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Abstract

Computational models of phonotactics share
much in common with language models,
which assign probabilities to sequences of
words. While state of the art language mod-
els are implemented using neural networks,
phonotactic models have not followed suit. We
present several neural models of phonotactics,
and show that they perform favorably when
compared to existing models. In addition, they
provide useful insights into the role of rep-
resentations on phonotactic learning and gen-
eralization. This work provides a promising
starting point for future modeling of human
phonotactic knowledge.

1 Introduction and background

1.1 Phonotactics

Research on phonotactics deals broadly with two
questions: what kinds of knowledge do speakers
have about about the phonotactics of their lan-
guage, and how is this knowledge acquired? (e.g.,
Chomsky and Halle, 1965) One important out-
come of this work has been to show that phono-
tactic judgements are not categorical, but exhibit
gradience: i.e., some possible words are bet-
ter than others. For example, while /wis/ and
/ploumf/ are both judged as being possible En-
glish words by speakers, the former is consistently
judged to be a ‘better’ English word than the lat-
ter (Albright and Hayes, 2003; Albright, 2009).
Phonotactic modelling studies have tried to build
computational models of phonotactic knowledge
that agree with gradient human phonotactic judge-
ments. These models provide insight into the
structure of phonological knowledge, which as-
pects of the data are considered by the learner
when constructing their phonological grammar,
and what biases constrain the forms these gram-
mars may take (e.g., Hayes and Wilson, 2008; Al-
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bright, 2009; Daland et al., 2011; Futrell et al.,
2017; Jarosz and Rysling, 2017).

1.2 Phonotactics and language modeling

The task undertaken by models of phonotactics
is similar in many respects to the more general
task of language modeling. A language model as-
signs probabilities to sequences of words, defin-
ing a probability distribution over word sequences
(e.g., Jurafsky and Martin, 2008). A simple form
of language modeling calculates n-gram probabil-
ities based on corpus frequencies, and uses these
to assign probabilities to longer sequences.

Phonotactic models, and models of related tasks
such as word segmentation (e.g., Schrimpf and
Jarosz, 2014), often frame the problem as one of
language modeling over sounds rather than words.
They attempt to assign probabilities to phoneme
sequences that distinguish licit and illicit forms,
correspond to gradient human judgements, or fa-
cilitate some task such as word segmentation.
These models almost invariably operate on some
version of n-grams, though they differ in whether
they consider segments (e.g., Jelinek, 1999; Vite-
vitch and Luce, 2004; Jurafsky and Martin, 2008),
phonological features (e.g., Albright, 2009), com-
binations of the two (e.g., Albright, 2009; Futrell
et al., 2017), or larger prosodic structures (e.g.,
Coleman and Pierrehumbert, 1997; Yang, 2004;
Swingley, 2005; Phillips and Pearl, 2015) to be the
primitives from which sequences are built.

While early language models relied on the same
types of variations on the n-gram employed by
phonotactic learners, language modeling in NLP
has seen a shift away from count-based, paramet-
ric n-gram models. Bengio et al. (2003) intro-
duced a neural n-gram model which still makes
predictions based on a fixed-size history window,
but uses a neural network to generate the proba-
bility function from the history rather than simple




n-gram counts. Bengio et al. (2003) also intro-
duced the idea of learning word embeddings while
optimizing for the language modeling task: vector
representations of words that are determined based
on the word’s distribution in the training data.

One shortcoming of n-gram models, neural or
otherwise, is that the context window is fixed and
specified by the researcher. This is particularly
problematic for cases in which long-distance de-
pendencies are numerous and can operate over ar-
bitrary distances. To mitigate this issue, Mikolov
etal. (2010) introduced Recurrent Neural Network
Language Models (RNNLMs). These networks
make use of recurrent connections to store in-
formation over potentially unbounded distances.'
The idea of training recurrent networks on next
element prediction dates to the introduction of
RNNs in Elman (1990), where RNNs trained on
next letter prediction were shown to learn simple
phonotactic patterns like CV alternation.

Part of what the RNNLM learns is what infor-
mation in the history should be considered when
processing the current word. In this way RNNLMs
trained on a language modeling objective are able
to base predictions on all preceding information
rather than just the previous n words.

The RNNLM and its descendants, including
LSTM language models (Sundermeyer et al.,
2012) and deep contextual language models (Pe-
ters et al., 2018), have yielded dramatic im-
provements in performance on language model-
ing benchmarks, but have seen little application
as phonotactic models until recently. Silfverberg
et al. (2018) show that phoneme representations
learned with neural methods developed for word
embeddings (Word2Vec) cluster in ways that cor-
respond to phonetic properties, and can be used
to predict sound analogies. Mirea and Bicknell
(2019), in a recent application of the language
modeling objective to phonotactic learning, train
LSTM language models on an English lexicon,
and demonstrate the potential value of neural LMs
as phonotactic learners.

1.3 The goals of this paper

The primary goal of this paper is to show that rel-
atively simple neural network architectures devel-
oped for language modeling can be easily adapted
to serve as phonotactic models, and that these

'Though in practice RNNs cannot capture arbitrarily
long-distance dependencies (Bengio et al., 1994).
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Figure 1: Schematic SRNN architecture

models perform favorably when compared to ex-
isting models. In addition, we will show that the
adoption of these neural models allows theoreti-
cal predictions about the role of representations in
phonotactic grammars to be tested in ways that are
not straightforward with existing models. We will
demonstrate this on three phonemic data sets that
exhibit phonotactic properties that have proven in-
teresting or challenging for past models of phono-
tactics, and for phonological theory in general.

2 Model architectures

The RNNLM for phonotactic learning aims to
define a probability distribution over upcoming
phonemes given a representation of all preced-
ing phonemes. We will focus on Simple Recur-
rent Neural Network (SRNN) variants of the mod-
els (Elman, 1990). sRNNs are a type of RNN
in which the network’s state at any timepoint is
dependent only on the current input and the net-
work’s state at the immediately preceding time-
point (Fig. 1). The computation of the vector rep-
resenting the network’s state at time ¢, h, is shown
in (1).

hy = tanh(szt + Wrhi—1 + bh) (D)

x; is the embedding vector corresponding to the
phoneme input at time ¢, W, and W}, are weight
matrices for the input and previous state vectors
respectively, and by, is a bias vector. h; is then
used to produce a probability distribution over
phonemes, ¥;, which is the model’s prediction of
the identity of the segment that will appear at time
t 4+ 1. g, is calculated as

Ut = U(Wyht) (2)

where W, is a weight matrix and o(2) is the soft-
max function:

e
0(2) = —7—— 3)
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fori=1,..., K.



Because the model makes predictions about up-
coming data, it is able to use the same data to gen-
erate and validate its predictions, allowing unsu-
pervised learning. At every phoneme, the cross-
entropy loss is assessed between the predicted dis-
tribution before encountering that phoneme and
the phoneme’s one-hot encoded identity y:

L(y,9) = —y - log(9) 4)

All models are trained in minibatches of 64 words,
which are padded to have the same length as the
longest word in the batch. Loss is aggregated
across each batch and backpropagated to update
Wy, Wy, Wy, and bj,. Models are optimized with
Adam, a variant of stochastic gradient descent that
maintains individual, adaptive learning rates for all
parameters (Kingma and Ba, 2014).

We build and test two distinct types of models,
both of which are variants of an RNNLM, differ-
ing in their representations of phonemes. In both
cases, segment identities represented by one-hot
vectors are mapped to columns of an embedding
weight matrix Wg. These vectors serve as the in-
puts x; for the computation in (1).

In featural models, the embedding vectors cor-
respond to traditional ternary feature matrices,
taken from the feature sets defined in Hayes
(2009). We selected non-redundant subsets of
these features for each language, and used them to
construct a vector for each phoneme which spec-
ifies each feature value as positive (1), negative
(—1), or underspecified (0). For example, the vec-
tor for English /b/ will have a 1 entry for the fea-
ture [VOICE], a —1 for [CONTINUANT], and a 0
for [HIGH], reflecting that [b] is a voiced non-
continuant that is unspecified for height. These
vectors are fixed during the learning process.

In embedding models, the columns of W can
take on any value in R®, where e is a hyperparam-
eter of the model. W is randomly initialized and
optimized alongside other model parameters, fol-
lowing Bengio et al. (2003). This allows the mod-
els to learn segment representations from distribu-
tional information in a way that improves perfor-
mance on the language modeling objective.

Embedding models have significantly more pa-
rameters than feature models. This makes direct
comparison of the two classes of models diffi-
cult, and increases the risk that embedding mod-
els overfit. To mitigate this, and to produce more
interpretable embeddings, we also report results

from models where the input and output embed-
dings are tied, following Press and Wolf (2017).
The embedding weight matrix W maps a one-
hot vector of length n representing a phoneme’s
identity to a vector of length e. The output weight
matrix W, maps a hidden state vector h to a vec-
tor of length n, representing a distribution over
phoneme identities. Tied embeddings require that
|h| = e, which allows for shared weights such that
Wg = Wg . This functions as a kind of regulariza-
tion by restricting model parameters, forcing every
mapping to and from the probability distribution
over phonemes to use the same set of weights.

Hyperparameter settings were chosen to op-
timize performance while facilitating compari-
son across models. Embedding models of vari-
ous sizes were evaluated on a randomized 60/40
training/development split of the English data.
The model that assigned the highest likelihood to
the development data had 24-dimensional embed-
dings and 64-dimensional hidden states. These
parameters were used for all embedding models.
For consistency, the featural models also have 64-
dimensional hidden states. Tied embedding mod-
els are trained with 24-dimensional embeddings
and hidden states, ensuring a similar number of pa-
rameters to featural models. For English, there are
9,320 parameters in the embedding model, 2,248
in the featural model, and 2,200 in the tied em-
bedding model. The number of parameters in the
featural model varies slightly between languages.

The featural and embedding models instantiate
different predictions about the kinds of represen-
tations used in phonotactic grammars: the featu-
ral model assumes that subsegmental representa-
tions refer only to phonetic properties, while the
embedding models allow these representations to
be more abstract, conditioned on how each seg-
ment patterns in the observed data. Comparison of
these models allows us to computationally investi-
gate questions that are of theoretical interest to the
field, such as to what extent different types of rep-
resentation help or hinder the learning of phono-
tactic patterns (particularly those involving pho-
netically unnatural classes), and the importance of
representations for generalization. We return to
these points in the discussion in Section 7.

3 Evaluation data sets

We evaluate the models on three phonotactic data
sets that exhibit phenomena that have proved



challenging for previous models of phonotactics,
or pose challenges for phonological theory more
generally. These are Finnish vowel harmony
(Section 4), Cochabamba Quechua laryngeal co-
occurrence restrictions (Section 5), and English
sonority projection (Section 6). Previous work
suggests that models trained based on type fre-
quency better predict human behavior than those
trained on token frequency (Bybee, 1995; Albright
and Hayes, 2003; Jarosz et al., 2017). We there-
fore do not take lexical frequency into account.

We compare the neural models against the
Hayes and Wilson phonotactic learner (henceforth
H&W; Hayes and Wilson, 2008). H&W is a com-
monly employed baseline in studies of phonotactic
learning, and its use here allows the present work
to be situated with respect to these studies (e.g.,
Albright, 2009; Daland et al., 2011; Futrell et al.,
2017; Jarosz and Rysling, 2017).

H&W learns a set of featural constraints and
associated weights from a training data set,
and combines these constraints using a maxi-
mum entropy framework to assign probabilities
to sequences of phonemes. We restrict con-
straint definitions to bigram or trigram windows.
The Finnish and Cochabamba Quechua models
learned 400 constraints, while the English model
learned 600. H&W allows the analyst to spec-
ify tiers of segments over which constraints may
be learned, facilitating the identification of long-
distance phonotactic patterns. We compare results
with and without a vowel tier for Finnish, and do
not employ tiers for the other data sets.

Following Hayes and Wilson (2008), word

scores for H&W are reported as maxent values

(P*), which for a word z is calculated as
N
P*(x) = exp ( - Z’LUZCZ($)) (5)
i=1

where N is the number of constraints, w; is the
weight of the ith constraint, and C;(x) is the num-
ber of times word x violates the ith constraint.
Maxent values are proportional to probabilities:
higher values indicate higher probabilities.

The RNNLM word scores are reported as
perplexity (p), which is the exponentiated en-
tropy, or inverse of the mean log likelihood, of all
phonemes in the test word.

||

p(x) = exp ( — Z |i|logg (p(a:l))) (6)
=1

Harmonic | Disharmonic

lumo tumee

herg mantu

mekkottastu | vastekipae

pgmgngrite | testurovevy

Table 1: Examples of harmonic and disharmonic

Finnish nonce words in IPA.

Lower perplexities indicate higher probabilities.

The process of training H&W and the sRNN
models is non-deterministic. H&W uses random
sampling in the learning process, while the SRNN
models have randomly initialized weights. We
therefore report the mean scores from training and
testing each model 10 times on each data set.

The model implementation and data sets are
freely available online for use in future research.’

4 Finnish
4.1 Background

The first language we examine is Finnish. Finnish
famously exhibits vowel backness harmony (e.g.,
Kiparsky, 1973; Ringen and Heindméki, 1997;
Goldsmith and Riggle, 2012). The language con-
tains three classes of vowels: the front vowels
{y, @, &}, the back vowels {u, o, a}, and the trans-
parent vowels {i, e}. We refer to the set of front
and back vowels as the harmonizing vowels. The
vowels in a word generally agree in backness: that
is, a word contains only transparent vowels and
either front or back vowels. This restriction mani-
fests in both root forms and affixing morphology.

This pattern is of interest because it is a long-
distance phonotactic restriction. Not only can
a number of consonants intervene between vow-
els, but an arbitrary number of transparent vowels
may intervene between harmonizing vowels. This
poses problems for n-gram models, which may
not be able to detect illicit vowel subsequences if
they are too far apart. We predict that the neu-
ral models will be better able to distinguish har-
monic from disharmonic forms, particularly when
sequences of transparent vowels occur.

4.2 Data

There is no publicly available corpus of tran-
scribed Finnish. Because Finnish orthography is
very close to a phonemic transcription, we instead

https://github.com/MaxAndrewNelson/
Phonotactic_LM
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[ [[ Harm. | Disharm. | d |

H&W tier (P*) 0.00179 | 0.00105 | 0.46
H&W no tier (P™) 0.802 0.708 0.23
Feat (p) 12.32 18.04 0.87
Emb (p) 14.97 25.93 0.86
Tied Emb (p) 11.03 14.42 0.79

Table 2: Average scores assigned by the models for
Finnish harmonic and disharmonic words, along with
effect size (Cohen’s d).

use as training data a word list published by the
Institute for the Languages of Finland.> We re-
moved 584 words containing marginally attested
characters, leaving 93,821 words in the corpus.

To test the models, we generated 20,000 nonce
words, 10,000 harmonic and 10,000 disharmonic,
ranging in length from 2-5 vowels (Table 1). Both
sets are balanced for length. To ensure our mod-
els based their scores primarily on the harmony
of words, we excluded CV sequences that were
described to be impossible by a Finnish grammar
(Suomi et al., 2008), and also excluded several CV
sequences that were marginally attested in the cor-
pus.* Syllables were either CV or CVC, with CC
clusters drawn from the most common sequences
in the corpus: /st/, /nt/, /tt/, and /kk/.

Because the test data is artificially generated,
we perform no significance tests on these results.
The size of the test set is arbitrary and conse-
quently the power of the tests can be arbitrarily
manipulated. Instead, we report effect sizes in
the form of Cohen’s d, which is the difference in
group means expressed in units of pooled standard
deviation (Cohen, 1988).

4.3 Results

The results are shown in Table 2. All models as-
sign lower probabilities (lower maxent values and
higher perplexities) to disharmonic forms. Co-
hen’s d indicates that the RNNLMs make this dis-
tinction more robustly: by the heuristics in Co-
hen (1988), the featural and embedding models
display a large effect size between harmonic and
disharmonic scores (d > 0.8), and the tied model
displays a medium effect size (d > 0.5), while
the H&W models display a small effect size (d >
0.2). Allowing H&W to use a vowel tier produces
a greater distinction between harmonic and dishar-

*http://kaino.kotus.fi/sanat/
nykysuomi/

“These sequences are /fy/, /ig/, [f@/, Igl, If2l, Igyl, /dg/,
/g®/, /b®/, /by/, and /vg/.

[ [ Span [[ Harm. | Disharm. [ d ]

H&W (P7) I 0.00145 | 0.00131 | 0.12
tier 2 0.00138 | 0.00133 | 0.05
3 0.00176 | 0.00196 | 0.16
H&W (P7) I 0.746 0.707 | 0.09
no tier 2 0.741 0.706 | 0.08
3 0.804 0.758 | 0.13
Feat (p) I 1258 1671 | 0.64
2 13.10 1631 | 038
3 14.15 1559 | 0.11
Emb (p) I 15.79 2121 | 057
2 17.00 19.05 | 0.33
3 16.47 18.94 | 0.20
Tied Emb (p) | 1 [1.49 1342 | 0.6
2 11.77 1269 | 039
3 11.75 1261 | 036

Table 3: Model results for Finnish separated by the
longest span of transparent vowels that intervene be-
tween two harmonizing vowels.

monic forms, though it substantially lowers the av-
erage maxent values assigned in the test corpus.

Table 3 shows that the models exhibit different
performance on forms where harmonizing vowels
are separated by one (e.g., [nggihe]; n = 4189),
two (e.g., [jesemehgpd]; n = 644), or three (e.g.,
[hydekistitg]; n = 91) transparent vowels. All
models assign worse scores on average to dishar-
monic words, with the exception of the H&W
tiered model, which assigns slightly higher scores
to disharmonic words that contain spans of three
transparent vowels. In addition, all models differ-
entiate between harmonic and disharmonic forms
less robustly as the maximum span of transpar-
ent vowels increases. In general, however, the
RNNLMs are better able to differentiate between
harmonic and disharmonic forms containing trans-
parent vowels: the effect sizes for both H&W
models on all spans is negligible (d < 0.2), while
it is medium for all RNNLMs on spans of 1, and
small on spans of 2 and 3. The exception is the
featural model on spans of 3, which makes a negli-
gible distinction. This suggests that the RNNLMs
are better able to capture long distance dependen-
cies than n-gram based models like H&W, even
without the stipulation of a vowel tier.

5 Cochabamba Quechua
5.1 Background

The second language we examine is Cochabamba
Quechua (CQ).> CQ has three series of stops
(plain voiceless, aspirate, and ejective) at five
places of articulation (labial, dental, postalveolar,

SThanks to Gillian Gallagher for this data.
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initial | medial | prohibited
tanta | rit’i *tant’a
kK'affa | saff’a *katf’a
pPawaj | mosqoj | *posqoj
qtari | Nimp"i | *timp"i

Table 4: Legal and prohibited laryngeal co-occurrence
patterns in Cochabamba Quechua (Gallagher, 2019).

velar, and uvular). These series participate in a
laryngeal co-occurrence restriction in root forms:
ejective and aspirated stops may occur either root-
initially or root-medially, but they must be the first
stop in the root (Table 4). Plain stops can occur
following any type of stop (Gallagher, 2019).

The plain uvular stop in CQ is not realized as
[q], but rather as [B], a voiced uvular continu-
ant. Gallagher (2019) provides phonetic, experi-
mental, and phonological evidence that this pho-
netically disparate class (the plain stops plus [¥])
is active in speakers’ synchronic grammars. CQ
speakers preferred licit forms that do not violate
the above laryngeal co-occurrence restriction to il-
licit forms that do, and they do not distinguish be-
tween k-initial and g-initial illicit forms. For ex-
ample, *[kap’a] and *[sap’a] are both judged as
ill-formed by speakers, despite the latter appear-
ing to satisfy the laryngeal co-occurrence restric-
tion. Thus [B] appears to pattern as a plain stop,
despite being phonetically voiced and continuant.

This pattern is of interest because the set of
plain stops that block the occurrence of subsequent
aspirates and ejectives is a phonetically disparate
class that cannot be captured with a conventional
feature system, assuming [¥] is specified with fea-
tures that reflect its phonetic realization. That is,
the set of plain stops can only be specified by using
disjunction between sets of features. This is pri-
marily because [¥] is [+continuant], while the re-
maining plain stops are [-continuant]. We predict
that the phonotactic models that use phonetic fea-
tures may exhibit poorer performance on this pat-
tern: specifically, we expect B-initial illicit forms
to receive better scores than k-initial illicit forms.

5.2 Data

We trained H&W and our three RNNLMs on a
data set consisting of 2,468 CQ root forms. The
data included two allophonic patterns related to
uvular sounds: the vowels /i/ and /u/ surface as
[e] and [o] respectively when adjacent to uvulars,

| [ Licit | licit (k) | Dlicit () |

H&W (P*) 0.67 0.28 0.30
Feat (p) 491 8.45 7.42
Emb (p) 4.89 8.45 7.55
Tied Emb (p) || 4.91 8.28 7.16

Table 5: Model results for Cochabamba Quechua

and the sonorants /N, /w/, /j/, and /t/ surface in
uvularized forms before uvular sounds. These
allophones were replaced by phonemic represen-
tations. This was done for the sake of allow-
ing a smaller set of input segments and features
to H&W, which scales poorly as the number of
possible featurally-defined classes increases. This
sanitization does not bear on the laryngeal co-
occurrence pattern we are interested in. In addi-
tion, H&W recommends training on at least 3,000
input forms: we listed the frequency of each root
as 2 in the input corpus to achieve this.

The trained models were tested on a set of 75
licit and illicit forms from Experiment 2 in Gal-
lagher (2019). These forms were broken down
into three classes: licit forms (e.g., [wap’a] or
[pasi]), [k]-initial illicit forms (e.g., *[kap’a]), and
[¥]-initial illicit forms (e.g., *[sap’a]). To deter-
mine whether the models assign significantly dif-
ferent scores to licit forms and the two types of il-
licit forms, we ran Kruskall-Wallis tests on each of
the models with scores as the dependent variable
and legality (licit vs. k-initial illicit vs. B-initial il-
licit) as the independent variable. Kruskall-Wallis
tests, which are the non-parametric equivalent of
ANOVAs, were used because the scores violated
several of the assumptions made by ANOVAs,
such as normality of residuals. Post-hoc Dunn
tests with Bonferroni correction were performed
to identify significant pairwise differences.

5.3 Results

The results are shown in Table 5. Legality has a
significant effect on score for all models (H&W:
x? = 14.53, p < 0.001; Feat: x? = 52.90,
p < 0.001; Emb: x? = 53.17, p < 0.001; Tied:
x? = 52.57, p < 0.001). The H&W learner suc-
cessfully distinguishes between licit and k-initial
(p < 0.01) and B-initial (p < 0.05) illicit forms,
and does not make a distinction between k-initial
and s-initial illicit forms (p > 0.05). Similarly,
all of the neural models are able to distinguish be-
tween licit and k-initial illicit forms (all models:



p < 0.001) and licit and g-initial illicit forms (all
models: p < 0.001), and not distinguish between
k-initial and B-initial illicit forms (all models: p >
0.05). Contrary to our prediction, laryngeal co-
occurrence restrictions in CQ are learned by all
models tested, even though this pattern makes ref-
erence to a phonetically disparate class. We can
examine the models in more detail to gain insight
into how this pattern is encoded in each case.

H&W cannot learn constraints that treat the
plain stop series as a single class, because it can-
not be uniquely specified by a feature matrix.
The similar treatment of k-initial and B-initial il-
licit forms results from multiple constraints that
target different subsets of the plain stop se-
ries. For example, H&W consistently learned two
high ranking constraints: *[-son, —cont]V[+CG],
which penalizes illicit forms of a particu-
lar shape, except those with initial []; and
*[+dorsal, —syl]V[+CG], which penalizes only k-
initial and B-initial illicit forms of this shape (as
well as legal but unattested forms like [xap’a]).

We may gain some insight into the neural mod-
els by comparing phoneme representations within
each model using cosine similarity. Cosine sim-
ilarity is the cosine of the angle between a pair
of vectors: it is 1 when the vectors point in the
same direction, 0 when they are orthogonal, and
—1 when they point in opposite directions. We
compare the embedding of [g] with the mean of
the embeddings of the classes of continuant and
non-continuant consonants, which provide a rep-
resentation of a ‘typical’ member of each class.

Table 6 shows that the representations of [B] in
the embedding models are more similar to the non-
continuant consonants, while in the featural model
it is more similar to the continuant consonants. We
return to this point in the discussion.

6 English
6.1 Background

The final phenomenon used to evaluate the neu-
ral models is English sonority projection. There
is a strong preference cross-linguistically for syl-
lables to have a sonority profile which increases
monotonically from the left edge to the nucleus
and then decreases from the nucleus to the right
edge. This is known as the Sonority Sequencing
Principle (SSP; Selkirk, 1984).

Effects of the SSP have been observed in ac-
ceptability judgments of novel words containing

continuant | non-continuant
Featural [¥] 0.62 0.51
Emb [#] -0.20 0.31
Tied Emb [5] -0.26 0.19

Table 6: Cosine similarities between the embedding of
[] and the mean embedding of the classes of continu-
ant and non-continuant consonants in CQ. Learned em-
beddings are taken from individual runs of the models.

unattested clusters in Korean (Berent et al., 2008),
Mandarin (Ren et al., 2010), English (Albright,
2007; Daland et al., 2011), and Polish (Jarosz and
Rysling, 2017). The apparent universality of these
effects and the fact that they apply to unattested
clusters have led to a debate over whether these
observations should be accounted for by an in-
nate bias towards SSP conforming clusters (Berent
et al., 2007, 2008), lexical statistics (Daland et al.,
2011), or a combination of the two (Jarosz and
Rysling, 2017).

We test our models on this case for two rea-
sons. First, sonority sequencing is widely stud-
ied, particularly in English. This allows us to draw
upon well-established experimental and modeling
work to evaluate our results. Second, Daland et al.
showed that the models that are best able to pre-
dict sonority projection from lexical statistics must
have access to syllable structure and some form of
subsegmental representation (for them, phonolog-
ical features). Comparison of our featural and em-
bedding models will allow us to test whether these
representations must be based on phonetic proper-
ties, or if they may be learned statistically.

6.2 Data

All models were trained on 133,852 phonemi-
cally transcribed words in the Carnegie Mellon
University Pronouncing Dictionary (CMU: Weide,
1998). Stress assignment information was re-
moved. Words were not syllabified.

Trained models were evaluated against publicly
available experimental results from Daland et al.
(2011). These results come from an experiment
designed to test the extent to which the sonor-
ity profile of onset clusters affects speaker ac-
ceptability judgements. Participants were tasked
with choosing between pairs of nonsense words
which each consisted of attested, unattested, and
marginally attested English onset clusters of vary-
ing sonority profiles paired with one of six phono-
tactically licit tails. The onset clusters and tails



tested are shown in Table 7. The total set of words
contains 96 forms: each of the 48 onsets paired
with two of the tails. For each word, Daland et al.
(2011) derive an aggregate goodness score. This
score reflects the proportion of trials in which a
word containing that cluster was chosen over its
competitor.

Onsets Tails
Attested | Marginal | Unattested
twtrsw | gw |l pw zr mr -atrf
Jrprpl | vw Jw tl dn km -ibrd
kw krkl | [n[m fn ml nl -asIp
grglfr | vibw dg pk Im -epid
fldrbr | dwfw Intllt -igrf
bl snsm | vr Ow rnrd rg -£714

Table 7: Stimuli from Daland et al. (2011).

6.3 Results

Trained models were used to score the stimuli
in Table 7. The success of a model was deter-
mined by the linear correlation between the mean
of the model’s scores across runs and the good-
ness scores derived from human judgements. Ta-
ble 8 reports the correlation coefficients (Pearson’s
r). Following Daland et al. (2011), we report
separate coefficients for words containing attested,
unattested, and marginal onset clusters, as well as
global correlation coefficients. The maxent values
produced by H&W are positively correlated with
probability, while the perplexities produced by the
neural models are inversely proportional to prob-
ability. We therefore present correlations as abso-
lute values for the sake of readability.

‘ H Overall ‘ Attested ‘ Unattested ‘ Marginal ‘

H&W (H) || 0.759 0.000 0.686 0.362
Feat 0.868 0.354 0.823 0.551
Emb 0.866 0.365 0.765 0.609
Tied Emb 0.853 0.491 0.738 0.664

Table 8: Correlation coefficients between model and
human ratings of novel words containing attested, unat-
tested, or marginally attested complex onsets.

All of the neural models correlate better with
human judgements than H&W on every partition
of the data. The high correlations between neu-
ral and human judgements across all partitions of
the data demonstrate that subsegmental represen-
tations based on the phonetic properties of sounds
are not necessary to effectively learn the SSP: suit-

able embeddings can also be learned solely from
lexical statistics. This is in agreement with the
findings of Mirea and Bicknell (2019), although
they do not partition the data by onset type.

This is not to say, however, that there are no
differences in performance between prespecified
and learned embeddings. There is a tendency for
the embedding models to fit observed clusters bet-
ter (the attested and marginal partitions), while the
featural model appears to generalize to unattested
forms more effectively.

Because the available data from Daland et al.
(2011) is aggregated, we are unable to use boot-
strap methods to estimate the ceiling correlation
coefficient, which would shed light on the extent
to which human judgements would be expected to
correlate with other human judgements.

‘ H Overall ‘ Attested ‘ Unattested ‘ Marginal ‘
[H&W || 083 | 0000 [ 076 [ 002 |

Table 9: Correlation coefficients between model and
human judgements from the best performing model in
Daland et al. (2011).

Neural models not only outperform our imple-
mentation of H&W, but perform comparably to
Daland et al.’s best reported model result (Ta-
ble 9), which used a version of H&W that was sup-
plied with syllable structure. Overall these results
suggest that neural phonotactic language models
are able to predict aggregate human behavior as
well or better than existing models even when pro-
vided with less structured input data, and that this
performance does not crucially depend on whether
subsegmental representations correspond to pho-
netic properties.

7 Discussion and conclusion

RNN language models can learn and general-
ize phonotactic patterns as well as or better than
H&W across all cases considered here. The use
of RNNs is particularly beneficial in the cases of
Finnish and English. In Finnish, the ability of the
RNN models to represent long distance dependen-
cies allowed them to better generalize the harmony
pattern to novel forms. In English, H&W gen-
erally assigns perfect scores to attested and (to a
lesser extent) marginal forms, while the RNNLMs
assign scores which better correlate with human
judgements. Although prediction of human judge-
ments is not the only goal of phonotactic model-



ing, it is an important one, and we believe these
are useful improvements.

Comparing the performance of the models
tested in this paper also provides predictions rele-
vant to theories of universal vs. language-specific
features (e.g., Mielke, 2008; Archangeli and Pul-
leyblank, 2018; Mayer and Daland, in press), and
how this relates to the division of phonological la-
bor between constraints and representations. The
general success of the embedding models across
tasks suggests these patterns may be effectively
learned with no reference to segments’ phonetic
properties. However, it is also true that the mod-
els where segments were represented in terms of
their phonetic properties were able to learn pat-
terns involving a phonetically disparate class. The
existence of such classes is a central motivation for
theories of learned features.

H&W captures the CQ pattern by learning a set
of constraints that, acting in tandem, produce the
correct pattern. This is reminiscent of the phono-
logical conspiracies raised by Kisseberth (1970),
in that the homogeneous behavior of the plain stop
series (including [B]) emerges from the interac-
tion of a set of apparently independent constraints,
rather than a unified treatment by the grammar.
The featural RNNLM also lacks a unified repre-
sentation of this class, and we may assume the ho-
mogeneous behavior is generated by the processes
applied to the representations (though these pro-
cesses are computationally different from H&W).
The embedding models, on the other hand, shift
some of the work onto the representations, learn-
ing embeddings for [¥] that reflect distributional
rather than phonetic properties.

Thus these models characterize different hy-
potheses about how phonetically disparate classes
are distributed between representations and pro-
cesses (e.g., rules or constraints) in the grammar.
Although the performance of the featural and em-
bedding models is indistinguishable for CQ, the
results from English suggest that phonetic features
may allow the models to generalize more effec-
tively, at the expense of a poorer fit to observed
data (see, e.g., Mitchell, 1980). We are optimistic
that further modeling (perhaps combining fixed
and learned embeddings) and comparison with hu-
man judgements will provide additional insight.

Another contribution of this paper is to show

that SRNNSs are able to learn phonotactic patterns
as effectively as more complex models such as

LSTMs (cf. Mirea and Bicknell, 2019). Phono-
tactic patterns are generally less complex than
the syntactic/semantic patterns central to language
modeling research (Heinz and Idsardi, 2013), and
sRNNs may provide an appropriate fit to this com-
plexity. For example, Weiss et al. (2018) demon-
strate that, unlike LSTMs, sRNNs are unable to
learn the a"b™ pattern, which is known to be
phonotactically unattested (Eisner, 1997; Lamont,
2019). We anticipate for this reason that the use
of more advanced models, such as attention-based
language models (Vaswani et al., 2017), will not
necessarily entail better performance on phonotac-
tic learning and generalization.

Much work remains to be done. A concern with
RNNLMs is that they are not as transparent as
models like H&W, and are therefore of less the-
oretical value. Developing methods to gain in-
sight into what these models have learned, such as
probe or clustering tasks, is an important next step
for their application to phonotactic learning. Such
tasks can negate the interpretability problems as-
sociated with neural networks and allow access to
what linguistic information is being encoded (e.g.,
Alishahi et al., 2019; Nelson and Mayer, 2019).

In particular, we have only shown that these
models match human-like behavior in aggregate.
It will be useful to explore how they deviate from
human behavior in specific cases. We also note
that the neural models we present here operate
from left-to-right, and may have difficulty with re-
gressive phonotactic patterns. Bidirectional RNNs
(Schuster and Paliwal, 1997) have the potential to
overcome this limitation.

The power of neural models as statistical learn-
ers provides a valuable tool for work on the learn-
ability of linguistic phenomena by allowing us to
begin determining the upper limit on what is learn-
able from lexical statistics alone, and how differ-
ent representational assumptions guide this learn-
ing. We share Pater (2019)’s enthusiasm for the
ongoing integration of neural research with lin-
guistic theory as a supplement to more traditional
methodology.
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