
Multi-Input Strictly Local Functions for Tonal Phonology

Jonathan Rawski and Hossep Dolatian
Department of Linguistics

Institute for Advanced Computational Science
Stony Brook University

{jonathan.rawski,hossep.dolatian}@stonybrook.edu

Abstract

This paper presents an automata-theoretic
characterization of the typology of attested
tonal patterns using enriched data structures.
We generalize the Input Strictly Local class of
functions to consider multiple inputs of tonal
and segmental strings, and find that the associ-
ated strictly local multi-tape transducers suc-
cessfully capture tonal typology. Links be-
tween automata-theoretic and logical charac-
terizations of phonological expressivity show-
case tradeoffs in data structure and locality in
the expressivity of phonological computation.

1 Introduction

Recent work in mathematical phonology connects
phonological mappings to subclasses of the reg-
ular functions (McNaughton and Papert, 1971;
Rogers and Pullum, 2011; Rogers et al., 2013;
Heinz and Lai, 2013; Chandlee, 2014). One of the
simplest subclasses is the class of Input Strictly
Local (ISL) functions which take as input a single
string and generate an output based on local in-
formation. Despite their reduced expressivity, ISL
functions capture a majority of phonological and
morphological maps (Chandlee, 2017; Chandlee
and Heinz, 2018). In addition, ISL functions are
provably easier and faster to learn than full regular
functions (Chandlee et al., 2015a).

In this paper, we generalize this notion of lo-
cality from the above single-input functions to
functions which take multiple strings as input in
§2. Such functions are Multi-Input Strictly Local

(MISL). MISL functions are effectively computed
by a class of deterministic asynchronous Multi-
tape Finite State Transducers (MT-FSTs). Natu-
ral language has processes which are understood
in terms of enriched multi-string input structures,
i.e. autosegmental structure. We focus on tone as-
sociation §3.

The bulk of computational results on tonal pat-
terns are defined over graphical structures and
are local over autosegmental graphs (Jardine,
2016a,b, 2017a, 2019; Chandlee and Jardine,
2019a). In §4, we show that the bulk of tonal
processes are MISL: they are local when com-
puted as a multi-input function over strings. This
provides a solution to a dichotomy in formal lan-
guage results between the complexity of segmen-
tal vs tonal phonology (Jardine, 2016a) via enrich-
ing the data structure in a linguistically natural
way. This also connects logically defined func-
tions to automata-theoretic characterizations over
enriched data structures.

Tonal processes is sufficiently computable us-
ing types of MT-FSTs, but we show that the full
power is not necessary. Showing that the bulk of
tonal phonology can be computed with only MISL
MT-FSTs, acts as a stepping stone to determin-
ing the learnability of tone. It likewise acts as
a benchmark to examine the typology of attested
and unattested tonal processes. Furthermore, by
using multi-input functions with MT-FSTs instead
single-input functions with FSTs, we can more
iconically compute the fact that 1) the tone tier is
separate from the vowel tier, and that 2) this sepa-
ration makes certain tonal processes be local.

We emphasize that our result is NOT an argu-
ment against the use of graphs in tone. The use of
graphs iconically captures tonal processes. Any
linear encoding of autosegmental structure, in-
cluding ours, requires the use of special symbols
for preassociation (Kornai, 1995; Wiebe, 1992;
Yli-Jyrä, 2013, 2015).

Single-input functions are a special case of
multi-input functions. With finite-state calculus,
single-input functions correspond to rational func-
tions when modeled by 1-way single-tape FSTs,
and to regular functions when modeled by 2-

way single-tape FSTs (Filiot and Reynier, 2016).1

Multi-input functions are modeled by 1-way or
2-way MT-FSTs. Although there is work on the
expressivity of multi-tape automata (Furia, 2012),
little is known on multi-input functions and their
algebra or expressivity (Frougny and Sakarovitch,
1993). We show that the MISL class characterizes
a substantial chunk of tonal phonology.

2 Preliminaries

2.1 Preliminaries for single-input functions
Let o,nbe the start and end boundaries respec-
tively. Let ⌃ be a finite alphabet of symbols (ex-
cluding o,n). Let ⌃o = ⌃ [{o,n}. Let ⌃⇤ the
set of all strings over ⌃. Let |w| indicate the length
of w 2 ⌃⇤. For two strings w and v let wv be their
concatenation, and for a set L ⇢ ⌃⇤ of strings and
a string w, by wL we denote {wv|v 2 L}. Let �
denote the empty string.

Given some string u and a natural number
k, the k-suffix of u is the last k symbols of u:
suff(u, k) = v s.t. |v| = k and xv = u for some
x 2 ⌃⇤. For an alphabet ⌃, the k-factors of ⌃ are
the set of strings w 2 ⌃⇤ such that |w|  k.

Informally, a single-input function f is k-ISL
if for all u1, u2 2 ⌃⇤, if suff(u1, k � 1) =
suff(u2, k� 1) then the two strings have the out-
put extensions w.r.t f (Chandlee, 2014; Chandlee
et al., 2015b). For any k-ISL function f over
domain ⌃⇤, there exists a canonical determinis-
tic single-tape finite-state transducer (1T-FST) M
such that |M | = f (meaning M computes f), and
every state q 2 Q in M is labelled with one of the
k � 1 suffixes of ⌃⇤. Transitions are function tu-
ples � : Q⇥ ⌃ ! Q⇥ �⇤. For a state q 2 Q and
input symbol a 2 ⌃, �(q, a) = (p,B) such that
B 2 �⇤ and p = suff(qa,).

2.2 Preliminaries for multi-input functions
We introduce notation for functions which take
multiple strings as input. To do so, we use tu-
ples demarcated by brackets. In the formalization
here, we only consider functions which produce
one output string, not a tuple of output strings. But
extending the formalization is trivial; such a func-
tion is illustrated in §4.3.1.

1By single-tape FST, we mean a two-tape MTFST with
one input tape and one output tape. Note that the functions
computed by 1-way FSTs are called ‘regular functions’ in
American computer science. In this paper, we follow French
conventions which call this class the ‘rational functions’ (Fil-
iot and Reynier, 2016).

A function f is an n-input function if it takes
as input a tuple of n strings: [w1, . . . , wn], which
we represent as ~w, where each word wi is made
up of symbols from some alphabet ⌃i such that
wi 2 ⌃⇤

i . Each alphabet ⌃i may be disjoint or
intersecting, so two input strings wi, wj may be
part of the same language ⌃⇤

i . These n alphabets
form a tuple ~⌃. Tuples can be concatenated: if
~w = [ab, c], ~x = [d, ef], then ~w~x = [abd, cef].

To generalize the notion of suffixes into multi-
ple strings, we define a tuple of n natural num-
bers as ~k = [k1, . . . , kn]. Given some tuple of
n strings ~w and tuple of n numbers ~k, ~k-suffix

of ~w is a tuple ~v of n strings vi, made up of the
last ki symbols on wi: suff(~w,~k) = V s.t. ~v =
[v1, . . . , vn] and |vi| = ki and xivi = wi for xi 2
⌃⇤
i . E.g. for ~w=[abc,def] and ~k = [2, 1],

suff(~w,~k) = [bc, f]. Given a tuple ~k, the op-
eration ~k�x subtracts x from each of ki. E.g., for
~k = [2, 3, 6], ~k � 1 = [1, 2, 5]. For a tuple of al-
phabets ~⌃, the ~k�factors of ~⌃ is the set of tuples
~w 2 ~⌃ such that |wi|  ki.

Let f be an n-input function defined over an
n�tuple ~w of input strings ~w = [w1, . . . , wn]
taken from the tuple of n alphabets ~⌃. As an
informal and intuitive abstraction from ISL func-
tions, f is Multi-Input Strictly Local (MISL) for
k = [k1, . . . , kn] if the function operates over a
bounded window of size ki for wi. Formally,

Definition 1: A function f is ~k-MISL iff
there exists a deterministic asynchronous Multi-
tape FST such that i) |M | = f , and ii) the MT-FST
is canonically ~k-MISL

We explain ~k-MISL Multi-tape FSTs in the next
section.

Note that Definition 1 is an automata-theoretic
definition, meaning the expressivity is necessarily
dependent on the machine. A language-theoretic
definition of MISL functions, and connections to
this class of multi-tape transducers, is in progress.
While ISL FSTs and MISL MT-FSTs similarly
encode the k-suffix information and the notion
of common output in the state of the transducer,
the use of common output extensions used in the
ISL functions is not easily extendable to multi-
input functions. In particular, there are non-
subsequential n-input functions which are com-
putable with MISL MT-FSTs.

For an ISL function, it does not matter if the in-
put string is read left-to-right or right-to-left. But
for an MISL function, it does. A function may be

left-to-right MISL but not right-to-left MISL. We
leave out a proof but an illustration is given in §4.1.

2.3 Multi-tape finite-state transducers
Multi-input functions can be modeled by multi-
tape FSTs (MT-FST). An MT-FST is conceptu-
ally the same as single-tape FSTs, but over multi-

ple input tapes (Rabin and Scott, 1959; Elgot and
Mezei, 1965; Fischer, 1965; Fischer and Rosen-
berg, 1968; Furia, 2012). MT-FSAs and MT-FSTs
are equivalent, and single-tape FSTs correspond to
an MT-FSA with two tapes.

Informally, a MT-FST reads n multiple input
strings as n input tapes, and it writes on a sin-
gle output tape. Each of the n input strings is
drawn from its own alphabet ⌃i. The output
string is taken from the output alphabet �. For
an input tuple of n strings ~w = [w1, . . . , wn] =
[�1,1 . . .�1,|w1|, . . . ,�n,1 . . .�n,|wn|], the initial
configuration is that the MT-FST is in the initial
state q0, the read head. The FST begins at the first
position of each of the n input tapes �i,1, and the
writing head of the FST is positioned at the begin-
ning of an empty output tape. After the FST reads
the symbol under the read head, three things oc-
cur: 1) the state changes; 2) the FST writes some
string; 3) the read head may advance to the right
(+1) or stay put (0) on different tapes: either move
on all tapes, no tapes, or some subset of the tapes.

This process repeats until the read head “falls
off” the end of each input tape. If for some input
~w, the MT-FST falls off the right edge of the n

input tapes when the FST is in an accepting state
after writing u on the output tape, we say the MT-
FST transduces, transforms, or maps, ~w to u or
fT ~w = u.2 Otherwise, the MT-FST is undefined
at ~w. We illustrate MT-FSTs in §4.

A n�MT-FST is a 6-tuple (Q, ~⌃o,�, q0, F,�)
where:

• n 2 N is the number of input tapes
• Q is the set of states
• ~⌃o = [⌃1o, . . . ,⌃no] is a tuple of n input al-

phabets ⌃i which include the end boundaries
⌃io

• � is the output alphabet
• q0 2 Q is the initial state
• F ⇢ Q is the set of final states
• � : Q ⇥ ~⌃o ! Q ⇥ ~D ⇥ �⇤ is the transition

function where
2If the MT-FST generates tuples instead of single strings,

then the MT-ST maps ~w to ~u.

– D = {0,+1} is the set of possible di-
rections,3

– ~D = [Dn] is an n-tuple of possible di-
rections to take on each tape

The above definition can be generalized for
MT-FSTs which use multiple output tapes. As
parameters, an MT-FST can be deterministic or
non-deterministic, synchronous or asynchronous.
We only use deterministic MT-FSTs which are
weaker than non-deterministic MT-FSTs. An MT-
FST is synchronous if all the input tapes are ad-
vanced at the same time, otherwise it is asyn-
chronous. We use asynchronous MT-FSTs which
are more powerful than synchronous MT-FSTs.
Synchronous MT-FSTs are equivalent to multi-
track FSAs which are equivalent to single-tape
FSAs, making them no more expressive than reg-
ular languages. For a survey of the properties of
MT-FSAs and MT-FSTs, see Furia (2012).

A configuration c of a n�MT-FST M is
an element of (~⌃o

⇤
Q ~⌃o

⇤ ⇥ �⇤), short for
([⌃⇤

1oq⌃
⇤
1o, . . . ,⌃

⇤
noq⌃

⇤
no] ⇥ �⇤). The meaning

of the configuration c = ([w1qx1, . . . , wnqxn], u)
is the following. The input to M is the tuple
~w~x = [w1x1, . . . , wnxn]. The machine is cur-
rently in state q. The read head is on each of the n-
input tapes on the first symbol of xi (or has fallen
off the right edge of the input tape if xi = �). u is
currently written on the output tape.

Let the current configuration be
([w1qa1x1, . . . , wnqanxn], u) and let the current
transition arc be �(q, [a1, . . . , an]) = (r, ~D, v).
If ~D = [0n], then the next configuration is
([w1ra1x1, . . . , wnranxn], uv) in which case
we write ([w1qa1x1, . . . , wnqanxn], u) !
([w1ra1x1, . . . , wnranxn], uv) (= none
of the tapes are advanced) . If ~D =
[+1n], then the next configuration is
([w1a1rx1, . . . , wnanrxn], uv) in which case
we write ([w1qa1x1, . . . , wnqanxn], u) !
([w1a1rx1, . . . , wnanrxn], uv) (= all the tapes
are advanced). Otherwise, the next configuration
is ([wiC1x1 . . . , wnCnxn, . . .], uv) where Ci =
rai if Di = 0 and Ci = air if Di = +1 in which
case we write ([w1qa1x1, . . . , wnqanxn], u) !
([wiC1x1 . . . , wnCxn, . . .], uv) (= a subset of the
tapes are advanced).4

3If the MT-FST reads from right to left, then it uses the -1
direction parameter

4Note that the interpretation of the third type of configu-
ration subsumes the first two. We explicitly show the first two

The transitive closure of ! is denoted with !+.
Thus, if c !+

c
0 then there exists a finite sequence

of configurations c1, c2 . . . , cn with n > 1 such
that c = c1 ! c2 ! . . . ! cn = c

0.
As for the function that a MT-FST M com-

putes, for each n�tuple ~w 2 ~⌃⇤ where ~w =
[w1, . . . , wn], fM (~w) = u 2 �⇤ (where fM =
|M |) provided there exists qf 2 F such that
([q0 o w1n, . . . , q0 o wnn],�) !+ ([ow1 n
qf , . . . ,own n qf], u). Otherwise, if the config-
uration is ([ow1n q, . . . ,ownn q], u) and q 62 F

then the transducer crashes and the transduction
fT is undefined on input ~w. Note that if a MT-FST
is deterministic, it follows that if fT (~w) is defined
then u is unique.

As explained in §2.2, we define a function as
~k-MISL iff there exists a corresponding determin-
istic asynchronous ~k-MISL Multi-tape FST.

Definition 2: A deterministic asynchronous
MT-FST M with alphabet ~⌃ is a canonical MT-
FST for an ~k-MISL function f if the states of M
are labelled with the ~k � 1 suffixes of ~⌃.

In Definition 2, the restriction on state labels
does not apply to the unique initial state and
unique final state. In other words, except for the
initial and final states q0 and qf , every state corre-
sponds to a possible ~k � 1 factor of f

.

3 Computational phonology of tone

Segmental phonological processes are generally
computed as single-input functions and they are
ISL (Chandlee, 2014; Chandlee and Heinz, 2018).
But when treated as a single-input function, tonal
processes are significantly more complex than ISL
(Jardine, 2016a). Single strings also fail to capture
the suprasegmental nature of tone. Instead, tonal
processes are generally modeled with autoseg-

mental representations (ASR). As graphs, ASRs
are a richer data structure that showcase the non-
linear nature of tone by breaking up a linear string
into parallel strings or tiers (tone and vowel/mora).

As a review, consider the nonce words in Ta-
ble 1. On the surface, the vowels each surface
with some tone feature: high V́ vs. low V̀. A com-
mon analysis is that underlyingly the tones are on
a separate tier from the vowels. A mapping func-
tion creates association arcs between the tones and
vowels. In the input in Table 1a, then the tones and
vowels are not underlying preassociated. Some

for illustrative reasons.

tonal processes are analyzed with underlying pre-
associated tones (Table 1b). That is, the input con-
tains an association arc between the some of the
tones and some of the vowels.

Most mathematical results on tonal phonology
are also defined over graphs or graph-like struc-
tures (Bird and Klein, 1990; Bird, 1995; Cole-
man and Local, 1991; Coleman, 1998). Jardine
(2016a,b, 2017a) showed that computing well-
formedness for tonal structures is Strictly Local
over ASRs. For transformations, Chandlee and
Jardine (2019a) define a class of logical functions
over ASRs called Autosegmental Input-Strictly
Local functions (A-ISL), which can model many
but not all tonal mappings that have preassocia-
tion. Informally, a function is A-ISL if it con-
sists of two ISL functions operating over two
tiers or two separate strings.5 Koser et al. (2019)
showed that mapping ASRs without preassocia-
tion to ASRs with associations is likewise a local
process, specifically with Quantifier-Free Least
Fixed Point logic (QFLFP) (Chandlee and Jardine,
2019b). However, most of these results are de-
fined logically (Jardine, 2017b, 2019), and do not
clearly correspond to other algebraic or automata-
theoretic notions.

Computationally, tonal processes have been
modeled with single-tape FSTs (Bird and Elli-
son, 1994; Kornai, 1995; Yli-Jyrä, 2013, 2015),
synchronous MT-FSTs (Kiraz, 2001), and non-
deterministic asynchronous MT-FSTs (Kay, 1987;
Wiebe, 1992). To our knowledge, the above math-
ematical properties of tone as a graph have not
been linked with finite-state calculus. As a link,
we treat tonal processes as a multi-input function
that takes as input a tuple of two strings. With this
definition, the bulk of tonal processes are MISL.

4 Multi-Input Locality in Tone

Table 2 illustrates all the tonal functions which we
formalize. Items a-e are taken from Koser et al.
(2019), and items f-l from Chandlee and Jardine
(2019a). Throughout this section, we reference
only this table; see the original references for more
language information.

Items a-e are not ISL but are A-ISL.6 In §4.1,
we show they are also MISL. Items f-l have preas-
sociated tone-vowel pairs in the input. In §4.2, we

5There are much more nuances to the definition of A-ISL;
readers are referred to Chandlee and Jardine (2019a).

6Koser et al. (2019) formalize tonal functions without pre-
assocation with Quantifier-Free Least Fixed Point logic.

a. Without underlying preassociation b. With underlying preassocation
Input as string LH + patuki patúki

Input as graph
L H

V V V

L H

V V V

Output as string pàtúkı́ pàtúkı́

Output as graph
L H

V V V

L H

V V V

Table 1: Review of tonal phonology.

show that with a specific linear encoding for pre-
association, all the relatively simple ISL or A-ISL
patterns are also MISL. More complex cases are
handled in §4.3.

4.1 Tone without preassocation
4.1.1 General illustration: Mende spreading
We first illustrate with Mende (2a) which has a
process of left-to-right tonal spread. Tones and
vowels match 1-1 up until the last tone: nı̀kı́lı̀

‘groundnut’. If there are more vowels than tones,
then the final tone spreads: félàmà ‘junction’.

As a function f , Mende left-to-right spreading
is a 2-input function that takes as input a tuple of
two strings: ~w = [w1, w2]. The input string w1 is
a string of tones T taken from the input alphabet
⌃1 = ⌃T = {H,L}. The input string w2 is a
string of vowels V taken from the input alphabet
⌃2 = ⌃V = {V }. The input language is thus
a tuple of two regular languages [⌃⇤

T ,⌃
⇤
V]. Each

alphabet can include the start and end boundaries
o,n: ⌃io = ⌃i[{o,n}. The function generates
a single output string of tonal vowels: � ={V́,V̀}.

This 2-input function is MISL for ~k = [2, 1]. It
needs a locality window of size 2 on the T-string
in order to know if some tone is final or not (i.e., if
we see Hn or Ln), and a locality window of size
1 on the V-string because the function only needs
to know the current vowel.

This function is computed by the deterministic
asynchronous MT-FST in Figure (1). It uses two
input tapes: a tone tape T and a vowel tape V. The
MT-FST has a dedicated initial and final state q0

and qf . All other states are labelled with the ~k�1-
factors separated by commas. Transitions have the
template [⌃1,⌃2, . . . ,⌃n]: [Dn] : �⇤ where ⌃i

q0start

q1(o,�) q2 (H,�)

q3 (L,�) qf

[o,o]:

[+1,+1]:�
[H,V]:

[+1,+1]:V́

[H,V]: [n,V]:

[+1,+1]:V́ [0,+1]:V́

[H,V]:

[+1,+1]:V́[L,V]:

[+1,+1]:V̀ [L,V]:

[+1,+1]:V̀

[L,V]: [n,V]:

[+1,+1]:V̀ [0,+1]:V̀

[n,n]:

[+1,+1]:�

[n,n]:

[+1,+1]:�

Figure 1: MT-FST for Mende

marks the read input symbols on the input string
wi, and where D is a possible direction parame-
ter from {0,+1}. Given a parameter Di, the transi-
tion arc dictates whether the MT-FST will advance
(+1) or stay put (0) on the input tape wi.

A sample derivation for /HL + felama/ is in Ta-
ble 3. Each row keeps track of the: i) current state,
ii) location of the read head on the input tapes,
iii) transition arc used on each input tape, iv) out-
putted symbol, v) current output string. At step 5,
upon reading non the T-tape, asynchrony allows
the read-head to advance on the V-tape but not on
the V-tape, capturing the spreading effect.

4.1.2 Other processes without preassociation
Data in this section is illustrated in Table 2b-e and
collected from Koser et al. (2019) who showed
that they are are local in that they are QFLFP. We

Table 2: Sample of tonal processes, example input-output structures, and computational complexity.
Legend: * Function was proved to be QFLFP by Koser et al. (2019), ** Function is MISL if the output is 2-tuple

Language Process Pre-ass? ISL A-ISL MISL ~k-value
a Mende Iterative left-right spread 7 3* 3 [2,1]

/LH + VVV/ ! [V̀V́V́]
L H

V V V

L H

V V V

b Kikuyu Initial spread to two + final spread 7 3* 3 [2,3]
/LHLH + VVVVVVV/ ! [V̀V̀V́V̀V́V́V́]

L H L H

V V V V V V V

L H L H

V V V V V V V

c Hausa Iterative right-left spread 7 3* 3 [2,1]
/LH + VVV/ ! [V̀V̀V́]

L H

V V V

L H

V V V

d Northern Shona Edge-in + initial spread + medial spread 7 3* 3 [4,6]
/HLH + VVVVVV/ ! [V́V́V́V̀V̀V́]

H L H

V V V V V V

H L H

V V V V V V

e Kukuya Quantity sensitive spreading 7 3* 3 [4,2]
/H + VVVV/ ! [V́V́V́V́]

H

V V V V

H

V V V V

f Rimi Bounded tone shift 3 3 3 3 [1,2]
/VV́VV/ ! [VVV́V]
/hHi + VhViVV/

H

V V V V

H

V V V V

g Zigula Unbounded tone shift 3 7 3 3 [1,3]
/VVV́VVV/ ! [VVVVV́V]
/hHi + VhViVV/

H

V V V V V V

H

V V V V V V

h Bemba Bounded tone spread 3 3 3 3 [1,2]
/VV́VV/ ! [VV́V́V]
/hHi + VhViVV/

H

V V V V

H

V V V V

i Arusa Unbounded deletion 3 7 3 3 [3,1]
/V́ VV́V́V/ ! [V́VVVV]
/hHi hHi + hVi V(VV)V/

H H

V V V V V

H H

V V V V V

j Luganda Bounded Meussen’s rule 3 3 7 3 [2,2]**
/V́V́V́V/ ! [V́V̀V̀V]
/hHi hHi + hVi(VV)V/

H H

V V V V

H L

V V V V

k Shona Alternating Meussen’s rule 3 7 7 7
/V́-V́-V́/ ! [V́-V̀-V́]
/hHi-hHi-hHi + hVi-hVi-hVi/

H H H H

V V V V V

H L H L

V V V V V

l Ndebele Unbounded spreading to ante-penultimate 3 7 7 3 [1,3]
/V́VVVV/ ! [V́V́V́VV]
/hHi + hViVVVV/

H

V V V V V

H

V V V V V

Current state Tone tape Vowel tape Output symbol Output string
1. q0 oHLn oeaan
2. q1 oHLn o:+1 oeaan o:+1 �

3. q2 oHLn H:+1 oeaan e:+1 é é

4. q3 oHLn L:+1 oeaan a:+1 à éà

5. q3 oHLn n:0 oeaan a:+1 à éàà

6. qf oHLn n:+1 oeaan n:+1 � éàà

Table 3: Derivation of HL + felama over its tone-vowel tiers HL + eaa with the MT-FST in Figure 1

show that they are all MISL. Example MT-FSTs
and derivations for cases b,c are in the appendix.

Kikuyu has a process of spreading an initial
tone up to first two vowels (2b). The remaining
tones and vowels are associated 1-to-1. If there are
more vowels than tones, the final tone is spread:
/LHLH + VVVVVVV/ ! [V̀V̀ V́ V̀ V́V́V́]. Ini-
tial spreading up to two vowels is [2,3]-MISL be-
cause the function requires the context [oL,oVV]
in order to spread L to the first two vowels. Final
spread is [2,1]-MISL as in Mende (§4.1.1). To-
gether, Kikuya is [2,3]-MISL.

Hausa (2c) behaves analogously to Mende
but tones are associated right-to-left with initial-
spreading: /LH + VVV/ ! [V̀V̀ V́]. This is [2,1]-
MISL when the input string is read right-to-left.

North Karanga Shona is more complex (2d).
The initial and final tones are associated to the
first and last vowels respectively. The first tone
can spread up until the first 3 vowels but not to the
penultimate vowel. The medial tone can spread up
until the penultimate vowel: /HLH + VVVVVV/
! [V́V́V́ V̀V̀ V́]. The process is MISL but for
a very large locality window of [4,6]. The win-
dow may be larger or smaller depending on vari-
ous complications discussed in Koser et al. (2019).

Lastly, Kukuya (Table 2e) allows a H tone to
spread if it is the only tone: /H + VVV/ ! [V́V́V́].
Otherwise, if the input is HL, the L tone spreads:
/HL + VVV/ ! [V́ V̀V̀]. If LH, the L spreads up
until the penultimate vowel: /LH + VVV/ ! [V̀V̀
V́]. This is at most [4,2]-MISL: 4 over the T-tape
in order to check if it’s H, HL, or LH; 2 over the
V-tape to prevent an L from spreading to the final
vowel if the input tone is LH.7

7If the input tone is LHL, (Koser et al., 2019) do not state
if either L can ever show spreading in words of four or more
vowels. If they can, this is also MISL.

4.1.3 Contour tones
In §4.1, we assumed that the input had at least as
many vowels as tones. If the input has more tones
than vowels, final contour tones can be made: /HL
+ V/ ! [V̂]. Assume that the number of possible
contour tones is finite and modeled with a finite
number of characters: rising V̌, falling V̂. To gen-
erate contour tones, one compositional approach
is to first generate 1-to-1 or 1-to-many tone-vowel
associations without any contour symbols; if there
are more tones than vowels, then the unassigned
tones are outputted at the end of the output string:
/HL + V/ ! //V́ L//. The string is then fed to an
ISL function which changes strings of tonal vow-
els and tones into contour tones: //V́ L// ! [V̂].
A non-compositional approach is mapping unas-
sociated tones-and-vowels to the output through
a single function. We conjecture that this func-
tion would be MISL as long as there are no long-
distance dependencies involved in creating a con-
tour tone. For easier illustration, we assume a
compositional approach.

4.2 Tone with preassociation
4.2.1 Encoding preassociation
Tonal processes may include inputs where a tone
is preassociated to one or more vowels. This de-
pendency between the two strings is a reason why
graphical structures are useful representations for
tone, but it is a reason why many linear encod-
ings require some special markup system (Kornai,
1995). For our purposes, we use the following en-
coding in Figure 2, inspired from an encoding sys-
tem used by Yli-Jyrä (2013, 2015). We do not use
other proposed encoding systems (Wiebe, 1992;
Kornai, 1995; Yli-Jyrä, 2013, 2015) because they
are either designed for single-tape FSTs or do not
maintain strict locality.

If a tone T or single vowel V is preassociated,
it is underlined and demarcated with angle brack-
ets: hTi, hVi. If a span of multiple vowels are

Graph

L H L

V V V V V

Encoding hLiHhLi + hViV(VVV)

Figure 2: Encoding preassociation

associated to the same tone, they are marked with
parentheses instead of angle brackets: (V V . . .

V). This encoding creates the following enriched
input alphabets of multi-character units:

• ⌃T ={ H, L, hHi, hLi}

• ⌃V ={ V, hVi, (V, V, V) }8

Other possible configurations, such as word-
medial contour tones require a more elaborate en-
coding which we do not discuss. We set these
aside because the preassociation data in Chandlee
and Jardine (2019a) did not have such case stud-
ies.9 We set aside the evaluation of our encoding
mechanism based on Kornai (1995)’s desirada.

4.2.2 Locality of preassociated tones
With the above encoding, the tone functions in Ta-
ble 2f-i with preassociation are MISL. Example
MT-FSTs and derivations are in the appendix.

In Rimi (2f), a process of bounded tone shift
will cause a preassociated tone to delink from its
vowel and associate with the subsequent vowel:
/VV́VV/! [VVV́V]. In our encoding, the input is
/hHi + VhViVV/. This function is ISL, MISL, and

[1,2]-MISL. We need a locality window of size 1
over the T-string because we care if the current
tone symbol is a preassociated hHi. If yes, then we
need a locality window of size 2 over the V-string
in order to delink the current preassociated vowel
hVi and associate the tone with the next vowel.

Unlike Rimi, Zigula displayed unbounded tone
shift (2g) whereby a preassociated H is delinked
from its preassociated vowel and associated with
the penultimate vowel which can be at any dis-
tance away from the underlyingly preassociated
vowel: / VVV́VVV/ or /hHi + VVhViVVV/ !

8Note that (V, V, and V) are three separate input alphabet
symbols.

9One possible system, inspired from Yli-Jyrä (2015), is
to use the symbols / and \on the vowel-string. Given a tu-
ple of [hHihLi, (V/ V)] where space marks the separation of
multicharacter symbols, the slash / means that the first tone is
associated to the first vowel while the second tone to the two
vowels. Similarly for [hHihLi, (V \V)], the first tone is as-
sociated with the two vowels while the second tone with the
second vowel.

[VVVVV́V]. This function isn’t ISL but it is A-
ISL and [1,3]-MISL. Given a preassociated hHi as
a current input tone symbol, an underlying preas-
sociated vowel hVi is delinked regardless of con-
text, while current tone symbol hHi is associated
with the penultimate vowel. This requires a win-
dow of size 3 on the vowel string to check if the
current vowel is the penultimate vowel.

Similar to Rimi, Bemba (2h) shows bounded
tone spread whereby a preassociated tone-vowel
pair is not delinked but the next vowel also be-
comes associated to the tone: / VV́VV/ or /hHi
+ VhViVV/ ! [VV́V́V]. This is ISL, A-ISL, and
[1,2]-MISL. The only difference from Rimi is that
an input preassociated vowel hVi is not delinked,
i.e. it keeps its tone in the output.

In Arusa (2i), a process of unbounded deletion
deletes a phrase-final H tone if it is follows another
H tone. By deleting the H tone, any preassociated
vowels become delinked and toneless: /V́ VV́V́V/
or /hHi hHi + hVi V(VV)V/ ! [V́ VVVV]. This
process is not ISL because of the unbounded dis-
tance between the two spans of high vowels, but it
is A-ISL and [3,1]-MISL.10 A locality window of
size 3 is needed on the T-string in order to check if
the current input tone symbol is a phrase-final hHi
and succeeds another high tone. If yes, then any
currently read input vowels are delinked.

4.3 Distinct functions across locality classes
The distinctions between ISL, A-ISL, and MISL
are visible in more complex patterns in Table 2j-
l. So far, all the A-ISL and ISL functions we de-
scribed were also MISL. But some ISL yet non-
A-ISL functions are variably MISL depending on
how the function is defined. They are MISL only if
the function generates as output two output strings
of associated tones vs. associated vowels instead
of only one output string (§4.3.1). Furthermore,
some patterns are neither ISL, A-ISL, or MISL
(§4.3.2). And finally, some patterns are MISL but
neither ISL nor A-ISL (§4.3.3).

4.3.1 ISL but not A-ISL; variably MISL
Luganda (2j) has a process of bounded Meussen’s
rule which is ISL but not A-ISL. Here, if a preas-

10The FST in the appendix is [3,1]-MISL but it cannot
ensure that the number of preassociated tones in the input
match the number of spans of preassociated vowels. Doing
so requires that we either increase the locality window on the
vowel tape to 2, or we output a string tuple such that the func-
tion changes the substring hHihHinto hHihLin, similarly to
the Luganda case in §4.3.1.

sociated H tone precedes another preassociated H
tone and the two tones are associated to a contigu-
ous sequence of vowels, then the second H tone
becomes low: /V́V́V́V/ or /hHihHi + hVi(VV)V/
! [V́V̀V̀V]. The function is not A-ISL because it
needs to reference contiguity on both the tone and
vowel strings, see Chandlee and Jardine (2019a)
on why this matters.

Similarly, if the function is defined as a multi-
input function which generates only one output
string, then the function is not MISL. Assume
the T-string is hHihHi, and the V-string con-
tains two vowels preassociated to the two different
tones which we represent with butting brackets:
/hHihHi + hVi(VV. . .V)/. The second vowel (V
will map to a surface low toned vowel V̀ because
the two tones are contiguous. The second vowel
(V starts a span of preassociated vowels. But for
the other vowels like the final V), an MISL func-
tion cannot keep track if this vowel was part of
a preassociated vowel span which succeeded an-
other span, i.e. it can’t know if V) is preceded by
the substring hVi (V or not.

But if the function generates as output two out-
put strings as an output tuple of tones and vow-
els, then the function is [2,2]-MISL. The input
/hHihHi + hVi(V V V)/ is mapped to [hHihLi +
hVi(V V V)] with the only change being on the
T-string. The function is [2,2]-MISL because it
checks if i) the current tone symbol is a preasso-
ciated hHi and immediately succeeds another tone
symbol hHi and if ii) the current vowel symbol
is preassociated hVi or starts a span of preasso-
ciated vowels (V, and follows a span of preasso-
ciated vowels hVi or V). All this information is
local with a window of 2 on the two strings.

4.3.2 Neither ISL, A-ISL, nor MISL
Shona (2k) has a process of Alternating Meussen’s
rule where hetero-morphemic and contiguous
spans of preassociated high-toned vowels alternate
to form high and low sequences: /V́-V́-V́/ ! [V́-
V̀-V́]. This is not ISL, A-ISL, or MISL because it-
erative alternation is local over output information,
not input information. This is explained further in
Chandlee and Jardine (2019a).

4.3.3 MISL but neither ISL nor A-ISL
Finally, Ndebele (2l) has unbounded spread-
ing of a preassociated H tone up until the
ante-penultimate vowel: /V́VVVV/ or /hHi +
hViVVVV/ ! [V́V́V́VV]. This process is neither

ISL nor A-ISL but it is [1,3]-MISL. Reading from
right-to-left, the last two vowels surface as tone-
less. But if the current tone symbol is a preassoci-
ated hHi, then any vowel which is not the penulti-
mate or ultimate surfaces as high V́. This requires
a window of size 3 on the V-tape, but only 1 on
the tone tape.

5 Conclusion

This paper examined the computational expressiv-
ity of autosegmental phonology, in particular tonal
processes. Generalizing Input Strictly Local (ISL)
functions to handle multiple inputs, we showed
that the class of Multi-Input Strictly Local (MISL)
functions can compute almost all attested tonal
processes. These MISL functions are computed by
restricted deterministic asynchronous multi-tape
finite-state transducers. Using a careful linear en-
coding mechanism, this computational result ap-
plies equally well to tonal processes with or with-
out preassociation. The result also narrows the gap
in mathematical results between segmental and
autosegmental phonology.

References
Steven Bird. 1995. Computational phonology: a

constraint-based approach. Studies in Natural
Language Processing. Cambridge University Press,
Cambridge.

Steven Bird and T Mark Ellison. 1994. One-level
phonology: Autosegmental representations and
rules as finite automata. Computational Linguistics,
20(1):55–90.

Steven Bird and Ewan Klein. 1990. Phonological
events. Journal of linguistics, 26(1):33–56.

Jane Chandlee. 2014. Strictly Local Phonological
Processes. Ph.D. thesis, University of Delaware,
Newark, DE.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, pages 1–43.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2015a. Output strictly local functions. In 14th
Meeting on the Mathematics of Language, pages
112–125.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2015b. Output strictly local functions. In
Proceedings of the 14th Meeting on the Mathematics
of Language (MoL 2015), pages 112–125, Chicago,
USA.

Jane Chandlee and Jeffrey Heinz. 2018. Strict lo-
cality and phonological maps. Linguistic Inquiry,
49(1):23–60.

Jane Chandlee and Adam Jardine. 2019a. Autoseg-
mental input strictly local functions. Transactions
of the Association for Computational Linguistics,
7:157–168.

Jane Chandlee and Adam Jardine. 2019b. Quantifier-
free least fixed point functions for phonology. In
Proceedings of the 16th Meeting on the Mathematics
of Language (MoL 16), Toronto, Canada. Associa-
tion for Computational Linguistics.

John Coleman. 1998. Phonological representations:
their names, forms and powers. Cambridge Univer-
sity Press.

John Coleman and John Local. 1991. The no crossing
constraint in autosegmental phonology. Linguistics
and Philosophy, 14(3):295–338.

C. C. Elgot and J. E. Mezei. 1965. On relations de-
fined by generalized finite automata. IBM Journal
of Research and Development, 9(1):47–68.

Emmanuel Filiot and Pierre-Alain Reynier. 2016.
Transducers, logic and algebra for functions of finite
words. ACM SIGLOG News, 3(3):4–19.

Patrick C Fischer. 1965. Multi-tape and infinite-state
automataa survey. Communications of the ACM,
8(12):799–805.

Patrick C Fischer and Arnold L Rosenberg. 1968. Mul-
titape one-way nonwriting automata. Journal of
Computer and System Sciences, 2(1):88–101.

Christiane Frougny and Jacques Sakarovitch. 1993.
Synchronized rational relations of finite and infinite
words. Theoretical Computer Science, 108(1):45–
82.

Carlo A. Furia. 2012. A survey of multi-tape automata.
http://arxiv.org/abs/1205.0178. Lat-
est revision: November 2013.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th

Meeting on the Mathematics of Language (MoL 13),
pages 52–63, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Adam Jardine. 2016a. Computationally, tone is differ-
ent. Phonology, 33(2):247–283.

Adam Jardine. 2016b. Locality and non-linear
representations in tonal phonology. Ph.D. thesis,
University of Delaware, Newark, DE.

Adam Jardine. 2017a. The local nature of tone-
association patterns. Phonology, 34(2):363–384.

Adam Jardine. 2017b. On the logical complexity of
autosegmental representations. In Proceedings of
the 15th Meeting on the Mathematics of Language,
pages 22–35.

Adam Jardine. 2019. The expressivity of autoseg-
mental grammars. Journal of Logic, Language and
Information, 28(1):9–54.

Martin Kay. 1987. Nonconcatenative finite-state mor-
phology. In Third Conference of the European
Chapter of the Association for Computational
Linguistics.

George Anton Kiraz. 2001. Computational nonlinear
morphology: with emphasis on Semitic languages.
Cambridge University Press.

Andras Kornai. 1995. Formal phonology. Garland
Publishing Inc.

Nathan Koser, Christopher Oakden, and Adam Jardine.
2019. Tone association and output locality in non-
linear structures. In Supplemental proceedings of
AMP 2019.

Robert McNaughton and Seymour A Papert. 1971.
Counter-Free Automata (MIT research monograph
no. 65). The MIT Press.

Michael O Rabin and Dana Scott. 1959. Finite au-
tomata and their decision problems. IBM journal
of research and development, 3(2):114–125.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013.
Cognitive and sub-regular complexity. In Formal
Grammar, volume 8036 of Lecture Notes in
Computer Science, pages 90–108. Springer.

James Rogers and Geoffrey Pullum. 2011. Aural
pattern recognition experiments and the subregu-
lar hierarchy. Journal of Logic, Language and
Information, 20:329–342.

Bruce Wiebe. 1992. Modelling autosegmental phonol-
ogy with multi-tape finite state transducers. Mas-
ter’s thesis, Simon Fraser University.

Anssi Yli-Jyrä. 2013. On finite-state tonology with au-
tosegmental representations. In Proceedings of the
11th international conference on finite state methods
and natural language processing. Association for
Computational Linguistics.

Anssi Yli-Jyrä. 2015. Three equivalent codes for
autosegmental representations. In Proceedings of
the 12th International Conference on Finite-State
Methods and Natural Language Processing 2015
(FSMNLP 2015 Düsseldorf).

A Appendix

A sample MT-FST and derivation are given for
some of the tone processes.

A.1 Tonal processes without preassociation
These patterns take as input a pair of strings with-
out preassociation.

https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1147/rd.91.0047
https://doi.org/10.1145/2984450.2984453
https://doi.org/10.1145/2984450.2984453
http://arxiv.org/abs/1205.0178
http://www.aclweb.org/anthology/W13-3006
http://www.aclweb.org/anthology/W13-3006

A.1.1 Kikuyu spreading
In Kikuyu (Table 2b), the first tone associates
with the first two vowels. 1-to-1 association fol-
lows. A final tone may undergo final spread-
ing, e.g. f ([LHLH, VVVVVVV])=V̀V̀V́V̀V́V́V́. A
[2,3]-MISL MT-FST is provided in Figure 3, with
a sample derivation in Table 4.

A.1.2 Hausa right-to-left spreading
In Hausa (Table 2b), tones are associated right-to-
left with initial spread, e.g. f ([LH, VVV])=V̀V̀V́.
This function is modeled by the [2,1]-MISL MT-
FST in Figure 4, with a sample derivation in Table
4. The FST processes the input string-tuple from
right to left using the -1 direction parameter.

A.2 Tonal processes with preassociation
These functions take as input a preassociated pair
of tones and vowels.

A.2.1 Rimi bounded tone shift
In Rimi (Table 2f), a preassociated tone will
shift one vowel to the right, e.g. f ([hHi,
VhViVV]=VVV́V. This function is modeled by the
[1,2]-MISL MT-FST in Figure 5, with a sample
derivation in Table 6. We assume that the only
possible underlying tone string is a preassociated
H.

Final preassociated vowels do not undergo tone
shift: f ([hHi, VVVhVi]=VVVV́. We factor this out
for illustrative reasons. Otherwise, the function is
[2,2]-MISL and needs a MT-FST with more states.

A.2.2 Zigulu unbounded tone shift
In Zigulu (Table 2g), unbounded tone shift causes
a preassociated H tone to shift to the penultimate
vowel, e.g. f ([hHi, VVhViVVV])=VVVVV́V.
This function is modeled by the [1,3]-MISL MT-
FST in Figure 6, with a sample derivation in 7.
For easier illustration, the MT-FST processes the
input right-to-left using the -1 direction parame-
ter. We assume that the tone string can either be
an empty string o�n or a single preassociated H
tone ohHin.

A.2.3 Bemba unbounded tone spread
In Bemba (Table 2h), bounded tone spread causes
a preassociated H tone to surface on its preasso-
ciated vowel and on the subsequent vowel, e.g.
f ([hHi,VhViVV])=VV́V́V. This function is mod-
eled by the [1,2]-MISL MT-FST in Figure 7, with
a sample derivation in Table 8. We assume that the

input tone string contains either an empty string
o�n or a single preassociated H tone ohHin.

A.2.4 Arusa unbounded deletion
In Aursa (Table 2i), unbounded deletion causes a
phrase-final preassociated H to delete if it follows
another H tone, e.g. f ([hHihHi,hV V(VVV]=V́

VVVV. This function is computed by the [3,1]-
MISL MT-FST in Figure 8, with a sample deriva-
tion in 9. The FST reads the input from right-to-
left using the -1 direction parameter. We assume
the input tone string contains zero or more preas-
sociated H tones: T=ohHi⇤n.

As a caveat, the function in Figure () can-
not ensure that the number of preassociated tones
matches the number of spans of preassociated
vowels. That more faithful function is [3,2]-MISL.
We do not draw it here because of size.

For clarity, in Table 9, preassociated vowels are
given a subscript 1 instead of underlining.

q0start q1 (o,o) q2 (o,oV) q3 (H,VV)

q4 (L,VV)

qf

[o,o]:

[+1,+1]:�

[H,V]:

[0,+1]:V́

[L,V]:

[0,+1]:V̀

[H,V]:

[+1,+1]:V́

[L,V]:

[+1,+1]:V̀

[H,V]: [n,V]:

[+1,+1]:V́ [0,+1]:V́

[H,V]:

[+1,+1]:V́

[L,V]:

[+1,+1]:V̀

[L,V]: [n,V]:

[+1,+1]:V̀ [0,+1]:V̀

n:+1

n:+1:�

n:+1

n:+1:�

Figure 3: MT-FST for Kikuyu initial spread

Current state Tone tape Vowel tape Output symbol Output string
1. q0 oLHLHn oVVVVVVVn
2. q1 oLHLHn o:+1 oVVVVVVVn o:+1 �

3. q2 oLHLHn L:0 oVVVVVVVn V:+1 V̀ V̀
4. q4 oLHLHn L:+1 oVVVVVVVn V:+1 V̀ V̀V̀
5. q3 oLHLHn H:+1 oVVVVVVVn V:+1 V́ V̀V̀V́
6. q4 oLHLHn L:+1 oVVVVVVVn V:+1 V̀ V̀V̀V́V̀
7. q3 oLHLHn H:+1 oVVVVVVVn V:+1 V́ V̀V̀V́V̀V́
8. q3 oLHLHn n:0 oVVVVVVVn V:+1 V́ V̀V̀V́V̀V́V́
9. q3 oLHLHn n:0 oVVVVVVVn V:+1 V́ V̀V̀V́V̀V́V́V́
10. qf oLHLHn n:+1 oVVVVVVVn n:+1 � V̀V̀V́V̀V́V́V́

Table 4: Derivation of f ([LHLH, VVVVVVV])=V̀V̀V́V̀V́V́V́ in Kikuyu with the MT-FST in Figure 3

Current state Tone tape Vowel tape Output symbol Output string
1. q0 oLHn oVVVn
2. q1 oLHn n:-1 oVVVn n:-1 �

3. q2 oLHn H:-1 oVVVn V:-1 V́ V́
4. q3 oLHn L:-1 oVVVn V:-1 V̀ V̀V́
5. q3 oLHn o:0 oVVVn V:-1 V̀ V̀V̀V́
6. qf oLHn o:-1 oVVVn o:-1 � V̀V̀V́

Table 5: Derivation of f ([LH, VVV])=V̀V̀V́ in Hausa with the MT-FST in Figure 4

q0start q1(n,�)

q2 (H,�)

q3 (L,�)

qf

[n,n]:

[-1,-1]:�

[H,V]:

[-1,-1]:V́

[H,V]: [o,V]:

[-1,-1]:V́ [0,-1]:V́

[L,V]:

[-1,-1]:V̀

[L,V]:

[-1,-1]:V̀

[L,V]:

[-1,-1]:V̀

[L,V]: [o,V]:

[-1,-1]:V̀ [0,-1]:V̀

[o,o]:

[-1,-1]:�

[o,o]:

[-1,-1]:�

Figure 4: MT-FST for Hausa

q0start q1 (�,o)

q2 (�,V)

q3 (�,hVi)

qf

[o,o]:

[+1,+1]:�

[hHi,V]:

[0,+1]:V

[hHi,V]:

[0,+1]:V

[hHi,hVi]:

[0,+1]:V

[hHi,hVi]:

[0,+1]:V

[hHi,V]:

[+1,+1]:V́

[n,n]:

[+1,+1]:0

Figure 5: MT-FST for Rimi

Current state Tone tape Vowel tape Output symbol Output string
1. q0 ohHin oVhViVVn
2. q1 ohHin o:+1 oVhViVVn o:+1 �

3. q2 ohHin hHi:0 oVhViVVn V:+1 V V
4. q3 ohHin hHi:0 oVhViVVn hVi:+1 V VV
5. q2 ohHin hHi:+1 oVhViVVn V:+1 V́ VVV́
6. q2 ohHin n:0 oVhViVVn V:+1 V VVV́V
7. qf ohHin n:+1 oVhViVVn n:+1 � VVV́V

Table 6: Derivation of f ([hHi, VhViVV]=VVV́V in Rimi with the MT-FST in Figure 5

q0start q1 (�,n) q2 (�,Vn) q3 (�,VV) qf

[n,n]:

[-1,-1]:�

[hHi,V]:

[0,-1]:V

[o,V]:

[0,-1]:V

[hHi,V]:

[-1,-1]:V́

[o,V]:

[0,-1]:V

[o,V]:

[0,-1]:V

[o,o]:

[-1,-1]:�

Figure 6: MT-FST for Zigulu

Current state Tone tape Vowel tape Output symbol Output string
1. q0 ohHin oVVVVVVn
2. q1 ohHin n:-1 oVVVVVVn n:-1 �

3. q2 ohHin hHi:0 oVVVVVVn V:-1 V V
4. q3 ohHin hHi:-1 oVVVVVVn V:-1 V́ V́V
5. q3 ohHin o:0 oVVVVVVn V:-1 V VV́V
6. q3 ohHin o:0 oVVVVVVn V:-1 V VVV́V
7. q3 ohHin o:0 oVVVVVVn V:-1 V VVVV́V
8. q3 ohHin o:0 oVVVVVVn V:-1 V VVVVV́V
9. qf ohHin o:-1 oVVVVVVn o:-1 � VVVVV́V

Table 7: Derivation of f ([hHi, VVhViVVV])=VVVVV́V in Zigulu with the MT-FST in Figure 6

Current state Tone tape Vowel tape Output symbol Output string
1. q0 ohHin oVhViVVn
2. q1 ohHin o:+1 oVhViVVn o:+1 �

3. q2 ohHin hHi:0 oVhViVVn V:+1 V V
4. q3 ohHin hHi:0 oVhViVVn hVi:+1 V VV́
5. q2 ohHin hHi:+1 oVhViVVn V:+1 V́ VV́V́
6. q2 ohHin n:0 oVhViVVn V:+1 V VV́V́V
7. qf ohHin n:+1 oVhViVVn n:+1 � VV́V́V

Table 8: Derivation of f ([hHi, VhViVV]=VV́V́V in Bemba with the MT-FST in Figure 7

q0start q1 (�,o)

q2 (�,V)

q3 (�,hVi)

qf

[o,o]:

[+1,+1]:�

[hHi,V]:

[0,+1]:V

[hHi,V]:

[0,+1]:V

[hHi,hVi]:

[0,+1]:V́

[hHi,hVi]:

[0,+1]:V́

[hHi,V]:

[+1,+1]:V́

[n,n]:

[+1,+1]:0

Figure 7: MT-FST for Bemba

q0start

q1(n,�) q2 (hHin,�) q3 (hHihHi,�) qf

[n,n]:[-1,-1]:�

[hHi,V]:[0,-1]:V

[o,V]:[0,-1]:V

[o,o]:[-1,-1]:�

[hHi,hVi]:[-1,0]:�

[hHi,V)]:[-1,0]:�

[hHi,V)]:[0,-1]:V

[hHi,V]:[0,-1]:V

[o,hVi]:[0,-1]:V́

[o,V)]:[0,-1]:V́

[o,V]:[0,-1]:V́

[o,(V]:[0,-1]:V́

[o,V]:[0,-1]:V

[hHi,hVi]:[-1,-1]:V

[hHi,(V]:[-1,-1]:V

[o,o]:[-1,-1]:�

[hHi,V]:[0,-1]:V

[hHi,hVi]:[-1,-1]:V́

[hHi,V)]:[0,-1]:V́

[hHi,V]:[0,-1]:V́

[hHi,(V]:[-1,-1]:V́

[o,hVi]:[0,-1]:V́

[o,V)]:[0,-1]:V́

[o,V]:[0,-1]:V́

[o,(V]:[0,-1]:V́

[o,V]:[0,-1]:V

[o,o]:[-1,-1]:�

Figure 8: MT-FST for Arusa

Current state Tone tape Vowel tape Output symbol Output string
1. q0 ohHihHin ohV1iV(V1V1)Vn
2. q1 ohHihHin n:-1 ohV1iV(V1V1)Vn n:-1 �

3. q1 ohHihHin hHi:0 ohV1iV(V1V1)Vn V:-1 V V
4. q2 ohHihHin hHi:-1 ohV1iV(V1V1)Vn V1):-1 � V
5. q2 ohHihHin hHi:0 ohV1iV(V1V1)Vn V1):-1 V VV
6. q3 ohHihHin hHi:-1 ohV1iV(V1V1)Vn (V1:-1 V VVV
7. q3 ohHihHin o:0 ohV1iV(V1V1)Vn (V:-1 V VVVV
8. q3 ohHihHin o:0 ohV1iV(V1V1)Vn hV1i:-1 V́ V́VVVV
9. qf ohHihHin o:-1 ohV1iV(V1V1)Vn o:-1 � V́VVVV

Table 9: Derivation of f ([hHihHi,hV V(VVV]=V́ VVVV in Arusa with the MT-FST in Figure 8

	Proceedings of the Society for Computation in Linguistics
	Multi-Input Strict Local Functions for Tonal Phonology
	Author #1
	Author #2

	Multi-Input Strict Local Functions for Tonal Phonology

