.

Simone Teufel and Marc Moens. 2002. Summariz-
ing scientific articles: experiments with relevance
and rhetorical status. Computational linguistics,
28(4):409-445.

Simone Teufel, Advaith Siddharthan, and Colin Batch-
elor. 2009. Towards domain-independent argumen-
tative zoning: Evidence from chemistry and compu-
tational linguistics. In Proceedings of the 2009 con-
ference on empirical methods in natural language
processing, pages 1493-1502.

Simone Teufel et al. 1999. Argumentative zoning: In-
formation extraction from scientific text. Ph.D. the-
sis, Citeseer.

317

