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1 Overview

Recent advances in unsupervised learning of lin-
guistic structure have demonstrated the feasibility
of inferring latent morphological parses from an
unannotated corpus given transparent underlying-
to-surface mappings (ex., Adaptor Grammars
(AGs); (Johnson et al., 2007; Johnson and Gold-
water, 2009), as well as in learning predictable
phonological transformations from prespecified
underlying morphemes to a range of surface al-
lomorphs via a stochastic edit distance algorithm
(Cotterell et al., 2015). In this paper we in-
troduce a nonparametric Bayesian model which
builds on the morpheme-segmentation success of
AGs, and incorporates the ability to learn pre-
dictable phonological transformations of underly-
ing forms to their surface allomorphs via the inter-
action of markedness and faithfulness principles,
inspired by generative phonology. The unsuper-
vised nature of this model (that is, no semantic
information about the words being segmented is
provided) is relevant not only computationally but
also psychologically, as it mirrors developmental
findings (Kim, 2015) that young infants segment
and cluster morphemes based solely on phonetic
and distributional similarity. The model also in-
corporates many of the other cognitive restrictions
infants during the initial period of morphophono-
logical learning in an effort to make the model
maximally realistic, and thus eventually useful in
making quantitative predictions about the early
stages of morphophonological acquisition that can
be experimentally investigated. We evaluate the
model on a novel dataset consisting of a complex
system of allomorphy in Acehnese, an understud-
ied Indonesian language.

2 Model design

The model takes the general structure of a (rel-
atively shallow) AG with rewrite rules Word !
Morph(s), Morph ! Phoneme(s). The model dif-
fers, however, in that it considers whether a possi-
ble novel morpheme could be derived from an ex-
isting item in the lexicon via a phonological trans-
formation (at a cost), as well as reused directly
(if it exactly matches a lexical item) or generated
anew. The parameterization of the penalty for non-
identity transformations is informed by research
demonstrating that infant and adult learners pre-
fer phonetically-minimal alternations (ex., White
(2013), cf. (Steriade, 2009) on the P-Map hypoth-
esis more broadly), and that speakers are sensitive
to the segment-to-segment transitional probabili-
ties (cf. Vitevitch and Luce (2004)) of their native
language(s). Thus, the probability of a novel mor-
pheme being a transformation of an existing one
is equal to the probability of the source morpheme
in question being reused (as in a standard AG)
multiplied by the penalty associated with a spe-
cific segment-to-segment mapping, operational-
ized as the number of phonological feature val-
ues by which the input and output segments differ
(“faithfulness” to the input). This quantity is then
multiplied by the probability of the surface string
created through the unfaithful mapping, as calcu-
lated from the surface-distribution of phonemes
in the unsegmented corpus (corresponding to a
penalty for the “markedness” of the surface form),
and the morpheme-length parameter �. The faith-
fulness penalties on segment-to-segment transfor-
mations was equal to twice the featural edit dis-
tance between the two segments, and penalties for
surface forms were calculated via segmental tri-
gram probabilities of the corpus.



2.1 Implementation

Unless otherwise noted below, the model was ini-
tialized with words parsed as monomorphemic
roots, following the phonological acquisition lit-
erature which shows infants store unanalyzed
chunks of their input during early learning (Ngon
et al., 2013). Inference for all parameters was
carried out via Gibbs sampling; the hyperparam-
eters ↵ and �, as well as the length penalty � on
morpheme lengths, were sampled using the slice-
sampling technique from Neal et al. (2003), as im-
plemented in Johnson and Goldwater (2009).

3 Data

We tested the model on a group of morphophono-
logical alternations observed affecting labial-
initial prefixes in Acehnese (Malayo-Polynesian,
3.5 million speakers, primarily in Indonesia). Two
Acehnese verbal prefixes peu- /pW-/ and meu-
/mW-/ exhibit allomorphy when prefixed to a base
which begins with a labial consonant ({/p, b, m,
w/}), surfacing as to [pu-] and [mu-] respectively
with the back high unrounded vowel having under-
gone the phonological process rounding. A second
process, spirantization, applies to the peu- prefix
when the base to which it is attached begins with a
labial consonant and is also polysyllabic, changing
the initial consonant of the prefix from /p/ to [s],
as in /pW-maNat/ ! [sWmaNat]. Further, spiranti-
zation bleeds rounding when the conditioning en-
vironments overlap, appearing to “apply” before-
hand and so removing the environment (the labial
onset of the prefix) which would have triggered
rounding: /pW-maNat/ ! [sWmaNat], *[sumaNat]
(Durie, 1985). Thus, summarizing the data pat-
tern, we find: /pW-/ ! {[pW-, pu-, sW-]}, /mW-/
! {[mW-, mu-]}.

The use of Acehnese in evaluating the model
is relevant for two reasons. First, there has been
no known computational work on the language,
nor even detailed quantitative study of the lan-
guages morphophonology. Therefore, the phe-
nomena explored here (idealized based on corpus
data gathered as part of Breiss, in prep.) pro-
vide a novel perspective on which to test tra-
ditionally English-centric tests of unsupervised
learning of linguistic structure. Secondly, the
specifics of the morphophonological alternations
in the Acehnese data are typologically unusual,
exhibiting processes which are both phonetically-
motivated (rounding in the context of two labial

Figure 1: Evaluation statistics; each cell displays Pre-
cision / Recall / F-score for that combination of model
settings and data.

segments) as well as phonetically arbitrary (spi-
rantization). Prior research has shown that speak-
ers may be biased towards learning and/or gener-
alizing phonetically-natural patterns or processes
more than phonetically-arbitrary ones; therefore,
the trade-off in productivity between lexical listing
and phonological derivation of allomorphs instan-
tiated in the model can be used to make testable,
quantitative predictions about human behavior.

4 Evaluation

F-score for identifying polymorphemic words,
morpheme boundary F-score, and the percentage
of surface allomorphs were derived from the cor-
rect underlying form (prefix and root) were calcu-
lated. We test each of the methods on a dataset
consisting solely of polymorphemic words, a
dataset with bare roots for 50% of the polymor-
phemic words, and a dataset with bare roots for all
of the polymorphemic words (referred to as Zero,
Half, and All respectively). Results are presented
in 1, where each cell lists Precision / Recall / F-
score.

4.1 Segmentation only

The first test is whether, under ideal conditions,
the model correctly parses the data into its surface
allomorphs. Disabling the option to consider non-
faithful lexical reuse, the model is able to perform
moderately well on segmenting the corpus. Since
the Zero setting did not discover any segmentation



with words initialized as unanalyzed roots, ran-
dom initialization was used for this condition only.

4.2 Allomorphy only

The phonological corollary to the morphological
segmentation question is whether, under ideal con-
ditions, the model can collapse the allomorphs of
each morpheme into a single underlying represen-
tation. For this test, we gave the morphemic parse
of each of the words in training, and then allowed
the model to be informed by the faithfulness penal-
ties as it discovered the most likely division be-
tween lexicalization and derivation for each of the
allomorphs.

4.3 Simultaneous morphological

segmentation and phonological

abstraction over allomorphs

We test the model in a more realistic situation by
asking it to discover the correct segmentation as
well as the correct phonological alternations, and
find that neither task is impaired when performed
jointly with the other (in fact, in certain cases the
performance is marginally improved; we take this
as a suggestion that further scaling up of the model
and dataset may give rise to more robust synergies;
cf. Johnson (2008)).

5 Future work

While the model as presented here represents a
significant step towards integrating insights from
the developmental literature with computational
methods of learning of linguistic structure from
unlabelled data, it is hardly an adequate or com-
plete model of early morphophonological acqui-
sition. We see three main fronts along which
the model can be improved: robustness to (more)
naturalistic data, greater flexibility in non-faithful
transformations to handle epenthesis and dele-
tion phenomena, and the more robust integration
of phonological principles to yield interpretable
constraint-based grammars as part of the model
yield.

In terms of data realism, the model can be im-
proved so as to handle noisier, larger datasets:
while the model does well given at least some

bound-free pairs as evidence, not all languages
allow roots to surface bare; thus improving the
willingness of the model to consider morphologi-
cal decomposition even in the absence of minimal
pairs of bound-affixed forms is essential.

The linguistic validity of the range of hypothe-
ses that the model considers can be enhanced by
allowing it to consider strings of varying lengths
as possible sources for non-faithful transforma-
tions. As implemented, the model only considers
non-identity lexical sources for novel morphemes
which are of the same length (in phonemes) as
the novel morpheme under consideration. How-
ever, natural languages frequently exhibit deletion
or epenthesis processes as part of morphophono-
logical alternations (ex., the allomorphy of the En-
glish plural; /-z/ ! {[-z, -s, -@z]}).

Two further improvements to the way that the
model handles markedness and faithfulness penal-
ties will allow the trained model to yield a gram-
mar of weighted constraints, in addition to a lexi-
con and morphological parse, which can be com-
pared to those which are the subject of analysis
in other areas of generative phonology. On the
faithfulness front, future experimental work can
ground the specific penalties associated with non-
identity transformations in data from confusabil-
ity matrices, as in White (2017). These findings
can be incorporated into the model by treating
the phonetic distance between non-faithful map-
pings of segments as the mean of a Gaussian prior
over possible penalties, rather than an absolute
penalty itself. This will allow the model to de-
viate from the phonetically-informed priors in the
face of compelling language-specific evidence for
phonetically-unnatural alternations, mirroring the
experimental findings of Wilson (2006).

The phonotactic markedness penalty given to
surface forms can be enhanced by incorporat-
ing the ability to learn language-specific, feature-
based phonotactic constraints from the already-
segmented lexicon. This is motivated by the work
ofHayes and Wilson (2008); Becker et al. (2011);
Kager and Pater (2012); Hayes and White (2013);
Rasin and Katzir (2016), among others, which
shows that adult speakers internalize only a sub-
set of available statistical generalizations latent in
the data, informed by the statistics of the lan-
guage and possibly prior grammatical knowledge.
This constraint-based markedness penalty would
replace the current phoneme trigram penalty over
surface forms.
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