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Abstract

Many domains of linguistic research posit fea-
ture bundles as an explanation for various phe-
nomena. Such hypotheses are often evaluated
on their simplicity (or parsimony). We take
a complementary approach. Specifically, we
evaluate different hypotheses about the repre-
sentation of person features in syntax on the
basis of their implications for learning the Per-
son Case Constraint (PCC). The PCC refers
to a phenomenon where certain combinations
of clitics (pronominal bound morphemes) are
disallowed with ditransitive verbs. We com-
pare a simple theory of the PCC, where per-
son features are represented as atomic units,
to a feature-based theory of the PCC, where
person features are represented as feature bun-
dles. We use Bayesian modeling to compare
these theories, using data based on realistic
proportions of clitic combinations from child-
directed speech. We find that both theories can
learn the target grammar given enough data,
but that the feature-based theory requires sig-
nificantly less data, suggesting that develop-
mental trajectories could provide insight into
syntactic representations in this domain.

1 Introduction

Representing surface realizations as bundles of
features is ubiquitous in linguistics. For exam-
ple, in syntax, different forms that result from
subject-verb agreement are taken to be the result
of different feature bundles. Relevant features
for subject verb agreement in English include at
least the tense and the number of the subject. Al-
though there is little variation in the different sur-
face forms for English verbs, the verb walk does
differ when the subject is singular and the tense is
present (walks), compared to when the subject is
singular and the tense is past (walked).

Features are often taken to be either privative or
binary (though these are not the only possibilities).

For example, some might argue that the English
singular/plural distinction is based on a privative
feature: a noun phrase can either be specified as
plural or not specified for number (e.g., [plural]
and [ ]). In this case, when dog is marked with
“[plural]”, it is realized as dogs. Others might ar-
gue that the distinction is based on a binary fea-
ture: a noun phrase can be specified as “plus” or
“minus” (e.g., [+plural] and [�plural]). In this
case, when dog is marked with “[+plural]”, it is
realized as dogs.

Feature representations are typically evaluated
based on the extent to which they simplify linguis-
tic analyses, that is, on their ability to provide par-
simonious descriptions of cross-linguistic gram-
matical patterns. For a concrete example of this
type of argument, see Adger and Smith (2010),
who argue that both the intra-dialectal variation
in the inflection of the verb be in Buckie Scot-
tish English as well as the inter-dialectcal varia-
tion in the inflection of the verb be in English more
broadly is nicely explained by a feature system in-
volving binary-valued features of Singular, Partic-
ipant, and Author.

In this paper, we take a different approach
to evaluating feature representations, focusing on
their implications for learning (for similar ap-
proaches, see Pearl and Sprouse, 2013; Pearl et al.,
2017; Rasin and Katzir, 2017; Pearl and Sprouse,
2019). Specifically, we investigate how person
features might be represented in the syntactic com-
ponent of the grammar, using the domain of cli-
tics as a case study and the learnability of a phe-
nomenon involving clitics as a metric for plausi-
bility. We find that both of the representational
theories that we test can learn the target grammar
given enough data, but that they differ consider-
ably in the amount of data they require. This sug-
gests that children’s learning trajectory has the po-
tential to provide insight into syntactic representa-



tions in this domain.

2 The Person Case Constraint

Clitics are bound morphemes (i.e., morphemes
that cannot stand on their own). The clitics rele-
vant to the PCC are pronominal clitics, which en-
code first, second, and third person, and they must
occur immediately next to a free morpheme, usu-
ally a verb. For example, (1) shows a Spanish sen-
tence where the direct and indirect objects of a di-
transitive verb are both realized as clitics. The cl-
itics are immediately before the verb, and, in this
case, they encode first and third person, respec-
tively.

(1) Me
1.SG.DAT

lo
3.SG.ACC

cuentas
tell

‘(You) tell it to me’

Interestingly, when the direct and indirect objects
to a ditransitive verb are both realized as clitics,
not all combinations are possible. For example,
compare (1) to (2), where the first person clitic
serves as the direct object and the third person
clitic serves as the indirect object (i.e., the opposite
of (1)). The sentence in (2) is ungrammatical.1

(2) * Me
1.SG.ACC

le
3.SG.DAT

recommendó
recommend.PST

‘S/he recommended me to her/him’
1Note that even though the first person clitic occurs before

the third person clitic in both (1) and (2), the literature usually
talks about the ungrammaticality of (2) with the starred string
“*3 1”. This is meant to indicate the underlying argument
structure relations—namely, in the syntactic analysis of (2),
but not (1), the dative third person argument is structurally
higher than first person argument, as shown in (i). This is
generally written as “*3 1”, meant to reflect the fact that the
third person argument structurally precedes the first person
argument, even though the surface string order of the clitics
is the opposite.

(i) * ApplP

IO
3

Appl0

Appl VP

V
recommendó

DO
1

Nonetheless, as (1) shows, there are some instances where
the surface string order of the clitics does match the underly-
ing argument structure relations. This depends on a variety
of language specific factors, including at least the nature of
the particular verb and ordering effects between some of the
clitics in some languages.

The ungrammaticality of (2) is part of a broader
phenomenon called the Person Case Constraint
(PCC) (see, e.g., Bonet, 1991, 1994); the PCC will
be the central focus of our case study on the repre-
sentation of person features.

Ignoring the possible combinations of direct
and indirect objects with either both first person
or both second person arguments2 gives seven dif-
ferent possible direct and indirect object pairings:
1 2, 1 3, 2 1, 2 3, 3 1, 3 2, and 3 3. There are
four attested variants of the PCC, each of them
banning a different subset of these seven possi-
ble clitic combinations. The four variants of the
PCC (and their names) are given in Table 1, along
with languages/dialects that are known to instan-
tiate each of them (note that these tables include
3 3 and thus differ slightly from those reported in
Graf, 2012, p. 86).

Because there are different variants of the PCC
that occur cross-linguistically, a child will have to
learn which variant their language instantiates on
the basis of input.

3 Evaluating two theories of the PCC

We use a Bayesian learning model to evaluate
the plausibility of two theories of the representa-
tion of person features. The first theory is one in
which first, second, and third person have no fur-
ther structure; they are just represented as atomic
features in the grammar, like in (3). We refer to
this as the simple theory of the PCC because the
grammar is assumed to simply state, for each pos-
sible clitic combination, whether it is grammatical.

(3) a. 1 = 1
b. 2 = 2
c. 3 = 3

We compare this to another theory in which first,
second, and third person are represented as feature
bundles, consisting of two values, one for the bi-
nary feature Author and one for the binary feature
Participant, as in (4) (Nevins, 2007). We refer to
this as the feature-based theory of the PCC.

(4) a. 1 =


+Auth
+Part

�

b. 2 =


�Auth
+Part

�

2The combinations with both first or both second person
arguments are often ignored in this literature because of other
complicating factors. Specifically, these combinations are
also governed by another part of the grammar, Binding The-
ory (see, e.g., Chomsky, 1981).



IO#/DO! 1 2 3

1 NA * X
2 * NA X
3 * * X

(a) Strong PCC (Greek, Spanish, etc.)

IO#/DO! 1 2 3

1 NA X X
2 * NA X
3 * * X

(b) Ultrastrong PCC (Classical Arabic, Spanish, etc.)

IO#/DO! 1 2 3

1 NA X X
2 X NA X
3 * * X

(c) Weak PCC (French, Catalan, Spanish, etc.)

IO#/DO! 1 2 3

1 NA X X
2 * NA X
3 * X X

(d) Me-First PCC (Romanian, Spanish, etc.)

Table 1: PCC varieties (rows indicate the indirect ob-
ject, and columns indicate the direct object; ‘X’ in-
dicates grammatical, and ‘*’ indicates ungrammatical;
for example, *1 2 is ungrammatical in Strong PCC lan-
guages but grammatical in all other PCC varieties)

c. 3 =


�Auth
�Part

�

Based on corpus data from child-directed speech,
we model the learning of one PCC variant in or-
der to investigate the plausibility of these different
representations of person features. The remainder
of this section lays out these two representational
theories in more detail.

3.1 A simple theory of the PCC

The simple theory of the PCC states, for each clitic
combination, whether or not it is grammatical. For
this theory, person features are atomic (cf. (3)),
and the grammar simply states that some combi-
nations (e.g., *2 1) are banned. Given that there
are 7 clitic combinations, this leads to 27 = 128
possible grammars, some of which are shown in
Table 2.3

Grammar 1 2 1 3 2 1 2 3 3 1 3 2 3 3

SG1 X X X X X X X
SG2 X X X X X X *
SG3 X X X X X * X
SG4 X X X X X * *
SG5 X X X X * X X
SG6 X X X X * X *
SG7 X X X X * * X
SG8 X X X X * * *
. . . . . . . . . . . . . . . . . . . . . . . .

SG21 X X * X * X X
SG22 X X * X * X *
SG23 X X * X * * X
. . . . . . . . . . . . . . . . . . . . . . . .

SG55 * X * X * * X
. . . . . . . . . . . . . . . . . . . . . . . .

SG85 * X * X * X X
SG86 * X * X * X *
SG87 * X * X * * X
. . . . . . . . . . . . . . . . . . . . . . . .

SG128 * * * * * * *

Table 2: Some of the 128 possible simple grammars
(SG) for the PCC

3.2 A feature-based theory of the PCC

Nevins (2007) proposes a feature-based theory of
the four PCC varieties. This theory is much more

3The simple grammar for the Strong PCC would be SG55,
the simple grammar for the Ultrastrong PCC would be SG23,
the simple grammar for the Weak PCC would be SG7, and
the simple grammar for the Me-First PCC would be SG21.



restrictive in that it allows many fewer possible
types of grammars. For this theory, it is crucial
that first, second, and third person are represented
as feature bundles, consisting of two binary fea-
ture values, as shown above in (4).

The features Author and Participant are taken to
be primitive features in the theory of morphosyn-
tax, and each can be valued as either + or �.4

Broadly, this theory relies on how these features
bundles can (or cannot) co-occur with one another
in concert with a syntactic operation called Agree.

To spell out the details more carefully, clitics
are understood to be the morphophonological real-
ization of a syntactic operation called Agree (see,
e.g., Borer, 1984). The possible grammars in this
feature-based theory thus consist of different pos-
sible specifications for the feature(s) that trigger(s)
Agree. Specifically, there is a syntactic probe,
v, that, when introduced into the derivation, trig-
gers Agree. Nevins assumes that the probe can be
specified to search for either marked and/or con-
trastive Author and Participant features (cf. Cal-
abrese, 1995; Nevins, 2007, p. 285–290).

The marked version of each feature is its +
value. A contrastive instance of the Participant
feature is one that occurs in the presence of
�Auth; when Participant occurs with +Auth, it is
not contrastive because there is no possible fea-

ture bundle


+Auth
�Part

�
(cf. fn. 4). In other words,

if the feature bundle contains +Auth, it must nec-
essarily also contain +Part. A contrastive instance
of the Author feature is one that occurs in the pres-
ence of +Part; i.e., when you have a feature bundle
that contains �Part, then it must necessarily also
contain �Auth.

Given this theory of clitics and the PCC, there
are then nine possible feature-based grammars
(FG), which are all given the first column of Ta-
ble 3. In the grammar specifications in this table,
‘u’ indicates that the probe, v, is looking for a fea-
ture of the type that follows the ‘u’ to Agree with.5

Furthermore, we indicate, for example, contrastive
Author as ‘uAuth/[+Part]’, which can be read as

4The feature combination of


+Auth
�Part

�
is taken to be

impossible because of what the features mean—namely, it’s
not possible to be the author (i.e., speaker) in a conversation
but not a participant in that same conversation.

5This is generally understood to mean “uninterpretable”
in the syntactic literature; for an overview of feature theory
in Minimalist theories of syntax, see Pesetsky and Torrego
(2007).

“the probe is looking for an Author feature that
occurs in the context of +Part”.

Here, we walk through two example deriva-
tions. For further discussion and derivations, see
Nevins (2007, p. 290–301).

Let’s first consider the clitic order *1 2, which is
disallowed in Strong PCC languages. The feature
specification that is claimed to give rise to Strong
PCC languages is FG6.

Nevins argues that there are two conditions that
govern the application of Agree (2007, p. 295),
Contiguous Agree and Matched Values.

(5) Contiguous Agree: For a relativization R
of a feature F on a Probe P, and x 2
Domain(R(F)), ¬9y, such that y > x and
p > y and y 2 Domain(R(F))
“There can be no interveners between P
and x that are not in the domain of rela-
tivization that includes x”

(6) Matched Values: For a relativization R of
a feature F, 9↵, ↵ 2 {+,�}, 8x, x 2
Domain(R(F)), val(x,F)= ↵
“All elements within the domain of rela-
tivization must contain the same value”

In other words, Contiguous Agree requires that
any argument that occurs in between the probe and
the target of Agree must also itself be a target of
Agree, and Matched Values requires that all argu-
ments that are in the domain of the Agree oper-
ation must share the same value (e.g., both must
be +Auth; one cannot be �Auth and the other
+Auth).

Now, in the case of *1 2 when the grammar is
FG6 (i.e., the Strong PCC), where the probe, v,
seeks to Agree with arguments bearing contrastive
Author, a partial derivation will look like the one
in (7).

(7) * v0

v⇥
uAuth/[+Part]

⇤ ApplP

IO
1

+Auth
+Part

�
Appl0

Appl VP

V DO
2

�Auth
+Part

�

In this case, the condition Matched Values is vi-
olated. Both the first person indirect object and the
second person direct object are in the domain of



Probe Grammar 1 2 1 3 2 1 2 3 3 1 3 2 3 3

v
⇥ ⇤

FG1 X X X X X X X
v
⇥

u+Part
⇤

FG2 X X X X * * X
v
⇥

u+Auth
⇤

FG3 X X * X * X X
v


u+Part
u+Auth

�
FG4 X X * X * * X

v


uAuth/[+Part]
uPart/[�Auth]

�
FG5 * * * * * * X

v
⇥

uAuth/[+Part]
⇤

FG6 * X * X * * X
v


uAuth/[+Part]
u+Part

�
FG7 * X * X * * X

v
⇥

uPart/[�Auth]
⇤

FG8 * * X * X * X
v


uPart/[�Auth]
u+Auth

�
FG9 * * * * * * X

Table 3: The 9 possible feature-based (FG) grammars for the PCC, according to Nevins (2007)

Agree for the feature uAuth/[+Part] on the probe, v
(because they both have Author features that occur
in the context of +Part). However, they have dif-
fering values for Author, so Matched Values is vi-
olated, giving rise to the ungrammaticality of *1 2
when the grammar is FG6.

Next, let’s consider the case of *3 1, which is
disallowed in Weak PCC languages. The feature
specification that is claimed to give rise to Weak
PCC languages is FG2, where the probe, v, seeks
to Agree with arguments bearing a marked Partici-
pant feature. In the case of *3 1 when the grammar
is FG2, a partial derivation will look like the one
in (8).

(8) * v0

v⇥
u+Part

⇤ ApplP

IO
3

�Auth
�Part

�
Appl0

Appl VP

V DO
1

+Auth
+Part

�

Here, the probe is looking for a +Part fea-
ture; this means that it can agree with the di-
rect object; however, there is a structurally higher
element—namely, the third person indirect object,
�Auth
�Part

�
—that intervenes between the probe,

v, and the target of Agree but is not in the do-
main of the probe because it does not contain a
+Part feature. This violates the condition Con-

tiguous Agree, so the clitic order *3 1 is thereby
disallowed in FG2.

Walking through the derivations for all seven
possible clitic orders for all nine feature-based
grammars gives the results shown in Table 3.6

4 The learning model

We use Bayesian modeling to implement a
computational-level learning model that infers a
grammar, given a bunch of sentences with ditran-
sitive verbs and two clitics. In the case of the
feature-based theory of the PCC, there are 9 gram-
mars, and so the hypothesis space is much smaller.
In the case of the simple theory of the PCC, there
are 128 grammars, and so the hypothesis space is
much larger.

Using realistic proportions of the occurrences
of these types of constructions in child-directed
speech, we seek to establish how much data would
be needed to learn the correct grammar under each
of these theories.

6The feature-based grammar for the Strong PCC would
be FG6, as noted, or FG7 (these two feature-based grammars
are extensionally equivalent), the feature-based grammar for
the Ultrastrong PCC would be FG4, the feature-based gram-
mar for the Weak PCC would be FG2, and the feature-based
grammar for the Me-First PCC would be FG3. The remaining
grammars would then delimit the predicted typology of PCC
languages. FG1 would be a language without PCC effects
(and perhaps also without clitics), like English; there would
be two further predicted types of PCC languages, FG8, which
Nevins calls a “Me-Last” language, and FG5 and FG9, which
are extensionally equivalent in only allowing 3 3 (note that
Nevins (2007) does not consider 3 3 constructions).



4.1 The generative model

We assume the generative model depicted in Fig-
ure 1. A generative model encodes the assump-
tions a learner would have about how the data it
observes are generated.

~s

~✓

g

N

Figure 1: Generative model

Our generative model assumes that there is
a grammar, g, that determines how often cer-
tain clitic combinations will be used. In the
case of the simple theory of the PCC, g will be
one of SG1, . . . , SG128, and in the case of the
feature-based theory of the PCC, g will be one of
FG1, . . . , FG9.

This grammar g is assumed to generate a vector
of probabilities, ~✓, which governs the frequency of
use of each of the different clitic combinations in
the language. In other words, ~✓ determines how
often one would expect to see each clitic combi-
nation in a corpus containing N ditransitive sen-
tences that have cliticized both internal arguments.
In our model, we assume that the elements of ~✓
corresponding to any clitic orderings that are disal-
lowed under g are set to zero, and that the remain-
ing elements of ~✓ are generated from a Dirichlet
distribution with dimensionality equal to the num-
ber of permitted clitic orderings,

~✓ | g ⇠ Dir(h1, . . . , 1i) (1)

This Dirichlet distribution encodes a belief that
any value of ~✓ that is consistent with the grammar
is equally likely, a priori.

The instances of clitic combinations that a
learner observes, represented in our generative
model as ~s, are then assumed to be sampled from
~✓. For example, if, in the corpus, there were 3 in-
stances of the 1 3 clitic combination, 6 instances
of the 3 3 clitic combination, and no others, then ~s
would be h0, 3, 0, 0, 0, 0, 6i. The generative model

assumes that ~s are sampled from a multinomial
distribution with parameter ~✓,

~s | ~✓ ⇠ Multinom(N, ~✓) (2)

The learner observes the clitic combinations in
its corpus and infers which of the possible gram-
mars was most likely to have generated these data.

4.2 Inferring the grammar

Given a count of the occurrence of each of the
seven possible clitic orders, ~s, from a corpus of
sentences, the posterior probability of each possi-
ble grammar, p(g | ~s), can be computed. Using
Bayes’ rule, p(g | ~s) can be calculated as

p(g | ~s) = p(~s | g)p(g)P
g0 p(~s | g0)p(g0)

(3)

We assume a uniform prior probability distribu-
tion over grammars, p(g). The likelihood term,
p(~s | g), is calculated by integrating over all pos-
sible values of ~✓,

p(~s | g) =
Z

p(~s | ~✓)p(~✓ | g)d~✓ (4)

Note that the complexity of each hypothesized
grammar differs because in grammars that rule out
some clitic combinations, the corresponding val-
ues of ~✓ are set to zero, and the corresponding
likelihood terms have fewer values of ✓ to inte-
grate over. Because of this, a grammar that al-
lows fewer clitic combinations will have a higher
likelihood than a grammar that allows more clitic
combinations, when some counts in ~s are zero (cf.
Tenenbaum and Griffiths, 2001). This is so be-
cause a more complex grammar needs to integrate
over values of ~✓ that give probability to things that
do not occur in the learner’s input.

For example, in trying to determine how
likely it is that g is either SG1 or FG1, both
which allow all 7 possible clitic combinations,
p(~s | ~✓) is N !

n1!···n7!

Q7
i=1 ✓

ni
i , and p(~✓ | g)

is �(
P7

i=1 ↵i)Q7
i=1 �(↵i)

Q7
i=1 ✓

↵i�1
i . On the other hand,

if trying to determine how likely it is that g
is either FG3 or SG21, both which allow 5
of the 7 possible clitic combinations, p(~s | ~✓)
will be N !

n1!···n5!

Q5
i=1 ✓

ni
i , and p(~✓ | g) will be

�(
P5

i=1 ↵i)Q5
i=1 �(↵i)

Q5
i=1 ✓

↵i�1
i .

To calculate the likelihood that g is, for exam-
ple, FG1, we can substitute these terms into Eq. 4,



which yields Eq. 5 (cf. Gelman et al., 2014).

Q7
i=1 �(ni + ↵i)

�
⇣P7

i=1 ni + ↵i

⌘ N !

n1! · · ·n7!

�
⇣P7

i=1 ↵i

⌘

Q7
i=1 �(↵i)

(5)

On the other hand, if calculating the likelihood that
g is instead FG3, then all of the instances of ‘7’ in
Eq. 5 would be replaced with ‘5’.

Having defined the learning model, we can now
give it data to learn from, based on child-directed
speech, and see what difference the size of the hy-
pothesis space makes.

5 Simulations

We conducted several simulations based on real-
istic proportions of clitic combinations taken from
child-directed speech.

5.1 Data

We estimated the frequency of each clitic combi-
nation in child-directed speech based on their dis-
tribution in the Aguirre Corpus (Aguirre, 2003),
from CHILDES (MacWhinney, 2000). This cor-
pus contains 30 files for one Spanish-speaking
child between the ages of 1;7 and 2;10. We ex-
tracted the 13,411 child-directed utterances from
the files using the Python package PyLangAcq
(Lee et al., 2016). Then, we used the Python
package spaCy (Honnibal and Montani, 2017) to
parse these utterances. This allowed us to extract
utterances where two clitics preceded a verb; i.e.,
we extracted the sentences with clitic clusters that
are relevant for learning the PCC. We found 50 in-
stances of 1 3, 148 instances of 2 3, 4 instances of
3 2, and 68 instances of 3 3. This indicates that
the speakers in this corpus speak a Me-First PCC
language, since these constructions are only com-
patible with that kind of PCC language. We failed
to observe any instances of 1 2, even though this
construction is grammatical in Me-First PCC lan-
guages (cf. Table 1).

Training corpora for our models were created
based on the frequency distribution found in the
Aguirre Corpus. Because counts from this corpus
were used as the weights for the random sampling,
we applied smoothing so that the simulations had
some probability of including the 1 2 construc-
tion, which is grammatical in Me-First PCC lan-
guages (again, cf. Table 1) but had a zero count
in the Aguirre corpus. The smoothing consisted

of adding 0.1 to all of the counts for grammat-
ical constructions from the Aguirre corpus. For
each simulation, we randomly sampled n PCC
constructions with weights based on the smoothed
frequency profile found in the Aguirre corpus; we
did this for three values of n: 66, 666, and 6,666.
These values were chosen because Hart and Ris-
ley (1995) estimate that children hear 333,333 ut-
terances per year in their first three years of life.
Moreover, 2% of the utterances in the Aguirre
Corpus were relevant for learning the PCC, so 2%
of 333,333 is 6,666 (see subsection 5.3 for more
discussion).

5.2 Results

We trained Simple learning models and Feature-
based learning models. Each model used the data
that we generated on the basis of the Aguirre cor-
pus to compute a posterior distribution over all the
grammars in its hypothesis space. We ran 1,000
replications of each model at each corpus size, n,
and we averaged the results of these 1,000 replica-
tions. These mean posterior probabilities are plot-
ted in Figure 2 (to make the plots more readable,
only grammars with a posterior probability equal
to or greater than 0.1 are plotted).

As can be seen in Figure 2, the grammar
with the highest posterior probability is the cor-
rect grammar for all three corpus sizes under the
Feature-based learning model. That is to say, in
these cases, the model has converged on FG3,
which is the feature-based grammar for the Me-
First PCC (cf. fn. 6).

On the other hand, for the Simple learning
model, the simulations converge on SG85 when
the corpus size is 66 and 666, but the simple gram-
mar that instantiates the Me-First PCC variety is in
fact SG21; SG85 differs from SG21 in disallowing
1 2. (SG87 furthermore disallows 3 2, compared
to SG21; see Table 2.) Nonetheless, when the cor-
pus size is 6,666, the Simple learning model does
correctly converge on SG21.

5.3 Discussion

In our simulation results, we saw that the Feature-
based learning model is able to converge on the
correct grammar much quicker than the Simple
learning model. In fact, if data are sparse, the
Simple learning model converges on unattested
PCC varieties. The Simple learning model clearly
needs more data to learn the target grammar.
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(a) Feature-based learning model results
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(b) Simple learning model results

Figure 2: Mean posterior probabilities for learning simulations (FG3 is the target grammar for the feature-based
theory; SG21 is the target grammar for the simple theory)

As noted, we chose the corpus sizes that we
did because Hart and Risley (1995) estimate that
children hear 1 million utterances in their first 3
years, or 333,333 utterances per year.7 More-
over, the Aguirre corpus contained 13,411 child-
directed utterances, and we found 270 utterances
with clitic clusters, which is ⇡ 2%. Two percent
of 333,333 is 6,666. Thus, a young learner might
hear 6,666 clitic combinations in one of their early
years of life.

This suggests that the Simple learning model
may in fact have enough data that it needs in or-
der to converge on the correct target grammar, but
there are several things one would want to further
investigate. First, one would want to know when
a child has fully acquired the PCC restrictions of
their language. To the best of our knowledge,
there is very little research on this. Tsakali and
Wexler (2010) reported that Greek-acquiring chil-
dren seem to know the PCC restrictions of their
language by age 5, but they tested this by eliciting
acceptability judgments, which are often hard to
do with younger children. At best, this might be an
upper bound for when children know the PCC re-
strictions of their language. Indeed, Blasco (2000)
showed that Spanish-acquiring children were cor-
rectly producing both accusative and dative cli-
tics in Spanish by the age of 2;2, if not earlier.8

Whether this means that they know the PCC re-

7These estimates are for American children who are ac-
quiring English, but presumably the order of magnitude is
comparable for learners of other languages, such as Spanish.

8For further discussion on the acquisition of clitics more
generally, see Tsakali (2014).

strictions at such a young age is an open question.
Second, there is a difference between input and

intake (cf. Omaki and Lidz, 2015); that is to say,
just because a learner hears 6,666 clitic clusters,
does not mean that the learner uses those utter-
ances for learning. A learner might be inatten-
tive, a learner might fail to perceive a given ut-
terance, a learner might fail to parse a given ut-
terance, etc.. Especially at a very early age, when
the child hasn’t yet learned the syllable structure
of their language and how to identify morpheme
boundaries, it seems unlikely that the child would
learn anything about the PCC variant of their tar-
get language upon hearing a clitic cluster in their
input.

Moreover, as can be seen by examples (1) and
(2), the surface string order does not necessar-
ily reflect the underlying argument structure rela-
tions, which can interact with other language spe-
cific factors in a variety of ways. For example,
in many dialects of Spanish, the clitics must oc-
cur in a certain order, regardless of the underly-
ing argument structure relations (cf. fn. 1). Absent
definitive knowledge of both the argument struc-
ture of the verb and such language specific factors
as clitic ordering effects, it might be advantageous
for a learner to ignore some of its input (cf. Perkins
et al., 2017).

Thus, if a child really did know the PCC vari-
ant of their target language by age 2;2, our results
might argue against the Simple learning model, if
not all of the clitic clusters in the child’s input are
taken up and used for learning. Nevertheless, there
is much we don’t yet know about the acquisition of



the PCC.
Additionally, there is more that could be done

on the modeling side of things. For example, the
models we’ve presented abstract away from ad-
ditional complexities of the assumed grammars,
such as the necessity of the Agree operation for
Nevins’s (2007) theory of the PCC or the necessity
of the features Author and Participant. If such ad-
ditional complexities also need to be learned, (i.e.,
if they are not already known at the time when
PCC learning begins), one would want to create
learning models that include these complexities
and run further simulations.

Ultimately, this work is intended as a
computational-level analysis that begins to
help set an upper bound on how much data
children would need to use in order to learn the
PCC, given particular theoretical and representa-
tional assumptions. We’ve compared the feature
representations assumed by Nevins’s (2007)
feature-based theory to the feature representa-
tions assumed in a simple theory of the PCC.
In addition to Nevins’s (2007) theory, there are
other more restrictive theories of the PCC (e.g.,
Béjar and Rezac, 2003; Pancheva and Zubizarreta,
2018; Graf, 2019); so future modeling work
should also seek to establish upper bounds for the
theoretical and representational assumptions of
these analyses. Given that they’re more restrictive
theories, one might expect the results to be similar
to the results for the Feature-based learning
models reported here, but such modeling work
may nevertheless help distinguish between them,
when coupled with better information about the
acquisition of the PCC.

6 Conclusion

In this paper, we used a learning model to inves-
tigate how person features might be represented
in the syntactic component of the grammar. We
compared two possibilities: one where the person
features are represented as atomic units (cf. (3))
and one where the person features are represented
as feature bundles, consisting of values for the bi-
nary features Author and Participant (cf. (3)).

We simulated different-sized corpora based on
realistic distributions in the input to children and
evaluated these learning models against the simu-
lated data. We found that the Feature-based learn-
ing model is able to learn the target grammar much
quicker than the Simple learning model. Given

enough data, the Simple learning model will con-
verge on the correct grammar; however, if data
are sparse, the Simple learning model will con-
verge on unattested PCC variants, which might tell
against the simple theory of the PCC. That is, this
suggests that the larger hypothesis space, in addi-
tition to being possibly unparsimonious, may lead
learners astray, particularly if data are sparse.

One would particularly want to know how much
input the child actually gets, how much of that
the child uses, and when the child has fully ac-
quired the PCC restrictions. Such information,
coupled with our results, would inform whether
one of these ideas about the representation of per-
son features in the grammar is more plausible than
another.
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