
Proceedings of the First Workshop on Scholarly Document Processing, pages 288–296
Online, November 19, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

288

IR&TM-NJUST@CLSciSumm 20

Heng Zhang, Lifan Liu, Ruping Wang, Shaohu Hu, Shutian Ma, Chengzhi Zhang

Department of Information Management, Nanjing University of Science and Technology, Nanjing, China, 210094

zh_heng@njust.edu.cn, liulf@njust.edu.cn, 2935843497@qq.com,

191226105@qq.com, mashutian0608@hotmail.com, zhangcz@njust.edu.cn

Abstract

This paper mainly introduces our methods

for Task 1A and Task 1B of CL-SciSumm

2020. Task 1A is to identify reference text

in reference paper. Traditional machine

learning models and MLP model are used.

We evaluate the performances of these

models and submit the final results from the

optimal model. Compared with previous

work, we optimize the ratio of positive to

negative examples after data sampling. In

order to construct features for classification,

we calculate similarities between reference

text and candidate sentences based on

sentence vectors. Accordingly, nine

similarities are used, of which eight are

chosen from what we used in CL-SciSumm

2019 and a new sentence similarity based

on fastText is added. Task 1B is to classify

the facets of reference text. Unlike the

methods used in CL-SciSumm 2019, we

construct inputs of models based on word

vectors and add deep learning models for

classification this year.

1 Introduction

The rapid growth of papers has provided scholars

with various knowledge and methods, which can

offer references for development or innovation of

the research. But it makes difficult for researchers

to get brief summaries quickly from such massive

amount of papers (Radev et al., 2002). Automatic

summarization can solve this problem.

Researchers express their views on reference paper

through citation text. So, citation text can be used

to generate summary of paper (Cohan & Goharian,

2018; Qazvinian & Radev, 2008). However, as a

result of researchers' different views (citation), the

quality of the summary is not guaranteed and the

summary cannot fully restore the original

 Corresponding Author.

1 https://github.com/WING-NUS/scisumm-corpus/

information of paper. Therefore, CL-SciSumm

proposes to generate summary by the original text

corresponding to citation. CL-SciSumm is the first

medium-scale shared task on scientific document

summarization, with over 500 annotated

documents 1 . This competition is organized

annually from 2016, and we can view details about

CL-SciSumm2020 at the website:

https://ornlcda.github.io/SDProc/sharedtasks.html

#clscisumm. The introduction of CL-

SciSumm2020 is as follows:

Given: A topic consisting of a Reference Paper

(RP) and Citing Papers (CPs) that all contain

citations to the RP. In each CP, the text spans (i.e.,

citances) have been identified that pertain to a

particular citation to the RP.

Task 1A: For each citance, identify the spans of

text (cited text spans) in the RP that most

accurately reflect the citance. These are of the

granularity of a sentence fragment, a full sentence,

or several consecutive sentences (no more than 5).

Task 1B: For each cited text span, identify what

facet of the paper it belongs to, from a predefined

set of facets.

Task 2 (optional bonus task): Finally, generate

a structured summary of the RP from the cited text

spans of the RP. The length of the summary should

not exceed 250 words.

In Figure 1, The blue text span in the citing paper

shows the citation text, and the green text span in

the reference paper shows the reference text which

most accurately reflects the citance.

Figure 1: Citation text in citing paper and reference text

in reference paper

mailto:zh_heng@njust.edu.cn,
mailto:liulf@njust.edu.cn,
mailto:2935843497@qq.com,
mailto:191226105@qq.com,

289

Our team has participated in the CL-SciSumm

competition in 2017 (Ma et al., 2017), 2018 (Ma,

et al., 2018) and 2019 (Ma et al., 2019). For Task

1A, a similarity-based negative sampling strategy

is applied to construct the training set. Nine

similarity features and sentence vectors are used to

represent citation text and candidate sentences.

Then we employ traditional machine learning

methods and build MLP model to identify the

reference text in reference papers. For Task 1B,

sentence vectors are generated based on word

frequency and word vector. Traditional machine

learning models and deep learning models are built

to identify the facets. As for Task 2, cosine

similarity is calculated between reference

sentences and the original abstract based on their

sentence vectors. Then sentences are selected to

construct summary according to their similarities,

and length of the summary does not exceed 250

words.

Compared with previous work, we make

changes in following steps. In Task 1A, we

optimize ratio of positive to negative examples

after negative sampling. The structure and

parameters of MLP model are adjusted to get better

results. For Task 1B, we first try to use word vector

to construct inputs of models. And the result has

been improved about 10% at accuracy score.

2 Related works

2.1 Identification of the citation text spans

As for the related work of Task 1A, most previous

teams solved it by using classification models, and

they constructed different features as input of

models. Some researchers used three types of

classification features, namely similarity-based

features, rule-based features and location-based

features (Jaidka et al., 2017). Ma et al. (2017)

extracted several features at the words level from

the citation text spans in the training set to calculate

the corresponding similarities, such as IDF

similarity, Jaccard similarity, Dice similarity,

Word2Vec similarity and so on.

In recent years, machine learning models are

mostly used for the identification of citation text

spans. Mei and Zhai (2008) highlighted the

importance of citance, and they proposed a method

to generate the abstract of the cited document by

extracting the most influential sentences in the

document. The machine learning models mainly

include classification models and ranking models.

Yeh et al. (2017) used classification models, such

as SVM (Support Vector Machines), DT (decision

trees), KNN (K-Nearest Neighbors) and so on in

the identification of citances. Their method

performed well with competitive results when it

was evaluated using the CL-SciSumm 2016

datasets. In ranking models, sentences were sorted

based on the integration of multiple features. Lu et

al. (2016) constructed word-level (e.g. TF-IDF

similarity and Jaccard similarity) and topic-level

features (based on LDA model) separately and

used the learning-to-rank algorithm to identify

cited text spans. Their results showed that Jaccard

similarity achieved better F measures, and the

performance of topic similarity features varies

slightly among different number of topics.

Additionally, Moraes et al. (2016) investigated

cosine similarity with multiple incremental

modifications and SVMs with a tree kernel. They

calculated the similarity not only between

reference and citance sentences, but also between

the reference spans and the citance sentences.

In summary, the current research about

identification of citation text spans mainly includes

feature construction and model selection. Most of

the researches attempt to construct a huge feature

system for model training and learning. As for

model selection, most of the works are based on

traditional machine learning models or sorting

algorithms.

2.2 Identification of the facets of reference

text

Task 1B is to identify the facets of reference text. It

provides 5 facets in this task. Most teams in

previous CL-SciSumm competitions used rule-

based methods, because the amounts of different

facets of reference text are imbalanced (Ma et al.,

2018). In the learning process of the classification

algorithms, the result tends to focus on the facets

with most samples. This problem will have a huge

impact on model training (He & Garcia, 2009). He

et al. (2008) reviewed researches about learning

from imbalanced data, then they highlighted that

the opportunities and challenges to solve this

problem would be a new research field in the future

research. Ma, et al. (2018) combined the NN

algorithm with the SMOTE algorithm to make

training data and extend the penalty factor in the

processing of imbalanced datasets, and NN

algorithm behaved best on testing data.

290

There are plenty of researches about identifying

the facets of reference text, rule-based methods and

statistical-based methods are widely used. Wang et

al. (2012) proposed an orderly clue phrase

matching method and got 62% accuracy and 42%

recall. Sándor et al. (2006) presented two natural

language processing systems to help researchers

rapidly accessing relevant knowledge in text.

Agarwal et al. (2011) used two statistical machine

learning models, SVM and NB, to classify the

facets of reference. And they found that the

classification result of SVM was better. Aggarwal

and Sharma (2016) determined the facets based on

the location of the cited text spans. Li et al. (2019)

used the Word2Vec and the CNN model to

calculate the sentence similarity, and further apply

CNN to classify the facets of reference texts. They

indicated that the features of high frequency word

and subtitle are important in the identification of

facets.

In summary, in the researches about

classification of facets, the approaches applied in

this task mainly include rule-based methods and

statistical-based methods. However, because of the

limited experimental dataset and the imbalance in

the number of samples in different facets, these two

methods are difficult to learn the relevant features

of the facets more accurately and efficiently.

3 Methodology

Before introducing the methodology of each task,

we define some concepts to avoid ambiguity in the

following description.
Table 1: Concepts and their definitions

Concept Definition

Citation

text

It is “Citance” in introduction of Task

1A, and it consists of one or several

sentences from citing paper. See blue

highlighted span in Figure 1.

Reference

text

It is “cited text spans” in introduction

of Task 1B, and it consists of one or

several sentences from reference

paper. See green highlighted span in

Figure 1.

Facets

It is the type of reference text, there is

a predefined set of facets:

“Method_Citation”,

“Result_Citation”, “Aim_Citation”,

“Implication_Citation”,

“Hypothesis_Citation”.

Candidate

sentences

Citation text and candidate sentences

as a pair of input to models. And

candidate sentences contain reference

text as positive samples and sentences

selected from reference paper as

negative samples.

3.1 Task 1A based on negative sampling

In Task 1A, we are given citation text to find the

corresponding sentences in the reference paper.

This task can be regarded as a binary classification

task. For a citation text, it is need to identify the

classification labels of all sentences in the

reference paper. There are two classification labels:

“1” or “0”. If “1”, it means that the sentence

belongs to the correct reference text. If “0”, it

means that the sentence is not. Figure 2 shows our

research framework of Task 1A. Firstly,

preprocessing is conducted for the data extracted

from data set. Secondly, training data is

constructed by negative sampling. Then, nine

similarities are calculated between citation text and

candidate sentences, which are used as features to

construct input of traditional machine learning

models. Additionally, MLP model is built based on

sentence vector. Finally, these models are

evaluated with Precision (P), Recall (R), and F1-

value (F1).

Figure 2: Framework of Task 1A

Negative sampling: 753 pairs of citation text

and reference text are extracted from annotation in

“Training-Set-2018”, and they are used as positive

samples (label “1”). Citation text and other

arbitrary sentences in reference papers can be

regarded as negative samples (label “0”), but the

number of negative samples is too huge. In order

to balance positive and negative samples, negative

sampling based on sentence vector similarity is

performed. We calculate the average of all word

vectors in the sentence and obtain a new vector to

represent the sentence. Then, cosine similarities are

calculated between the citation text and all

sentences in reference paper (apart from the

reference text annotated). Next, sentences are

chosen from the highest, lowest, and middle

similarity levels to form negative samples.

Through comparative experiments, the ratio of the

number of positive to negative samples is finally

determined as 1:6 (two sentences with the highest

291

similarity, two sentences with the lowest similarity,

and two sentences with medium similarity as

negative samples).

Using traditional machine learning models to

identify reference text: The first idea is to use

traditional machine learning methods to solve Task

1A. We calculate multiple similarities between

citation text and candidate sentences as features. It

is worth noting that candidate sentences contain

reference text and 6 negative samples, citation text

and reference text are regarded as a whole

respectively to calculate their sentence vectors.

Nine similarity indicators are selected and they are

showed in Table 2. Then several machine learning

models are trained for classification. These models

contain Support Vector Machine (SVM) (Cortes

and Vapnik, 1995), Naive Bayesian (NB)

(McCallum et al., 1998), K-Nearest Neighbor

(KNN) (Altman, 1992), Decision Tree (DT)

(Quinlan, 1987), Random Forest (RF) (Ho, 1995)

and ensemble learning tool (Xgboost2).
Table 2: Nine similarities as features

Similarity Description

Jaccard

similarity

Segment setence1 and setence2 into set

of words, denoted as s1 and s2

respectively, and calculate the division

of the intersection and union between

two sets. Its formulation is as follows:

J(𝑠1,𝑠2)=
𝑙𝑒𝑛(𝑠1∩𝑠2)

𝑙𝑒𝑛(𝑠1) + 𝑙𝑒𝑛(𝑠2) − 𝑙𝑒𝑛(𝑠1∩𝑠2)

Dice

similarity

Segment setence1 and setence2 into

sets of words(𝑠1, 𝑠2). Its formulation is

as follows:
2 ∗ 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑠1, 𝑠2)

𝑙𝑒𝑛𝑔𝑡ℎ(𝑠1) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠2)

Word

Overlap

Segment setence1 and setence2 into

sets of words, and calculate the number

of overlaps between them.

Bigram

Overlap

Segment setence1 and setence2 into

sets of bigrams, and calculate the

number of overlaps between them.

Longest

Common

Subsequen

ce

Denote setence1 and setence2 as two

sets of sequences with words as basic

unit, find the longest subsequence (not

necessarily consecutive in original

sequences) common of them.

Longest

Common

Substring

Denote setence1 and setence2 as two

sets of strings with words as basic

units, and find the longest string(s) that

is a substring(s) (required to occupy

consecutive positions within the

original strings) of them.

2 https://github.com/dmlc/xgboost

Levenshtei

n distance

Calculate the average of Levenshtein

distance (the minimum number of

single character edits required to

change one to the other) for all the

words between setence1 and setence2.

Word2Vec

similarity

Represent words as low-

dimensional and dense distributed

representation by Word2Vec

algorithm and calculate the average

of the similarity between words

from two sentences via cosine

value.

fastText 3

similarity

Represent words as low-

dimensional and dense distributed

representation by fastText

algorithm and calculate the average

of the similarity between words

from two sentences via cosine

value.

Using MLP model to identify reference text:

The second idea is to use deep learning models.

Word2Vec(Mikolov et al., 2013) and fastText are

used to train word vectors. And we calculate the

average of all word vectors in sentence to get

sentence vectors. Vector of citation text and vector

of candidate sentence are concatenated as input of

models. We build MLP model and adjust hidden

layers and parameters for optimization.

Figure 3: Framework of MLP model in Task 1A

The framework of MLP model is shown in

Figure 3. The input of the model is concatenated

sentence vector from citation text and reference

text. Concatenated sentence vector passes through

two hidden layers, and then passes through the

sigmoid layer. We get the probability of two labels

through the output layer and set a threshold to

determine which label the candidate sentence

belongs to. It should be noted that the activation

3 https://github.com/facebookresearch/fastText

292

function of the hidden layer is Relu, and the

number of neural nodes is 128 and 64 respectively.

These parameters are finally determined based on

comparative experiments.

3.2 Task 1B based on sentence vector and

word embedding

In Task 1B, it is a multi-label classification task.

There are five labels (facets): “Method_Citation”,

“Result_Citation”, “Aim_Citation”,

“Implication_Citation”, “Hypothesis_Citation”.

The research framework of Task 1B is shown in

Figure 4. Firstly, 753 pairs of citation text and

reference text is extracted from data set. Secondly,

training set and test set are split from the extracted

data by sampling. Then, sentence vectors are

generated from word frequency and word vector

based on which traditional machine learning

models are used to classify the facets. In addition,

the word embedding matrix is used as input, and

deep learning models are also applied in Task 1B.

In order to test the effects of different models,

accuracy score is used.

Figure 4: Framework of Task 1B

Data sampling: The number of samples in five

facets varies greatly (see Figure 5). Training set

and test set should not be divided from all the

samples directly. In order to balance all kinds of

samples in training set and test set, we randomly

select 80% of samples from each label to form

training set, and the remaining 20% of the samples

are used as test set.

Figure 5: Number of samples in each label

4 https://github.com/google-research/bert

Using traditional machine learning models to

identify the facets based on sentence vector: As

illustrated in the framework, traditional machine

learning models are employed in Task 1B based on

the input of sentence vectors. By the way, sentence

vectors are generated from word frequency and

word vector separately. In the first way, nouns,

verbs, adverbs, adjectives are selected after part-of-

speech tagging. Then, sentence vectors are

generated by One-hot or TF (Term Frequency)

based on the selected words. In the second way,

fastText and BERT4 are used to train word vector.

And we calculate the average of all word vectors in

the sentence to generate the sentence vector. After

that, traditional machine learning models

introduced in Task 1A are used for the multi-label

classification. Besides, we add another ensemble

learning tool LightGBM5 . During testing, if the

model cannot assign a label to a sample, we will set

the sample’s label to “Method_Citation”.”.

Using deep learning models to identify the

facets based on word embedding: We also build

deep learning models for the multi-label

classification in Task 1B. In this scheme, word

embedding matrix is used as input. Long Short-

Term Memory (LSTM) (Hochreiter &

Schmidhuber, 1997) and Recurrent Neural

Network (RNN) (Rumelhart et al., 1986) are

applied in the feature selection layer separately.

They convert the word embedding matrix into a

128-dimensional vector. Then the vector passes

through a hidden layer, and we get the probabilities

that the sample belongs to five labels. When the

probability is greater than 0.5, we assign the

corresponding label to the sample. If the sample

fails to obtain a label, we set its label to

“Method_Citation”.

Figure 6: Framework of MLP model in Task 1B

5 https://github.com/microsoft/LightGBM

564

105
62 60

18

0

100

200

300

400

500

600

N
u

m
b

er
 o

f
sa

m
p

le
s

Labels(facets)

293

In Figure 5, We build an MLP model for Task

1B. The word embedding matrix is flatted into a

vector, and the vector pass through two hidden

layers. Finally, the model outputs the probabilities

that the sample belongs to five labels.

3.3 Task 2 based on sentence similarity

In Task 2, we select sentences from reference text

by calculating cosine similarity between the

sentence and the original abstract to generate

abstract. The steps are as follows:

a. Word vector is trained by fastText.

b. Sentence vectors of reference sentences

(identified in Task 1A) and the original abstract are

generated by calculating the average of vectors of

all words in the sentence.

c. Calculate cosine similarity between reference

sentences and the original abstract based on their

sentence vectors.

d. Select sentences according to their similarities

to generate summary, and length of the summary

does not exceed 250 words.

4 Experiments and results analysis

In this section, we report the results of different

models in Task 1A and Task 1B.

4.1 Experimental result of Task 1A

For task 1A, we use nine similarities as features

and applied traditional machine learning models to

identify reference text. MLP model is also

employed based on the input of sentence vector. In

this section, we report and analysis the results of

these models.

Results of traditional machine learning

models: Input of sentence vector is generated

based on nine similarities. And five classification

models in Scikit-learn6: Random Forest, Decision

Tree, SVM, NB, KNN are applied. In addition,

ensemble learning model by Xgboost is employed.

Precision, Recall, and F1-value are used to evaluate

their performance. The results of 5-fold cross

validation are shown in Table 3.
Table 3: Evaluation results of models

Model P R F1

Xgboost 0.5124 0.5449 0.5280

Random Forest 0.6732 0.4087 0.5084

Decision Tree 0.4680 0.4442 0.4550

SVM 0.6415 0.3168 0.4230

6 https://scikit-learn.org/stable/index.html

NB 0.2626 0.9430 0.4106

KNN 0.4957 0.3345 0.3987

From Table 3, we can see that ensemble learning

method by Xgboost achieves the optimal F1-value.

Results of MLP model: Word vectors are

trained through two tools: Word2Vec and

fastText. The training corpus consists of two parts:

(1) Full-text of reference papers and citing papers

from “Training-Set-2018”. (2) Full-text of

reference papers from “ScisummNet-2019”. The

vector dimension is set to 200. Through

comparative experiments, we finally determined

the optimal parameter settings under these two

kinds of word vector, as shown in Table 4.

Table 4: Parameters of MLP models

Model MLP_FT MLP_FT

Word

vector
fastText Word2Vec

Optimizer adam RMSprop

Loss
binary_cross

entropy
mse

Epoch 20 20

Hidden

layer

Rule (128)

Rule (64)

Rule (128)

Rule (64)

Threshold 0.577 0.602

The evaluation results of these two models are

shown in Table 5.

Table 5: Evaluation results of MLP models

Model P R F1

MLP_FT 0.6486 0.6316 0.6400

MLP_W2Vs 0.6428 0.5684 0.6034

As surfaced in Table 5, the results based on

fastText is better than Word2Vec. F1-value of the

best result is 0.64. Compared with the results of

machine learning models, MLP works better.

But when we use the trained models to identify

the sentences in reference papers for citation text,

the models output far more than 5 sentences. In

order to ensure the effect of the final test, we

develop a sentence filtering strategy in reference

papers:

a. We pick out nouns in citation text and sentences

of reference papers.

b. In reference paper, sentences with the same

noun as citation text are filtered out.

c. We use trained models to identify the filtered

sentences. Because we find that 609 of the 753

pairs of citation text and reference text have the

same nouns.

d. When the final test, if there is no sentence with

https://scikit-learn.org/stable/index.html

294

the same noun as citation text in the reference paper,

we will test all sentences in the reference paper.

4.2 Experimental results of Task 1B

For Task 1B, sentence vector and word embedding

matrix are used as input. Then traditional machine

learning models and deep learning models are

applied for the multi-label classification. Now, we

report and analysis the results of these models.

Accuracy score of traditional machine

learning models based on one-hot: Sentence

vectors are generated by one-hot in two ways. (1)

Nouns, verbs, adverbs and adjectives are only

selected in citation text. (2) Nouns, verbs, adverbs

and adjectives are selected in both citation text and

reference text. Many machine learning models in

Scikit-learn and ensemble learning models by

Xgboost and LightGBM are applied for

classification. Accuracy score is used to evaluate

these models. Random Forest and two ensemble

models work better, and their accuracy scores are

demonstrated in Table 6.
Table 6: Evaluation results of models based on One-hot

From Table 6, when sentence vectors are

generated by One-hot based on citation text and

reference text, Random Forest works better and its

accuracy score is 0.8025.

Accuracy score of traditional machine

learning models based on TF (Term Frequency):

We also use TF to generate vectors in two ways:

citation text, citation text and reference text.

Evaluation results of Random Forest, Xgboost and

LightGBM are shown in Table 7.
Table 7: Evaluation results of models based on TF

As suggested in Table 7, when sentence vectors

are generated by TF based on citation text and

reference text, Random Forest and LightGBM

achieve higher accuracy score.

Accuracy_score of traditional machine

learning models based on fastText: Sentence

vectors are generated based on fastText word

vector. Sentence vector of citation text is recorded

as v1 = (x1, x2 ... xn), and sentence vector of reference

text is recorded as v2 = (y1, y2 ... yn). We also

calculate |v1-v2| = (|x1-y1|, |x2-y2| ... |xn-yn|) and v1*v2

= (x1*y1, x2*y2 ... xn*yn). We make four combinations

of v1 and v2:

a. (v1, v2) = (x1, x2 ... xn, y1, y2 ... yn)

b. (v1, v2, |v1-v2|) = (x1, x2 ... xn, y1, y2 ... yn, |x1-y1|,

|x2-y2| ... |xn-yn|)

c. (v1, v2, v1*v2) = (x1, x2 ... xn, y1, y2 ... yn, x1*y1,

x2*y2 ... xn*yn)

d. (v1, v2, |v1-v2|, v1*v2) = (x1, x2 ... xn, y1, y2 ... yn, |x1-

y1|, |x2-y2| ... |xn-yn|, x1*y1, x2*y2 ... xn*yn)

In each combination, vectors are concatenated

as input of different models. Evaluation results of

Random Forest, Xgboost and LightGBM are

shown in Figure 7.

Figure 7: Evaluation results of models based on

fastText

As shown in Figure 7, under different conditions,

LightGBM performs better than the other two

models. When v1, v2, |v1-v2| and v1*v2 are

concatenated as input, LightGBM reaches the

highest accuracy score (0.8280).

Accuracy score of traditional machine

learning models based on BERT: We train word

vector by BERT and calculate sentence vectors.

Evaluation results of three models are shown in

Figure 8.

Figure 8: Evaluation results of models based on BERT

0.78

0.79

0.8

0.81

0.82

0.83

0.84
A

cc
u

ra
cy

 s
co

re

Combinations of v1 and v2

Random Forest Xgboost LightGBM

0.78

0.79

0.8

0.81

0.82

0.83

A
cc

u
ra

cy
 s

co
re

Combinations of v1 and v2

Random Forest Xgboost LightGBM

Model
citation

text

citation text and

reference text

Random

Forest
0.7580 0.8025

Xgboost 0.7134 0.6688

LightGBM 0.7707 0.7962

Model
citation

text

citation text and

reference text

Random

Forest
0.7580 0.7962

Xgboost 0.7134 0.7580

LightGBM 0.6624 0.7962

295

As illustrated in Figure 8, under different

conditions, Xgboost performs better than the other

two models. When v1, v2, and |v1-v2| are

concatenated as input, Xgboost get the highest

accuracy score (0.8217). But its performance is

slightly worse than LightGBM with fastText word

vectors (see Figure 7).

Accuracy score of deep learning models

based on word embedding: Word vectors trained

by fastText and BERT are used to construct word

embedding matrix of citation text and reference

text. Then three deep learning models: LSTM,

RNN and MLP are applied with the input of word

embedding matrix. Accuracy score of the three

models are shown in Figure 9.

Figure 9: Evaluation results of deep learning models

From Figure 9, we can see that MLP performs

best among the three models. But its accuracy

score is lower than the previous results of

LightGBM and Xgboost (see Figure 7 and Figure

8).

5 Conclusion and future work

In Task 1A, training data and test data are

constructed by negative sampling. And the ratio of

positive to negative examples has been optimized.

Next, we use deep learning model (MLP) with the

input of sentence vectors and traditional machine

learning models based on nine similarity features

to identify the reference text. The effect of MLP is

proved to be better than that of traditional machine

learning models. As for Task 1B, we calculate

different combinations of sentence vectors as input.

Traditional machine learning models and deep

learning models have been evaluated on

classifying the facets of reference text. In this

process, the effect of using pre-training model

(BERT) to obtain word vector is worse than that of

using fastText to train word vector based on

training set. And traditional machine models

(LightGBM and Xgboost) work better than deep

learning models.

Generally, word vectors can reflect more

semantic information compared to traditional

machine learning features. We create a suitable

number of training data by negative sampling in

Task 1A, so deep learning model (MLP) works

better. While in Task 1B, insufficient training data

makes deep learning models inferior to traditional

machine learning models.

In future work, we can optimize training set

through Data Augmentation Technology and apply

other deep learning models for Task 1A. As for

Task 1B, its recognition result is affected by the

imbalance of data. We will try to expand the

training data for the facets with smaller data scale

from other data sources, such as structured abstract.

Acknowledgements

This work is supported by National Natural

Science Foundation of China (Grant No.

72074113).

Reference

 Agarwal, N. K., Xu, Y. (Calvin), & Poo, D. C. C.

(2011). A context-based investigation into source

use by information seekers. Journal of the American

Society for Information Science and Technology,

62(6), 1087–1104.

https://doi.org/10.1002/asi.21513

Aggarwal, P., & Sharma, R. (2016). Lexical and

Syntactic cues to identify Reference Scope of

Citance. Proceedings of the Joint Workshop on

Bibliometric-Enhanced Information Retrieval and

Natural Language Processing for Digital Libraries

(BIRNDL), 103–112.

Altman, N. S. (1992). An introduction to kernel and

nearest-neighbor nonparametric regression. The

American Statistician, 46(3), 175–185.

Cohan, A., & Goharian, N. (2018). Scientific

document summarization via citation

contextualization and scientific discourse.

International Journal on Digital Libraries, 19(2–3),

287–303.

Cortes, C., & Vapnik, V. (1995). Support-vector

networks. Machine Learning, 20(3), 273–297.

https://doi.org/10.1007/BF00994018

He, H., & Garcia, E. A. (2009). Learning from

Imbalanced Data. IEEE Transactions on Knowledge

and Data Engineering, 21(9), 1263–1284.

https://doi.org/10.1109/TKDE.2008.239

He, H., Yang Bai, Garcia, E. A., & Shutao Li. (2008).

ADASYN: Adaptive synthetic sampling approach

0.6

0.65

0.7

0.75

0.8

fastText BERT

A
cc

u
ra

cy
 s

co
re

Word vector model

LSTM RNN MLP

296

for imbalanced learning. 2008 IEEE International

Joint Conference on Neural Networks (IEEE World

Congress on Computational Intelligence), 1322–

1328.

https://doi.org/10.1109/IJCNN.2008.4633969

Ho, T. K. (1995). Random decision forests.

Proceedings of 3rd International Conference on

Document Analysis and Recognition, 1, 278–282.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-

Term Memory. Neural Comput., 9(8), 1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735

Jaidka, K., Chandrasekaran, M. K., Jain, D., & Kan,

M.-Y. (2017). The CL-SciSumm Shared Task 2017:

Results and Key Insights. BIRNDL@ SIGIR (2).

Li, L., Zhu, Y., Xie, Y., Huang, Z., Liu, W., Li, X., &

Liu, Y. (2019). CIST@ CLSciSumm-19: Automatic

Scientific Paper Summarization with Citances and

Facets. BIRNDL@ SIGIR, 196–207.

Lu, K., Mao, J., Li, G., & Xu, J. (2016). Recognizing

reference spans and classifying their discourse

facets. Proceedings of the Joint Workshop on

Bibliometric-Enhanced Information Retrieval and

Natural Language Processing for Digital Libraries

(BIRNDL), 139–145.

Ma, S., Xu, J., Wang, J., & Zhang, C. (2017). NJUST

@ CLSciSumm-17. Proceedings of the Joint

Workshop on Bibliometric-Enhanced Information

Retrieval and Natural Language Processing for

Digital Libraries (BIRNDL 2017).

Ma, S., Xu, J., & Zhang, C. (2018). Automatic

identification of cited text spans: A multi-classifier

approach over imbalanced dataset. Scientometrics,

116(2), 1303–1330. https://doi.org/10.1007/s11192-

018-2754-2

Ma, S., Zhang, H., Xu, J., & Zhang, C. (2018). NJUST

@ CLSciSumm-18. BIRNDL@ SIGIR.

Ma, S., Zhang, H., Xu, T., Xu, J., Hu, S., & Zhang, C.

(2019). IR&TM-NJUST@ CLSciSumm-19.

BIRNDL@ SIGIR, 181–195.

McCallum, A., Nigam, K., & others. (1998). A

comparison of event models for naive bayes text

classification. Proceedings of the AAAI-98

Workshop on Learning for Text Categorization,

752(1), 41–48.

Mei, Q., & Zhai, C. (2008). Generating impact-based

summaries for scientific literature. Proceedings of

ACL-08: HLT, 816–824.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013).

Efficient Estimation of Word Representations in

Vector Space. ArXiv:1301.3781 [Cs].

http://arxiv.org/abs/1301.3781

Moraes, L., Baki, S., Verma, R., & Lee, D. (2016).

University of Houston at CL-SciSumm 2016:

SVMs with tree kernels and Sentence Similarity.

Proceedings of the Joint Workshop on Bibliometric-

Enhanced Information Retrieval and Natural

Language Processing for Digital Libraries

(BIRNDL), 113–121.

Qazvinian, V., & Radev, D. R. (2008). Scientific paper

summarization using citation summary networks.

ArXiv Preprint ArXiv:0807.1560.

Quinlan, J. R. (1987). Simplifying decision trees.

International Journal of Man-Machine Studies,

27(3), 221–234.

Radev, D. R., Hovy, E., & McKeown, K. (2002).

Introduction to the special issue on summarization.

Computational Linguistics, 28(4), 399–408.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J.

(1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533–536.

https://doi.org/10.1038/323533a0

Sándor, Á., Kaplan, A., & Rondeau, G. (2006).

Discourse and citation analysis with concept-

matching. International Symposium: Discourse and

Document (ISDD), 15–16.

Wang, W., Villavicencio, P., & Watanabe, T. (2012).

Analysis of reference relationships among research

papers, based on citation context. International

Journal on Artificial Intelligence Tools, 21(02),

1240004.

https://doi.org/10.1142/S0218213012400040

Yeh, J.-Y., Hsu, T.-Y., Tsai, C.-J., & Cheng, P.-C.

(2017). Reference Scope Identification for Citances

by Classification with Text Similarity Measures.

Proceedings of the 6th International Conference on

Software and Computer Applications, 87–91.

https://doi.org/10.1145/3056662.3056692

