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Abstract

Contextualized word embeddings, i.e. vector
representations for words in context, are nat-
urally seen as an extension of previous non-
contextual distributional semantic models. In
this work, we focus on BERT, a deep neural
network that produces contextualized embed-
dings and has set the state-of-the-art in several
semantic tasks, and study the semantic coher-
ence of its embedding space. While showing
a tendency towards coherence, BERT does not
fully live up to the natural expectations for a
semantic vector space. In particular, we find
that the position of the sentence in which a
word occurs, while having no meaning corre-
lates, leaves a noticeable trace on the word em-
beddings and disturbs similarity relationships.

1 Introduction

A recent success story of NLP, BERT (Devlin et al.,
2018) stands at the crossroad of two key innova-
tions that have brought about significant improve-
ments over previous state-of-the-art results. On
the one hand, BERT models are an instance of con-
textual embeddings (McCann et al., 2017; Peters
et al., 2018), which have been shown to be subtle
and accurate representations of words within sen-
tences. On the other hand, BERT is a variant of the
Transformer architecture (Vaswani et al., 2017)
which has set a new state-of-the-art on a wide
variety of tasks ranging from machine translation
(Ott et al., 2018) to language modeling (Dai et al.,
2019). BERT-based models have significantly in-
creased state-of-the-art over the GLUE benchmark
for natural language understanding (Wang et al.,
2019b) and most of the best scoring models for
this benchmark include or elaborate on BERT. Us-
ing BERT representations has become in many
cases a new standard approach: for instance, all
submissions at the recent shared task on gendered
pronoun resolution (Webster et al., 2019) were

based on BERT. Furthermore, BERT serves both
as a strong baseline and as a basis for a fine-
tuned state-of-the-art word sense disambiguation
pipeline (Wang et al., 2019a).

Analyses aiming to understand the mechanical
behavior of Transformers in general, and BERT in
particular, have suggested that they compute word
representations through implicitly learned syntac-
tic operations (Raganato and Tiedemann, 2018;
Clark et al., 2019; Coenen et al., 2019; Jawa-
har et al., 2019, a.o.): representations computed
through the ‘attention’ mechanisms of Transform-
ers can arguably be seen as weighted sums of
intermediary representations from the previous
layer, with many attention heads assigning higher
weights to syntactically related tokens (however,
contrast with Brunner et al., 2019; Serrano and
Smith, 2019).

Complementing these previous studies, in this
paper we adopt a more theory-driven lexical se-
mantic perspective. While a clear parallel was es-
tablished between ‘traditional’ noncontextual em-
beddings and the theory of distributional seman-
tics (a.o. Lenci, 2018; Boleda, 2019), this link is
not automatically extended to contextual embed-
dings: some authors (Westera and Boleda, 2019)
even explicitly consider only “context-invariant”
representations as distributional semantics. Hence
we study to what extent BERT, as a contextual em-
bedding architecture, satisfies the properties ex-
pected from a natural contextualized extension of
distributional semantics models (DSMs).

DSMs assume that meaning is derived from use
in context. DSMs are nowadays systematically
represented using vector spaces (Lenci, 2018).
They generally map each word in the domain of
the model to a numeric vector on the basis of
distributional criteria; vector components are in-
ferred from text data. DSMs have also been com-
puted for linguistic items other than words, e.g.,



word senses—based both on meaning inventories
(Rothe and Schütze, 2015) and word sense induc-
tion techniques (Bartunov et al., 2015)—or mean-
ing exemplars (Reisinger and Mooney, 2010; Erk
and Padó, 2010; Reddy et al., 2011). The default
approach has however been to produce represen-
tations for word types. Word properties encoded
by DSMs vary from morphological information
(Marelli and Baroni, 2015; Bonami and Paperno,
2018) to geographic information (Louwerse and
Zwaan, 2009), to social stereotypes (Bolukbasi
et al., 2016) and to referential properties (Herbe-
lot and Vecchi, 2015).

A reason why contextualized embeddings have
not been equated to distributional semantics may
lie in that they are “functions of the entire input
sentence” (Peters et al., 2018). Whereas tradi-
tional DSMs match word types with numeric vec-
tors, contextualized embeddings produce distinct
vectors per token. Ideally, the contextualized na-
ture of these embeddings should reflect the seman-
tic nuances that context induces in the meaning of
a word—with varying degrees of subtlety, rang-
ing from broad word-sense disambiguation (e.g.
‘bank’ as a river embankment or as a financial
institution) to narrower subtypes of word usage
(‘bank’ as a corporation or as a physical building)
and to more context-specific nuances.

Regardless of how apt contextual embeddings
such as BERT are at capturing increasingly finer
semantic distinctions, we expect the contextual
variation to preserve the basic DSM properties.
Namely, we expect that the space structure en-
codes meaning similarity and that variation within
the embedding space is semantic in nature. Simi-
lar words should be represented with similar vec-
tors, and only semantically pertinent distinctions
should affect these representations. We connect
our study with previous work in section 2 be-
fore detailing the two approaches we followed.
First, we verify in section 3 that BERT embeddings
form natural clusters when grouped by word types,
which on any account should be groups of similar
words and thus be assigned similar vectors. Sec-
ond, we test in sections 4 and 5 that contextualized
word vectors do not encode semantically irrelevant
features: in particular, leveraging some knowledge
from the architectural design of BERT, we address
whether there is no systematic difference between
BERT representations in odd and even sentences
of running text—a property we refer to as cross-

sentence coherence. In section 4, we test whether
we can observe cross-sentence coherence for sin-
gle tokens, whereas in section 5 we study to what
extent incoherence of representations across sen-
tences affects the similarity structure of the seman-
tic space. We summarize our findings in section 6.

2 Theoretical background & connections

Word embeddings have been said to be ‘all-
purpose’ representations, capable of unifying the
otherwise heterogeneous domain that is NLP (Tur-
ney and Pantel, 2010). To some extent this claim
spearheaded the evolution of NLP: focus recently
shifted from task-specific architectures with lim-
ited applicability to universal architectures requir-
ing little to no adaptation (Radford, 2018; Devlin
et al., 2018; Radford et al., 2019; Yang et al., 2019;
Liu et al., 2019, a.o.).

Word embeddings are linked to the distribu-
tional hypothesis, according to which “you shall
know a word from the company it keeps” (Firth,
1957). Accordingly, the meaning of a word can be
inferred from the effects it has on its context (Har-
ris, 1954); as this framework equates the meaning
of a word to the set of its possible usage contexts,
it corresponds more to holistic theories of meaning
(Quine, 1960, a.o.) than to truth-value accounts
(Frege, 1892, a.o.). In early works on word em-
beddings (Bengio et al., 2003, e.g.), a straightfor-
ward parallel between word embeddings and dis-
tributional semantics could be made: the former
are distributed representations of word meaning,
the latter a theory stating that a word’s meaning is
drawn from its distribution. In short, word embed-
dings could be understood as a vector-based im-
plementation of the distributional hypothesis. This
parallel is much less obvious for contextual em-
beddings: are constantly changing representations
truly an apt description of the meaning of a word?

More precisely, the literature on distributional
semantics has put forth and discussed many math-
ematical properties of embeddings: embeddings
are equivalent to count-based matrices (Levy and
Goldberg, 2014b), expected to be linearly depen-
dant (Arora et al., 2016), expressible as a unitary
matrix (Smith et al., 2017) or as a perturbation
of an identity matrix (Yin and Shen, 2018). All
these properties have however been formalized for
non-contextual embeddings: they were formulated
using the tools of matrix algebra, under the as-
sumption that embedding matrix rows correspond



to word types. Hence they cannot be applied as
such to contextual embeddings. This disconnect
in the literature leaves unanswered the question of
what consequences there are to framing contextu-
alized embeddings as DSMs.

The analyses that contextual embeddings have
been subjected to differ from most analyses of dis-
tributional semantics models. Peters et al. (2018)
analyzed through an extensive ablation study of
ELMo what information is captured by each layer
of their architecture. Devlin et al. (2018) dis-
cussed what part of their architecture is criti-
cal to the performances of BERT, comparing pre-
training objectives, number of layers and train-
ing duration. Other works (Raganato and Tiede-
mann, 2018; Hewitt and Manning, 2019; Clark
et al., 2019; Voita et al., 2019; Michel et al., 2019)
have introduced specific procedures to understand
how attention-based architectures function on a
mechanical level. Recent research has however
questioned the pertinence of these attention-based
analyses (Serrano and Smith, 2019; Brunner et al.,
2019); moreover these works have focused more
on the inner workings of the networks than on their
adequacy with theories of meaning.

One trait of DSMs that is very often encoun-
tered, discussed and exploited in the literature is
the fact that the relative positions of embeddings
are not random. Early vector space models, by de-
sign, required that word with similar meanings lie
near one another (Salton et al., 1975); as a conse-
quence, regions of the vectors space describe co-
herent semantic fields.1 Despite the importance
of this characteristic, the question whether BERT
contextual embeddings depict a coherent semantic
space on their own has been left mostly untouched
by papers focusing on analyzing BERT or Trans-
formers (with some exceptions, e.g. Coenen et al.,
2019). Moreover, many analyses of how mean-
ing is represented in attention-based networks or
contextual embeddings include “probes” (learned
models such as classifiers) as part of their evalu-
ation setup to ‘extract’ information from the em-
beddings (Peters et al., 2018; Tang et al., 2018;
Coenen et al., 2019; Chang and Chen, 2019, e.g.).
Yet this methodology has been criticized as po-
tentially conflicting with the intended purpose of
studying the representations themselves (Wieting
and Kiela, 2019; Cover, 1965); cf. also Hewitt and

1Vectors encoding contrasts between words are also ex-
pected to be coherent (Mikolov et al., 2013b), although this
assumption has been subjected to criticism (Linzen, 2016).

Liang (2019) for a discussion. We refrain from
using learned probes in favor of a more direct as-
sessment of the coherence of the semantic space.

3 Experiment 1: Word Type Cohesion
The trait of distributional spaces that we focus
on in this study is that similar words should lie
in similar regions of the semantic space. This
should hold all the more so for identical words,
which ought to be be maximally similar. By de-
sign, contextualized embeddings like BERT exhibit
variation within vectors corresponding to identical
word types. Thus, if BERT is a DSM, we expect that
word types form natural, distinctive clusters in the
embedding space. Here, we assess the coherence
of word type clusters by means of their silhouette
scores (Rousseeuw, 1987).

3.1 Data & Experimental setup
Throughout our experiments, we used the Guten-
berg corpus as provided by the NLTK platform,
out of which we removed older texts (King John’s
Bible and Shakespeare). Sentences are enumer-
ated two by two; each pair of sentences is then
used as a distinct input source for BERT. As we
treat the BERT algorithm as a black box, we re-
trieve only the embeddings from the last layer,
discarding all intermediary representations and at-
tention weights. We used the bert-large-
uncased model in all experiments2; therefore
most of our experiments are done on word-pieces.

To study the basic coherence of BERT’s seman-
tic space, we can consider types as clusters of
tokens—i.e. specific instances of contextualized
embeddings—and thus leverage the tools of clus-
ter analysis. In particular, silhouette score is gen-
erally used to assess whether a specific observa-
tion ~v is well assigned to a given cluster Ci drawn
from a set of possible clusters C. The silhouette
score is defined in eq. 1:

sep(~v, Ci) =min{mean
~v02Cj

d(~v, ~v0)8 Cj 2 C � {Ci}}

coh(~v, Ci) = mean
~v02Ci�{~v}

d(~v, ~v0)

silh(~v, Ci) =
sep(~v, Ci)� coh(~v, Ci)

max{sep(~v, Ci), coh(~v, Ci)}
(1)

We used Euclidean distance for d. In our case,
observations ~v therefore correspond to tokens (that
is, word-piece tokens), and clusters Ci to types.

2Measurements were conducted before the release of the
bert-large-uncased-whole-words model.



Silhouette scores consist in computing for each
vector observation ~v a cohesion score (viz. the av-
erage distance to other observations in the cluster
Ci) and a separation score (viz. the minimal av-
erage distance to other observations, i.e. the min-
imal ‘cost’ of assigning ~v to any other cluster
than Ci). Optimally, cohesion is to be minimized
and separation is to be maximized, and this is re-
flected in the silhouette score itself: scores are de-
fined between -1 and 1; -1 denotes that the ob-
servation ~v should be assigned to another cluster
than Ci, whereas 1 denotes that the observation ~v
is entirely consistent with the cluster Ci. Keep-
ing track of silhouette scores for a large number
of vectors quickly becomes intractable, hence we
use a slightly modified version of the above def-
inition, and compute separation and cohesion us-
ing the distance to the average vector for a clus-
ter rather than the average distance to other vec-
tors in a cluster, as suggested by Vendramin et al.
(2013). Though results are not entirely equivalent
as they ignore the inner structure of clusters, they
still present a gross view of the consistency of the
vector space under study.

We do note two caveats with our proposed
methodology. Firstly, BERT uses subword repre-
sentations, and thus BERT tokens do not necessar-
ily correspond to words. However we may conjec-
ture that some subwords exhibit coherent mean-
ings, based on whether they tightly correspond
to morphemes—e.g. ‘##s’, ‘##ing’ or ‘##ness’.
Secondly, we group word types based on char-
acter strings; yet only monosemous words should
describe perfectly coherent clusters—whereas we
expect some degree of variation for polysemous
words and homonyms according to how widely
their meanings may vary.

3.2 Results & Discussion

We compared cohesion to separation scores using
a paired Student’s t-test, and found a significant
effect (p-value < 2 · 2�16). This highlights that
cohesion scores are lower than separation scores.
The effect size as measured by Cohen’s d (Cohen’s
d = �0.121) is however rather small, suggesting
that cohesion scores are only 12% lower than sep-
aration scores. More problematically, we can see
in figure 1 that 25.9% of the tokens have a nega-
tive silhouette score: one out of four tokens would
be better assigned to some other type than the one
they belong to. When aggregating scores by types,

Figure 1: Distribution of token silhouette scores

we found that 10% of types contained only tokens
with negative silhouette score.

The standards we expect of DSMs are not al-
ways upheld strictly; the median and mean score
are respectively at 0.08 and 0.06, indicating a gen-
eral trend of low scores, even when they are posi-
tive. We previously noted that both the use of sub-
word representations in BERT as well as polysemy
and homonymy might impact these results. The
amount of meaning variation induced by polysemy
and homonymy can be estimated by using a dictio-
nary as a sense inventory. The number of distinct
entries for a type serves as a proxy measure of how
much its meaning varies in use. We thus used a
linear model to predict silhouette scores with log-
scaled frequency and log-scaled definition counts,
as listed in the Wiktionary, as predictors. We se-
lected tokens for which we found at least one en-
try in the Wiktionary, out of which we then ran-
domly sampled 10000 observations. Both defini-
tion counts and frequency were found to be signif-
icant predictors, leading the silhouette score to de-
crease. This suggests that polysemy degrades the
cohesion score of the type cluster, which is com-
patible with what one would expect from a DSM.
We moreover observed that monosemous words
yielded higher silhouette scores than polysemous
words (p < 2 · 2�16, Cohen’s d = 0.236), though
they still include a substantial number of tokens
with negative silhouette scores.

Similarity also includes related words, and not
only tokens of the same type. Other studies (Vial
et al., 2019; Coenen et al., 2019, e.g.) already
stressed that BERT embeddings perform well on
word-level semantic tasks. To directly assess
whether BERT captures this broader notion of sim-
ilarity, we used the MEN word similarity dataset



(Bruni et al., 2014), which lists pairs of English
words with human annotated similarity ratings.
We removed pairs containing words for which we
had no representation, leaving us with 2290 pairs.
We then computed the Spearman correlation be-
tween similarity ratings and the cosine of the av-
erage BERT embeddings of the two paired word
types, and found a correlation of 0.705, showing
that cosine similarity of average BERT embeddings
encodes semantic similarity. For comparison, a
word2vec DSM (Mikolov et al., 2013a, henceforth
W2V) trained on BooksCorpus (Zhu et al., 2015)
using the same tokenization as BERT achieved a
correlation of 0.669.

4 Experiment 2: Cross-Sentence
Coherence

As observed in the previous section, overall the
word type coherence in BERT tends to match our
basic expectations. In this section, we do further
tests, leveraging our knowledge of the design of
BERT. We detail the effects of jointly using seg-
ment encodings to distinguish between paired in-
put sentences and residual connections.

4.1 Formal approach

We begin by examining the architectural design
of BERT. We give some elements relevant to
our study here and refer the reader to the orig-
inal papers by Vaswani et al. (2017) and Devlin
et al. (2018), introducing Transformers and BERT,
for a more complete description. On a formal
level, BERT is a deep neural network composed
of superposed layers of computations. Each layer
is composed of two “sub-layers”: the first per-
forming “multi-head attention”, the second be-
ing a simple feed-forward network. Throughout
all layers, after each sub-layer, residual connec-
tions and layer normalization are applied, thus the
intermediary output ~oL after sub-layer L can be
written as a function of the input ~xL, as ~oL =
LayerNorm(SubL( ~xL) + ~xL).

BERT is optimized on two training objectives.
The first, called masked language model, is a vari-
ation on the Cloze test for reading proficiency
(Taylor, 1953). The second, called next sen-
tence prediction (NSP), corresponds to predicting
whether two sentences are found one next to the
other in the original corpus or not. Each example
passed as input to BERT is comprised of two sen-
tences, either contiguous sentences from a docu-

ment, or randomly selected sentences. A special
token [SEP] is used to indicate sentence bound-
aries, and the full sentence is prepended with a
second special token [CLS] used to perform the
actual prediction for NSP. Each token is trans-
formed into an input vector using an input em-
bedding matrix. To distinguish between tokens
from the first and the second sentence, the model
adds a learned feature vector ~segA to all tokens
from first sentences, and a distinct learned feature
vector ~segB to all tokens from second sentences;
these feature vectors are called ‘segment encod-
ings’. Lastly, as Transformer models do not have
an implicit representation of word-order, informa-
tion regarding the index i of the token in the sen-
tence is added using a positional encoding p(i).
Therefore, if the initial training example was “My
dog barks. It is a pooch.”, the actual input would
correspond to the following sequence of vectors:

~[CLS]+ ~p(0) + ~segA, ~My + ~p(1) + ~segA,

~dog + ~p(2) + ~segA, ~barks+ ~p(3) + ~segA,

~.+ ~p(4) + ~segA, ~[SEP]+ ~p(5) + ~segA,

~It+ ~p(6) + ~segB, ~is+ ~p(7) + ~segB,

~a+ ~p(8) + ~segB, ~pooch+ ~p(9) + ~segB,

~.+ ~p(10) + ~segB, ~[SEP]+ ~p(11) + ~segB

Due to the general use of residual connections,
marking the sentences using the segment encod-
ings ~segA and ~segB can introduce a systematic
offset within sentences. Consider that the first
layer uses as input vectors corresponding to word,
position, and sentence information: ~wi + ~p(i) +

~segi; for simplicity, let ~ii = ~wi + ~p(i); we also
ignore the rest of the input as it does not impact
this reformulation. The output from the first sub-
layer ~o1i can be written:

~o1i = LayerNorm(Sub1(~ii + ~segi) + ~ii + ~segi)

= ~bl + ~g1 � 1

�1
i

Sub1(~ii + ~segi) + ~g1 � 1

�1
i

~ii

� ~g1 � 1

�1
i

µ(Sub1(~ii + ~segi) + ~ii + ~segi)

+ ~g1 � 1

�1
i

~segi

= ~̃o1i + ~g1 � 1

�1
i

~segi (2)

This equation is obtain by simply injecting the
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Figure 2: Segment encoding bias

definition for layer-normalization.3 Therefore, by
recurrence, the final output ~oLi for a given token
~wi + ~p(i) + ~segi can be written as:

~oLi = ~̃oLi +

 
LK

l=1

~gl
!

�
 

LY

l=1

1

�l
i

!
⇥ ~segi (3)

This rewriting trick shows that segment encod-
ings are partially preserved in the output. All em-
beddings within a sentence contain a shift in a
specific direction, determined only by the initial
segment encoding and the learned gain parameters
for layer normalization. In figure 2, we illustrate
what this systematic shift might entail. Prior to the
application of the segment encoding bias, the se-
mantic space is structured by similarity (‘pooch’ is
near ‘dog’); with the bias, we find a different set
of characteristics: in our toy example, tokens are
linearly separable by sentences.

3Layer normalization after sub-layer l is defined as:

LayerNorml(~x) = ~bl +
~gl � (~x� µ(~x))

�

= ~bl + ~gl �
1
�
~x� ~gl �

1
�
µ(~x)

where ~bl is a bias, � denotes element-wise multiplication, ~gl
is a “gain” parameter, � is the standard deviation of compo-
nents of ~x and µ(~x) = hx̄, . . . , x̄i is a vector with all compo-
nents defined as the mean of components of ~x.

4.2 Data & Experimental setup
If BERT properly describes a semantic vector
space, we should, on average, observe no signifi-
cant difference in token encoding imputable to the
segment the token belongs to. For a given word
type w, we may constitute two groups: wsegA , the
set of tokens for this type w belonging to first sen-
tences in the inputs, and wsegB , the set of tokens
of w belonging to second sentences. If BERT coun-
terbalances the segment encodings, random differ-
ences should cancel out, and therefore the mean of
all tokens wsegA should be equivalent to the mean
of all tokens wsegB .

We used the same dataset as in section 3. This
setting (where all paired input sentences are drawn
from running text) allows us to focus on the effects
of the segment encodings. We retrieved the output
embeddings of the last BERT layer and grouped
them per word type. To assess the consistency of
a group of embeddings with respect to a purported
reference, we used a mean of squared error (MSE):
given a group of embeddings E and a reference
vector ~r, we computed how much each vector in
E strayed from the reference ~r. It is formally de-
fined as:

MSE(E,~r) =
1

#E

X

~v2E

X

d

(~vd � ~rd)
2 (4)

This MSE can also be understood as the average
squared distance to the reference ~r. When ~r = E,
i.e. ~r is set to be the average vector in E, the
MSE measures variance of E via Euclidean dis-
tance. We then used the MSE function to construct
pairs of observations: for each word type w, and
for each segment encoding segi, we computed
two scores: MSE(wsegi , wsegi)—which gives us
an assessment of how coherent the set of embed-
dings wsegi is with respect to the mean vector
in that set—and MSE(wsegi , wsegj )—which as-
sesses how coherent the same group of embed-
dings is with respect to the mean vector for the
embeddings of the same type, but from the other
segment segj . If no significant contrast between
these two scores can be observed, then BERT coun-
terbalances the segment encodings and is coherent
across sentences.

4.3 Results & Discussion
We compared results using a paired Student’s t-
test, which highlighted a significant difference
based on which segment types belonged to (p-
value < 2 · 2�16); the effect size (Cohen’s d =



Figure 3: Log-scaled MSE per reference

�0.527) was found to be stronger than what we
computed when assessing whether tokens cluster
according to their types (cf. section 3). A vi-
sual representation of these results, log-scaled, is
shown in figure 3. For all sets wsegi , the average
embedding from the set itself was systematically
a better fit than the average embedding from the
paired set wsegj . We also noted that a small num-
ber of items yielded a disproportionate difference
in MSE scores and that frequent word types had
smaller differences in MSE scores: roughly speak-
ing, very frequent items—punctuation signs, stop-
words, frequent word suffixes—received embed-
dings that are almost coherent across sentences.

Although the observed positional effect of em-
beddings’ inconsistency might be entirely due to
segment encodings, additional factors might be
at play. In particular, BERT uses absolute posi-
tional encoding vectors to order words within a
sequence: the first word w1 is marked with the po-
sitional encoding p(1), the second word w2 with
p(1), and so on until the last word, wn, marked
with p(n). As these positional encodings are
added to the word embeddings, the same remark
made earlier on the impact of residual connections
may apply to these positional encodings as well.
Lastly, we also note that many downstream appli-
cations use a single segment encoding per input,
and thus sidestep the caveat stressed here.

5 Experiment 3: Sentence-level structure

We have seen that BERT embeddings do not fully
respect cross-sentence coherence; the same type
receives somewhat different representations for

occurrences in even and odd sentences. However,
comparing tokens of the same type in consecutive
sentences is not necessarily the main application
of BERT and related models. Does the segment-
based representational variance affect the structure
of the semantic space, instantiated in similarities
between tokens of different types? Here we inves-
tigate how segment encodings impact the relation
between any two tokens in a given sentence.

5.1 Data & Experimental setup
Consistent with previous experiments, we used
the same dataset (cf. section 3); in this experi-
ment also mitigating the impact of the NSP objec-
tive was crucial. Sentences were thus passed two
by two as input to the BERT model. As cosine
has been traditionally used to quantify semantic
similarity between words (Mikolov et al., 2013b;
Levy and Goldberg, 2014a, e.g.), we then com-
puted pairwise cosine of the tokens in each sen-
tence. This allows us to reframe our assessment of
whether lexical contrasts are coherent across sen-
tences as a comparison of semantic dissimilarity
across sentences. More formally, we compute the
following set of cosine scores CS for each sen-
tence S:

CS = {cos(~v, ~u) | ~v 6= ~u ^ ~v, ~u 2 ES} (5)

with ES the set of embeddings for the sentence S.
In this analysis, we compare the union of all sets of
cosine scores for first sentences against the union
of all sets of cosine scores for second sentences.
To avoid asymmetry, we remove the [CLS] token
(only present in first sentences), and as with pre-
vious experiments we neutralize the effects of the
NSP objective by using only consecutive sentences
as input.

5.2 Results & Discussion
We compared cosine scores for first and second
sentences using a Wilcoxon rank sum test. We
observed a significant effect, however small (Co-
hen’s d = 0.011). This may perhaps be due to data
idiosyncrasies, and indeed when comparing with a
W2V (Mikolov et al., 2013a) trained on BooksCor-
pus (Zhu et al., 2015) using the same tokeniza-
tion as BERT, we do observe a significant effect
(p < 0.05). However the effect size is six times
smaller (d = 0.002) than what we found for BERT
representations; moreover, when varying the sam-
ple size (cf. figure 4), p-values for BERT represen-
tations drop much faster to statistical significance.
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Figure 4: Wilcoxon tests, 1st vs. 2nd sentences

A possible reason for the larger discrepancy ob-
served in BERT representations might be that BERT
uses absolute positional encodings, i.e. the kth

word of the input is encoded with p(k). There-
fore, although all first sentences of a given length l
will be indexed with the same set of positional en-
codings {p(1), . . . , p(l)}, only second sentences
of a given length l preceded by first sentences of
a given length j share the exact same set of posi-
tional encodings {p(j + 1), . . . , p(j + l)}. As
highlighted previously, the residual connections
ensure that the segment encodings were partially
preserved in the output embedding: the same argu-
ment can be made for positional encodings. In any
event, the fact is that we do observe on BERT rep-
resentations an effect of segment on sentence-level
structure. This effect is greater than one can blame
on data idiosyncrasies, as verified by the compari-
son with a traditional DSM such as W2V. If we are
to consider BERT as a DSM, we must do so at the
cost of cross-sentence coherence.

The analysis above suggests that embeddings
for tokens drawn from first sentences live in a
different semantic space than tokens drawn from
second sentences, i.e. that BERT contains two
DSMs rather than one. If so, the comparison be-
tween two sentence-representations from a single
input would be meaningless, or at least less co-
herent than the comparison of two sentence rep-
resentations drawn from the same sentence posi-
tion. To test this conjecture, we use two compo-
sitional semantics benchmarks: STS (Cer et al.,
2017) and SICK-R (Marelli et al., 2014). These
datasets are structured as triplets, grouping a pair

Model STS cor. SICK-R cor.
Skip-Thought 0.255 60 0.487 62
USE 0.666 86 0.689 97
InferSent 0.676 46 0.709 03

BERT, 2 sent. ipt. 0.359 13 0.369 92
BERT, 1 sent. ipt. 0.482 41 0.586 95
W2V 0.370 17 0.533 56

Table 1: Correlation (Spearman ⇢) of cosine simi-
larity and relatedness ratings on the STS and SICK-
R benchmarks

of sentences with a human-annotated relatedness
score. The original presentation of BERT (Devlin
et al., 2018) did include a downstream application
to these datasets, but employed a learned classi-
fier, which obfuscates results (Wieting and Kiela,
2019; Cover, 1965; Hewitt and Liang, 2019).
Hence we simply reduce the sequence of tokens
within each sentence into a single vector by sum-
ming them, a simplistic yet robust semantic com-
position method. We then compute the Spearman
correlation between the cosines of the two sum
vectors and the sentence pair’s relatedness score.
We compare two setups: a “two sentences input”
scheme (or 2 sent. ipt. for short)—where we use
the sequences of vectors obtained by passing the
two sentences as a single input—and a “one sen-
tence input” scheme (1 sent. ipt.)—using two dis-
tinct inputs of a single sentence each.

Results are reported in table 1; we also pro-
vide comparisons with three different sentence en-
coders and the aforementioned W2V model. As
we had suspected, using sum vectors drawn from
a two sentence input scheme single degrades per-
formances below the W2V baseline. On the other
hand, a one sentence input scheme seems to pro-
duce coherent sentence representations: in that
scenario, BERT performs better than W2V and
the older sentence encoder Skip-Thought (Kiros
et al., 2015), but worse than the modern USE
(Cer et al., 2018) and Infersent (Conneau et al.,
2017). The comparison with W2V also shows
that BERT representations over a coherent input
are more likely to include some form of composi-
tional knowledge than traditional DSMs; however
it is difficult to decide whether some true form of
compositionality is achieved by BERT or whether
these performances are entirely a by-product of
the positional encodings. In favor of the former,
other research has suggested that Transformer-



based architectures perform syntactic operations
(Raganato and Tiedemann, 2018; Hewitt and Man-
ning, 2019; Clark et al., 2019; Jawahar et al., 2019;
Voita et al., 2019; Michel et al., 2019). In all, these
results suggest that the semantic space of token
representations from second sentences differ from
that of embeddings from first sentences.

6 Conclusions

Our experiments have focused on testing to what
extent similar words lie in similar regions of
BERT’s latent semantic space. Although we saw
that type-level semantics seem to match our gen-
eral expectations about DSMs, focusing on details
leaves us with a much foggier picture.

The main issue stems from BERT’s “next sen-
tence prediction objective”, which requires tokens
to be marked according to which sentence they be-
long. This introduces a distinction between first
and second sentence of the input that runs con-
trary to our expectations in terms of cross-sentence
coherence. The validity of such a distinction for
lexical semantics may be questioned, yet its ef-
fects can be measured. The primary assessment
conducted in section 3 shows that token repre-
sentations did tend to cluster naturally according
to their types, yet a finer study detailed in sec-
tion 4 highlights that tokens from distinct sen-
tence positions (even vs. odd) tend to have dif-
ferent representations. This can seen as a direct
consequence of BERT’s architecture: residual con-
nections, along with the use of specific vectors to
encode sentence position, entail that tokens for a
given sentence position are ‘shifted’ with respect
to tokens for the other position. Encodings have a
substantial effect on the structure of the semantic
subspaces of the two sentences in BERT input. Our
experiments demonstrate that assuming sameness
of the semantic space across the two input sen-
tences can lead to a significant performance drop
in semantic textual similarity.

One way to overcome this violation of cross-
sentence coherence would be to consider first and
second sentences representations as belonging to
distinct distributional semantic spaces. The fact
that first sentences were shown to have on aver-
age higher pairwise cosines than second sentences
can be partially explained by the use of absolute
positional encodings in BERT representations. Al-
though positional encodings are required so that
the model does not devolve into a bag-of-word

system, absolute encodings are not: other works
have proposed alternative relative position encod-
ings (Shaw et al., 2018; Dai et al., 2019, e.g.); re-
placing the former with the latter may alleviate the
gap in lexical contrasts. Other related questions
that we must leave to future works encompass
testing on other BERT models such as the whole-
words model, or that of Liu et al. (2019) which
differs only by its training objectives, as well as
other contextual embeddings architectures.

Our findings suggest that the formulation of the
NSP objective of BERT obfuscates its relation to
distributional semantics, by introducing a system-
atic distinction between first and second sentences
which impacts the output embeddings. Similarly,
other works (Lample and Conneau, 2019; Yang
et al., 2019; Joshi et al., 2019; Liu et al., 2019)
stress that the usefulness and pertinence of the NSP
task were not obvious. These studies favored an
empirical point of view; here, we have shown what
sorts of caveats came along with such artificial dis-
tinctions from the perspective of a theory of lexi-
cal semantics. We hope that future research will
extend and refine these findings, and further our
understanding of the peculiarities of neural archi-
tectures as models of linguistic structure.
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