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Abstract

To provide AI researchers with modern tools
for dealing with the explosive growth of the
research literature in their field, we introduce
a new platform, AI Research Navigator, that
combines classical keyword search with neural
retrieval to discover and organize relevant liter-
ature. The system provides search at multiple
levels of textual granularity, from sentences to
aggregations across documents, both in natu-
ral language and through navigation in a do-
main specific Knowledge Graph. We give an
overview of the overall architecture of the sys-
tem and of the components for document anal-
ysis, question answering, search, analytics, ex-
pert search, and recommendations.

1 Introduction

The growth of publications in AI has been explo-
sive in recent years. A big portion of this growth is
happening on platforms outside of traditional pub-
lishing venues, for instance arXiv e-print archive
(see Figure 1) and blogs. Although this encour-
ages broad access to AI expertise and technology,
it makes efficient and effective search, monitor-
ing, and discovery in the AI field increasingly dif-
ficult. Most general-purpose academic search en-
gines lack a specialization on AI content and prac-
tical know-how, because they focus on classical
bibliographic information across all scientific disci-
plines. At the same time, academic search engines
often do not make use of the latest AI technologies
in search, as well as natural language processing
(NLP) and insights capabilities. The main reason
that limits them is the need to operate at a much
larger scale and cover a large amount of knowledge.

Recent developments in various NLP tasks are
showing fast progress towards an almost human
level of language understanding (Devlin et al.,
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Figure 1: Growth of AI related documents on arXiv.

2019; Brown et al., 2020). Applying these new
technologies to the processing of research and engi-
neering literature bears the promise of accelerating
scientific discovery. In addition, providing efficient
tools to automate some of the drudgery of human
scholarly work by machine understanding of sci-
entific knowledge is extremely valuable. Similar
directions are being explored in recent studies (Am-
mar et al., 2018; Kardas et al., 2020; Zhao and Lee,
2020).

Our system, AI Research Navigator†, aims to
help AI researchers with a simple-to-use seman-
tic search for documents (§4.1), the answering of
detailed factual questions (§4.3), the generation of
insights via visual analytics (§4.4), combined with
recommendations to filter the constant flood of new
information in their field (§4.5). These technolo-
gies are combined in the platform with both project
and task-oriented tools to support a more effective
and efficient organization of a researcher’s work
on multiple projects and topics (§5). This paper
presents a short outline of the system.

†search.zeta-alpha.com
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2 Document Analysis

A key ingredient to an AI insights platform is the
content available to users. We ingest, process, and
store documents from a variety of sources, aiming
to get broad coverage, as well as detailed views
on theoretical and applied AI. At the moment our
platform contains approximately 140 thousand sci-
entific papers, collected from arXiv.org ∗ and
OpenReview.net, and about 24 thousand posts
from data science blogs. Our goal for the near
future is to expand this set of sources to include
different types of content (e.g., source code, news,
tweets). We ingest new content from our sources
on a daily basis, offering our users the latest in-
sights. Newly ingested or updated content is fed
to our back-end storage system (Section 3) via a
distributed processing pipeline that takes the doc-
uments through a number of processing and infor-
mation extraction steps and generates embeddings
that capture the intent and meaning of the text. We
also extract images from each document to serve
as an illustration for the paper in the search en-
gine. We manage the state of each document, as
it traverses the pipeline, with a messaging queue
platform (Apache Pulsar). This allows us to scale
our processing throughput, while keeping certain
processing guarantees.

2.1 Parsing and Linking Documents

Scientific publications consist of sections that have
varying degrees of informativeness. As an exam-
ple, the bibliography of a paper is interesting for
the citation graph, but does not contain actual new
content. In order to process and index only relevant
and informative sections, we parse the document
structure and extract candidate citation records us-
ing ParsCit (Councill et al., 2008). We then sanitize
these candidates using a set of heuristics, and link
them to our Knowledge Graph (KG, Section 3)
using fast approximate string matching.

We make use of domain-specific concepts and
their relations to improve the effectiveness of
components like Question Answering (QA, Sec-
tion 4.3), KG population, analytics processing (Sec-
tion 4.4), and semantic search (Section 4.1). We
train a statistical named entity recognizer (NER)
using a small manually curated seed set of around a
thousand AI related concepts, and run this NER on

∗We include all papers from the following AI related
categories: cs.AI, cs.LG, cs.CV, cs.IR, CS.NE, cs.CL, and
stat.ML.

every document that we process. We then link the
recognized concepts to concepts in our KG using
a weighted combination of string and contextual
embedding similarity. Finally, those entities that
were not linked because they fell below a simi-
larity threshold are considered as new candidates
to further populate the KG. Figure 2 shows the
domain-specific concept types that are currently in
our KG.
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Figure 2: Distribution of KG concept types.

3 Storage Systems

To provide access to the information we obtained
from our processing pipeline, we currently store
our information in three core systems.

Knowledge Graph. We store people, content,
and concepts in a knowledge graph (stored in
Dgraph). The node identifiers are used in the
search frontend for navigating content and building
queries.

Search Index. For fast access to documents, we
use an open-source search engine (Elasticsearch) in
combination with HNSW (Malkov and Yashunin,
2016) for nearest neighbor search. We use three
separate indices, one for sentences (31M), one for
chunks (approx. 10 consecutive sentences) (4.2M),
and one for full documents (160K) and citation
records (740K).

Document Representations. As a result of each
processing step, we store new document represen-
tations. Most representations are in the form of
standoff annotations, linking labels (e.g., a concept
ID or vector) to a particular span of characters in
the source document.

4 Accessing Information

Processing and storing information is only useful
when we can provide meaningful access to it. Our
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platform allows information access in a variety of
ways. In this section, we discuss content (§4.1) and
expert (§4.2) search, QA system (§4.3), analytics
component (§4.4), and recommendations system
(§4.5).

4.1 Content Search
One of the main methods to access information
on our platform is search. We currently support
traditional keyword-based search and vector-based
(nearest neighbor) search. Both search systems
offer valuable information. While keyword-based
search is useful in finding documents directly re-
lated to the query, vector-based search offers a
range of query interpretations and more diversity.

Keyword-based search. Our keyword-based
search functionality scores documents for a given
user query based on several heuristics. (1) We bor-
row from Metzler and Croft (2005) the notion of
sequential dependencies between query terms, con-
struct term n-grams from the user query, and treat
each n-gram as a phrase query. (2) A match of a
longer n-gram is more important than the match
of a shorter n-gram, which is implemented as a
dynamic boost per n-gram query. (3) We combine
evidence from multiple document fields (Ogilvie
and Callan, 2003) and assign higher weights to
metadata fields like author name, title, and ab-
stract, while limiting the weight of the full text
field. (4) We use a dismax query over fields to
determine whether an n-gram refers to an author or
to content. (5) Given the limited text length of the
metadata fields, we only rely on term presence, and
assign a constant field-dependent score. (6) Finally,
we assume that highly cited and recent documents
are more important to users.

Vector-based. In many cases, keyword searches
are hard to use when exploring a new domain. To al-
low a more meaning-based exploration, fully neural
retrieval models can be beneficial. Recent advances
in neural language modeling as unsupervised pre-
training have achieved significant improvements in
a wide variety of NLP tasks (Devlin et al., 2019).
However, incorporating them in retrieval systems
presents some challenges. Using pretrained lan-
guage models to jointly encode queries and doc-
uments is often not computationally feasible for
large-scale retrieval. Recent studies propose vari-
ous methods to benefit from large neural models.
Luan et al. (2020) propose a hybrid method for
combining sparse and dense representations that

outperforms baselines in open retrieval. Chang
et al. (2020) use a siamese network, initialized with
BERT, to encode query and document individually.
They propose three self-supervised tasks that cap-
ture different aspects of query-document relations.

Inspired by these studies, we use the Sentence-
BERT model proposed by Reimers and Gurevych
(2019) to generate sentence embeddings for each
document and, additionally, we also encode all
words in context with SciBERT (Beltagy et al.,
2019) embeddings. Finally, we encode sentences,
chunks, and full documents into representative vec-
tors, fine-tuned on self-supervised training tasks
similar to Chang et al. (2020). In our platform,
we encode the query as a vector at search time,
and retrieve its N (approximate) nearest neighbor
documents in the vector space. This requires the
documents and the queries to be encoded in a simi-
lar way using the same embedding space. By using
HSNW and loading its full graph in memory, we
are able to serve nearest neighbor search results in
a highly efficient manner.

4.2 Expert Search
In addition to navigating knowledge via natural
language search and domain-specific topics from
our KG, we also aim to improve navigation by
connecting searchers to experts. For this, we fol-
low a document-centric approach to expertise re-
trieval, along the lines sketched in Balog et al.
(2009) and Husain et al. (2019). In the expert
search component, we embed user queries and doc-
uments using the Sentence-BERT model similar
to Section 4.1. This allows the system to retrieve
papers that are related to the query. We then derive
the experts from the sets of authors of these pa-
pers using an approach where each retrieved paper
contributes an exponentially weighted vote for an
author, with a factor that reduces the bias towards
highly prolific authors. Our experiments, described
in detail in (Berger et al., 2020) show that these
modern Transformer-based contextualized embed-
dings outperform TF-IDF and LSI-based document
representations on this task.

4.3 Question Answering
Our QA module provides an answer to either a
concrete user question (e.g., How many TPUs are
needed to train BERT?) or, alternatively, to a ques-
tion related to the user’s query, which we automati-
cally generate (e.g., What is a knowledge graph?
for the query knowledge graph). To distinguish
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Figure 3: Extractive and abstractive QA components.

between questions and other types of queries, we
use a Naive Bayes classifier trained on the NPS
Chat Corpus (Forsyth et al., 2006).

We deploy two types of QA deep learning mod-
els: extractive QA and abstractive QA (see example
in Figure 3). Both models take as input a set of
relevant documents, and provide the user with one
or more answers. Since an answer is always part of
a particular context, we also present this context as
a source of explanation of the answer to the user.

Extractive QA. Our extractive QA model is built
with an existing BERT-based question answering
model from the DeepPavlov library (Burtsev et al.,
2018). The model takes as input a pair of question
and context and rate their relatedness. At query
time, we chunk the input documents and send mul-
tiple question-context pairs to the model. We obtain
the best answer by filtering the candidates accord-
ing to the confidence of the model.

Abstractive QA. For the abstractive answers
we use a model based on the approach proposed
in Nishida et al. (2019), trained on the MS-
MARCO data set (Bajaj et al., 2016). Our model
and its evaluation in the AI domain are described
in detail in Tsiamas (2020). Since this architecture
has its own neural retrieval component, at query
time the model has access to the question and all
input documents. Unlike extractive QA, this model
is also capable of answering yes/no questions.

The two QA models complement each other in
the types of answers they provide. Although these
systems are still experimental (approximately 70%
of answers to a benchmark set of in-domain ques-
tions were relevant), together with sentence and
paragraph retrieval they show potential for discov-
ering interesting information that goes beyond what
surface-level single-document-based systems pro-
vide.

4.4 Analytics

Rather than reviewing a long list of documents or
reading a short answer in response to a query, some-
times users can get to an insight faster by observing
a tabular, a summary, or a graph overview over the
entire set of relevant documents.

Figure 4: Contrastive popularity analytics.

Our analytics module aims to give users this
quick and easy-to-grasp overview over a result
set when a query sufficiently matches some pre-
defined analytics query templates. For instance,
when we detect AI concepts from the KG in a query,
or a reference to an abstract concept (e.g., “Which
datasets are used for image classification?”), we
show the contrastive popularity plots for the spe-
cific concepts as identified in documents using the
NER and linker module. Figure 4 provides an ex-
ample of a contrastive popularity graph. The graphs
provide a global overview and are also clickable
so the users can use them to quickly identify pat-
terns and discover specific papers relevant to their
interests.

4.5 Recommendations

With the amount of new information available on
a daily basis, a recommender system is inevitable
to filter and keep track of relevant publications.
Users of our platform receive recommendations
in notification emails and in the recommendations
view (Figure 5).

The relevance of a publication can be decom-
posed into several factors. We implemented a
modular system architecture which allows us to
weigh relevance factors on a per-user basis, and to
add, remove, modify, and evaluate modules indi-
vidually. Each module generates recommendations
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Figure 5: Recommendations on our platform.

with (normalized) scores, which are aggregated by
the core recommender system, allowing for both
global and personalized weights for each module.

Our recommendation architecture is based on
hybrid recommender systems (Gomez-Uribe and
Hunt, 2016), combining content-based and col-
laborative filtering. However, since virtually all
recommendations are of new papers, we suffer
from the cold-start problem and we mostly rely
on content-based recommendations. The content-
based module generates recommendations based
on user-tagged documents: when a user tags a doc-
ument, it triggers an initial search for related docu-
ments. From this point on, recommendations are
only generated from the most recent documents.

Our current basic content-based modules are
based on similarity metrics derived from our doc-
ument representations, as described in section 4.1,
with score normalization being provided by leave-
one-out tuning on the set of documents in a tag.

Apart from these content-based similarity rec-
ommendations, we are also experimenting with
additional modules that provide similarity scores.
Citation-based recommendations are based on (in-
direct) citations to documents stored by the user.
Author-based recommendations are (co-)authored
by authors which are frequently tagged by a user.
Popularity recommendations are globally “popu-
lar” documents, for instance based on the number
of views, citation counts, or tag counts.

5 Productivity Tools

Discovering relevant information in an effective
way is key to researchers, knowledge workers, and
decision makers. Even though an AI-enabled plat-
form like the one described in this paper can be
helpful for this purpose, it is only the first step

Figure 6: Adding tags and notes to a document.

in researching a topic. Organizing and accessing
this information is a necessary feature. Users of our
platform are also supported to organize information
and knowledge without having to rely on external
tools for reading lists and notes. Having found a
relevant piece of information in our system, users
can save this into their own specific project and
topic tags. They can also directly write their notes
on the papers and projects they are working on in
the tool. Tags serve to organize lists of documents,
as well as the queries used, and notes taken while
working on a project (see Figure 6). The tagging
system can also be used to track the status and pri-
ority of work. Tag-based lists can easily be shared
with others within the platform, on social media,
and exported into other tools. As described above,
these tags are also the starting point that allows
users to be alerted about new results relevant to
their interests.

6 Discussion and Next Steps

Having introduced a new platform to discover and
organize knowledge for AI researchers, we foresee
considerable future research to reach real machine
understanding of scientific literature, such as extrac-
tion of complex entity relations and more advanced
use of neural embeddings to reduce the dependency
on manual KG curation. We leverage a mix of
state-of-the-art AI components to give researchers
transparent access to a body of knowledge from a
large volume of heterogeneous and non-reviewed
content. As a result, it raises the concern of deal-
ing with fairness, factuality, conflicting opinions,
and out-of-date information, which requires deeper
investigation. Finally, we are interested to further
explore how the productivity tools in our platform
can contribute to better collaboration in teams and
improving knowledge sharing and discovery.
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