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Abstract

This paper presents an automata-theoretic
characterization of templatic morphology. We
generalize the Input Strictly Local class of
functions, which characterize a majority of
concatenative morphology, to consider multi-
ple lexical inputs. We show that strictly local
asynchronous multi-tape transducers success-
fully capture this typology of nonconcatena-
tive template filling. This characterization and
restriction uniquely opens up representational
issues in morphological computation.

1 Introduction

Recent work in mathematical phonology connects
phonological mappings to subclasses of the reg-
ular functions (McNaughton and Papert, 1971;
Rogers and Pullum, 2011; Rogers et al., 2013;
Heinz and Lai, 2013; Chandlee, 2014). One of
the simplest subclasses is the Input Strictly Local
(ISL) functions, which take as input a single string
and generate an output based on local informa-
tion. Despite their reduced expressivity, ISL func-
tions capture an overwhelming majority of phono-
logical and morphological maps (Chandlee, 2017;
Chandlee and Heinz, 2018). In addition, ISL func-
tions are provably easier and faster to learn than
full regular functions (Chandlee et al., 2015a).

In this paper, we generalize this notion of lo-
cality from the above single-input functions to
functions which take multiple strings as input.
Such functions are called Multi-Input Strictly Lo-
cal (MISL). MISL functions are computed by de-
terministic asynchronous Multi-tape Finite State
Transducers (MT-FSTs). Natural language has
processes which are understood in terms of en-
riched multi-string input structures, i.e. autoseg-
mental structure. We focus on root-and-pattern
(RPM) morphology or template-filling in Semitic.
This paper shows that when formalized as a multi-
input function, most RPM patterns are MISL.

Semitic RPM has has often been computed us-
ing different types of of MT-FSTs. By showing
that that the bulk of Semitic RPM can be com-
puted with only MISL. MT-FSTs, this can act as
a stepping stone to determining the learnability of
RPM. It likewise acts as a benchmark to examine
the typology of attested and unattested RPM pro-
cesses. Furthermore, by using multi-input func-
tions with MT-FSTs instead single-input functions
with FSTs, we can more iconically compute the
fact that 1) RPM consists of separate tiers for
roots, inflection, and templates, and that 2) this
separation makes certain RPM processes be local.

Single-input functions are a special case of
multi-input functions. With finite-state calculus,
single-input functions correspond to rational func-
tions when they are modeled with 1-way single-
tape FSTs, and to regular functions when modeled
by 2-way single-tape FSTs (Filiot and Reynier,
2016).! Multi-input functions correspond to the
class of functions modeled by 1-way or 2-way
MT-FSTs. Although there is work on the expres-
sivity of MT-FSTs (Furia, 2012), little is known
on multi-input functions and their algebra, expres-
sivity, and hierarchy (Frougny and Sakarovitch,
1993). We show that a locally defined subclass,
MISL, carves a substantial chunk of Semitic RPM.

2 Preliminaries

2.1 Preliminaries for single-input functions

Let x,xbe the start and end boundaries respec-
tively. Let X be a finite alphabet of symbols (ex-
cluding x,x). Let ¥, = X U {x, x}. Let X* the
set of all strings over ¥. Let |w| indicate the length
of w € X*. For two strings w and v let wv be their

'By single-tape FST, we mean a two-tape FST with one
input tape and one output tape. Note that the functions com-
puted by 1-way FSTs are called ‘regular functions’ in Amer-
ican computer science. In this paper, we follow French con-
ventions which call this class the ‘rational functions’ (Filiot
and Reynier, 2016).



concatenation, and for a set . C ¥* of strings and
a string w, by wL we denote {wv|v € L}. Let A
denote the empty string.

Given some string u and a natural number
k, the k-suffix of w is the last k£ symbols of w:
suff(u, k) = v s.t. |v| = k and zv = u for some
x € ¥*. For an alphabet ¥, the k-factors of ¥ are
the set of strings w € X« such that |w| < k.

Informally, a single-input function f is k-ISL
if for all uj,ug € ¥*, if suff(u;,k — 1) =
suff(ug, k — 1) then the two strings have the out-
put extensions w.r.t f (Chandlee, 2014; Chandlee
et al., 2015b). For any k-ISL function f over
domain X*, there exists a canonical determinis-
tic single-tape finite-state transducer (1T-FST) M
such that |M| = f (meaning M computes f), and
every state ¢ € () in M is labelled with one of the
k — 1 suffixes of X*. Transitions are function tu-
ples A: @ x X — Q x I'*. For a state ¢ € () and
input symbol a € ¥, §(¢,a) = (p, B) such that
B €T and p = suff(qa, k — 1).

2.2 Preliminaries for multi-input functions

We introduce notation for functions which take
multiple strings as input. To do so, we use tu-
ples demarcated by brackets. In the formalization
here, we only consider functions which produce
one output string, not a tuple of output strings. But
extending the formalization is trivial; such a func-
tion is illustrated in another paper of ours in the
same volume.

A function f is an n-input function if it takes
as input a tuple of n strings: [w1, ..., w,], which
we represent as w, where each word w; is made
up of symbols from some alphabet 3; such that
w; € Y. Each alphabet 3; may be disjoint or
intersecting, so two input strings w;, w; may be
part of the same language 7. These n alphabets
form a tuple 3. Tuples can be concatenated: if
W = [ab, |, & = [d, ef], then WZ = [abd, cef].

To generalize the notion of suffixes into multi-
ple strings, we define a tuple of n natural num-
bers as k = [k1,...,kn]. Given some tuple of
n strings w and tuple of n numbers k, E-suﬂix
of i is a tuple ¥ of n strings v;, made up of the
last k; symbols on w;: suff(w,k) = Vst 7 =
[1}1, ceey Un] and ‘UZ| = k; and z;v; = w; for x; €
Y. E.g. for w=[abc,def] and ko= [2,1],
suff(d, k) = [bc, f]. Given a tuple k, the op-
eration k — x subtracts z from each of k;. E.g., for
k=12,3,6],k—1=][1,2,5]. Fora tuple of al-

phabets ¥, the k— factors of ¥ is the set of tuples
@ € 3 such that |w;| < k;. For example with

Let f be an n-input function defined over an
n—tuple @ of input strings @ = [wi,...,wy,]
taken from the tuple of n alphabets 3. As an
informal and intuitive abstraction from ISL func-
tions, f is Multi-Input Strictly Local (MISL) for
k = [k1,...,ky] if the function operates over a
bounded window of size k; for w;. Formally,

Definition 1: A function f is k-MISL iff
there exists a deterministic asynchronous Multi-
tape FST such thati) |M| = f, and ii) the MT-FST
is canonically k-MISL

We explain k-MISL Multi-tape FSTs in the next
section.

Definition 1 is a automata-based definition of
an MT-FST. We are currently working on finding
a language-theoretic-based definition of an MISL
function. Possible definitions for ISL functions,
such as the use of tails or output extensions, can-
not be easily extended to MISL functions. This is
because are functions which have an MISL MT-
FST, but the function has an infinite set of tails.
We are currently investigating whether a monoidal
definition of MISL functions is useful.

For an ISL function, it does not matter if the in-
put string is read left-to-right or right-to-left. But
for an MISL function, it does. A function may be
left-to-right MISL but not right-to-left MISL. We
leave out a proof but an illustration is given in an-
other paper of ours in the same volume.

2.3 Multi-tape finite-state transducers

Multi-input functions can be modeled by multi-
tape FSTs (MT-FST). An MT-FST is conceptu-
ally the same as single-tape FSTs, but over multi-
ple input tapes (Rabin and Scott, 1959; Elgot and
Mezei, 1965; Fischer, 1965; Fischer and Rosen-
berg, 1968; Furia, 2012). MT-FSAs and MT-FSTs
are equivalent, and single-tape FSTs correspond to
an MT-FSA with two tapes.

Informally, a MT-FST reads n multiple input
strings as n input tapes, and it writes on a sin-
gle output tape. Each of the n input strings is
drawn from its own alphabet >;. The output
string is taken from the output alphabet I'. For
an input tuple of n strings W = [wy,...,wy,] =
[0171 Ol Juq|s---10n,1 -+ O'n,|wn\]’ the initial
configuration is that the MT-FST is in the initial
state ¢, the read head. The FST begins at the first
position of each of the n input tapes o; 1, and the



writing head of the FST is positioned at the begin-
ning of an empty output tape. After the FST reads
the symbol under the read head, three things oc-
cur: 1) the state changes; 2) the FST writes some
string; 3) the read head may advance to the right
(+1) or stay put (0) on different tapes: either move
on all tapes, no tapes, or some subset of the tapes.

This process repeats until the read head “falls
off” the end of each input tape. If for some input
w, the MT-FST falls off the right edge of the n
input tapes when the FST is in an accepting state
after writing u on the output tape, we say the M T-
FST transduces, transforms, or maps, w to w or
frw = u.> Otherwise, the MT-FST is undefined
at . We illustrate MT-FSTs in §4.

Formally, a n—MT-FST for some natural num-
ber n is a 6-tuple (Q, Y., T, qo, F, A) where:

e n is the number of input tapes
e () is the set of states
« Y, = [X1%, .-, Xinx] is a tuple of n input al-
phabets ¥; which include the end boundaries
Eixl
T is the output alphabet
qo € Q@ is the initial state
F C @ is the set of final states
0:Q x Y — Q x D x T'* is the transition
function where
- D = {0,+1} is the set of possible di-
rections,’

- D = [D"] is an n-tuple of possible di-
rections to take on each tape

The above definition can be generalized for
MT-FSTs which use multiple output tapes. As
parameters, an MT-FST can be deterministic or
non-deterministic, synchronous or asynchronous.
We only use deterministic MT-FSTs which are
weaker than non-deterministic MT-FSTs. An MT-
FST is synchronous if all the input tapes are ad-
vanced at the same time, otherwise it is asyn-
chronous. We use asynchronous MT-FSTs which
are more powerful than synchronous MT-FSTs.
Synchronous MT-FSTs are equivalent to multi-
track FSAs which are equivalent to single-tape
FSAs, making them no more expressive than reg-
ular languages. For a survey of the properties of
MT-FSAs and MT-FSTs, see Furia (2012).

2If the MT-FST generates tuples instead of single strings,
then the MT-ST maps 0 to 4.

31f the MT-FST reads from right to left, then it uses the -1
direction parameter

A configuration ¢ of a n—MT-FST M is
an element of (E;*QZ_;]* x I'*), short for
(X102 s - - 25 q25 ] x T'). The meaning
of the configuration ¢ = ([wigx1, ..., wnqxy), )
is the following. The input to M is the tuple
WZ = [wixi,...,wpTy]. The machine is cur-
rently in state ¢g. The read head is on each of the n-
input tapes on the first symbol of z; (or has fallen
off the right edge of the input tape if x; = A). u is
currently written on the output tape.

Let the current configuration be
([wigaizy, ..., wpqanwy],u) and let the current
transition arc be (g, [a1,...,an]) = (r,D,v).

If D = [0, then the next configuration is
([wirayzy, ..., wpray,zy],uv) in which case
we write ([wigaixy,. .., WnqanTy),u) —
([wiraixy, ..., werapzy], uww) (= none
of the tapes are advanced) If D =
[+1™], then the next configuration is
([wrarrzy, ..., wpapre,],uwv) in which case
we write ([wigaizi, ..., wpqanTy],u)  —
([wrarrzy, ..., wpaprey],uv) (= all the tapes

are advanced). Otherwise, the next configuration
is (Jw;Chzy ..., w,Cpy,...|],uv) where C; =
ra; if D; = 0 and C; = a;r if D; = +1 in which
case we write ([wiqaixy, ..., wpqanTyl,u) —
([wiCizy ..., w,Cxy,...],uv) (= a subset of the
tapes are advanced).*

The transitive closure of — is denoted with —.
Thus, if ¢ —7 ¢ then there exists a finite sequence
of configurations ¢y, cs...,c, with n > 1 such
thatc=c; —c3 — ... ¢, =C.

As for the function that a MT-FST M com-
putes, for each n—tuple W € >* where @ =
[wi, ..., wy|, fu(W) = u € T'* (where fy =
|M|) provided there exists ¢ € F' such that
([go  wix,...,q0 ¥ wyx],\) =T ([xw; x
qf, ..., Xwy X gg],u). Otherwise, if the config-
uration is ([xwy X q, ..., Xw, X ¢],u) and ¢ &€ F
then the transducer crashes and the transduction
fr is undefined on input . Note that if a MT-FST
is deterministic, it follows that if f7 () is defined
then w is unique.

As explained in §2.2, we define a function as
k-MISL iff there exists a corresponding determin-
istic asynchronous k-MISL Multi-tape FST.

Definition 2: A deterministic asynchronous
MT-FST M with alphabet % is a canonical MT-

“Note that the interpretation of the third type of configu-
ration subsumes the first two. We explicitly show the first two
for illustrative reasons.



FST for an k-MISL function f if the states of M
are labelled with the k& — 1 suffixes of ..

In Definition 2, the restriction on state labels
does not apply to the unique initial state and
unique final state. In other words, except for the
initial and final states g and ¢y, every state corre-

sponds to a possible k—1 factor of f

3 Root-and-pattern morphology in
template filling

Semitic root-and-pattern morphology (RPM) in-
volves segmenting a word into multiple discontin-
uous morphemes or morphs: a consonantal root C,
inflectional vocalism V, and prosodic template T.’
A partial paradigm of Standard Arabic verbs is in
Table 1, amassed from McCarthy (1981). To illus-
trate, the verb kutib (Table 1a) is morphologically
composed of a root C=ktb, vocalism V=ui, and
template T=CVCVC which marks locations for
consonants and vowels. Its autosegmental struc-
ture is provided in Table 1a.°

The bulk of theoretical and psycholinguistic
results show that Semitic RPM does involve
template-filling (Prunet, 2006; Aronoff, 2013;
Kastner, 2016), but the formulation of templates
is controversial (Ussishkin, 2011; Bat-El, 2011).
One hypothesis is that the template is composed
of CV slots (McCarthy, 1981). Alternatives are
that the template is made of prosodic units like
moras, syllables, and feet (McCarthy and Prince,
1990a,b), is derived from other templates via af-
fixation (McCarthy, 1993), or is a set of optimized
prosodic constraints (Tucker, 2010; Kastner, 2016;
Zukoff, 2017). Alternatively, the job of the tem-
plate is done by deriving words from other words
via overwriting or changing the vowels and conso-
nants (Ussishkin, 2005), e.g. katab+ui— kutib.

We take a theory-neutral position and focus on
the mathematical function behind RPM. Mathe-
matically, RPM is a 3-input function that takes as
input a 3-tuple @ = [w1, we, w3] where w; is the

>In Hebrew, some roots consists of consonants and vow-
els (Kastner, 2016). This difference is computationally trivial
as long the template still treats Cs and Vs differently.

%We do not formalize RPM functions in broken plurals
(Hammond, 1988; McCarthy and Prince, 1990b). Kiraz
(2001, 106) formalizes it as a MT-FSA which use two in-
puts tapes: the singular and the vocalism. The singular tape
can be annotated with prosodic information. We conjecture
that broken plural formation is also MISL because there are
no long-distance dependencies. We leave out a full formal-
ization for space.

root C, wy is the vocalism V, wj is the template T.
The input alphabets are >; = Y of consonants,
Yo = Xy of vowels, and X3 = Y7 of prosodic
slots {C,V} and other elements (moras, affixes).
Each alphabet includes the start and end bound-
aries X, X: 3; = X; U {x, x}. The output al-
phabet is the output segments.

Thus mathematically, many of the formal-
izaitons of templates are equivalent. Whether
the template or T-string is made from CV units
or moras is a notational difference (Kiraz, 2001)
and does not affect locality. The use of deriva-
tional affixation is analogous to function composi-
tion; it does not affect locality and is discussed in
§4.1.3,84.2. For prosodic optimization, the func-
tion still needs to be well-defined over multiple
inputs and this makes a template be implicitly
present in the function. This is discussed in (Dola-
tian and Rawski, 2019). As for an overwriting
approach, it still requires a mechanism for plac-
ing the new segments that references discontinu-
ity. That is, the function katab+ui—kutib im-
plicitly assumes that the vowels can be separated:
kVtVb+ui—kutib. The fact that one of the inputs
is a template with filled consonants kVtVb can be
equally well broken down to a root and template
ktb+CVCVC.

Computationally, different models have been
used to compute the above mathematical func-
tion behind Semitic RPM: single-tape FSTs
(Bird and Ellison, 1994; Beesley and Karttunen,
2000, 2003; Cohen-Sygal and Wintner, 2006;
Roark and Sproat, 2007), synchronous MT-FSAs
(Kiraz, 2000, 2001; Hulden, 2009), and non-
deterministic asynchronous MT-FSTs (Kay, 1987;
Wiebe, 1992). For a review, see Kiraz (2000, 92),
Kiraz (2001, Ch4),and Wintner (2014, 47). We
model RPM with asynchronous deterministic MT-
FSTs in order to capture its locality properties,
which we explain next.

4 Multi-Input Locality in Semitic

Mathematically, there is little discussion on the lo-
cality or non-locality of RPM. Chandlee (2017)
shows that template-filling cannot be easily mod-
eled with single-tape FSTs without sacrificing lo-
cality. Although not ISL, we show that the major-
ity of RPM processes in Table 1 are MISL.
Arabic roots are generally at most 5 segments,
vocalisms at most 2 segments, and the template
is at most 12 slots (McCarthy, 1981). With this



Table 1: Partial paradigm of Arabic root-and-pattern morphology with stable k-values.

Slot-filling pattern
1-to-1

... four consonants

... with final deletion

... with pre-association

1-to-many...
... final spread of...
... vowels

... consonants

... medial spread of...
... (long) vowels

... (geminate) consonants

Binyan
Measure [
Passive

Measure QI
Passive

Borrowed verb

Measure VIII
Passive

Measure [
Active

Measure [
Active

Measure 111
Passive

Measure 11
Passive

Gloss
kutib

turzim

maynat

k<t>usib

katab

samam

kuutib

kuttib

Output
‘was written’

‘was translated’

‘be magnetized’

‘was gained’

‘it wrote’

‘he poisoned’

‘be corresponded’

‘be caused to write’

Root
ktb

trsm

mynts

Q-5

ksb

ktb

sm

ktb

ktb

Vowels
ui

ui

ui

a-
<

a - =
<

Template
cveve
i
t b
| I
C v C
cveeve
i
r 3
\ [
C C \Y%
cveeve
i
n t
I I
C A% C
CtvCcve
u 1
S b
I I
v C VvV C
cveve
t b
| I
C \Y% C
cveve
m
\ \
C v C
CVuy CVC
i
t
|
kv C A%
CVCucVC
i
t b
(AN [
C Hc V C

k-value
[1,1,1]

[1,1,1]

[1,1,1]

[1,1,1]

[1,2,1]

[2,1,1]

[1,2,1]

[2,1,1]



bound, RPM is reducible to modeling a function
over a finite domain and range, i.e., a finite list of
input-output pairs. Throughout this section, we
abstract away from this. Our functions assume
that there is no bound on the size of the root C,
vocalism V, or template T. This allows us to treat
RPM as a function over an infinitely sized domain.
Doing so allows us to better capture the underly-
ing function’s generative capacity (Savitch, 1993).
See (Dolatian and Rawski, 2019) for details on the
role of infinity in computing Semitic RPM.

4.1 1-to-1 slot-filling
4.1.1 Simple 1-to-1 slot-filling

For kutib (Table 1a), RPM shows 1-to-1 slot-
filling, meaning the e association of segments on
any two strings is 1-to-1. The number of vowels
in the vocalism V match the number of V slots in
the template T. The same applies for the number
of consonants in the root C and the C slots in T.

1-to-1 slot-filling is [1,1,1]-MISL or MISL for
k = [1,1,1]. The function is modeled by the de-
terministic asynchronous MT-FST in Figure 1 us-
ing three input tapes: C-tape, V-tape, and T-tape.
The transition arcs in the MT-FST in Figure are
in shorthand. In a transition arc like [¢, ¥, C] :
[+1,0,41] : ¢, lower case letters are interpreted
as variables. A derivation is provided in Table 2.
Each row keeps track of the:

current state

location of the read heads on the 3 input tapes
transition arc used on each 3 input tapes
outputted symbol

current output string

MY

We use a deterministic asynchronous MT-FST
because it can iconically model MISL functions,
while a synchronous MT-FST cannot without sac-
rificing locality. The reason is because syn-
chronous MT-FSTs are equivalent to single-tape
FSAs, thus making RPM computed non-locally.
To illustrate, Figure 2 is the derivation for kutib us-
ing a synchronous 4-tape MT-FSA. To avoid asyn-
chrony, the 3 ‘input’ tapes are aligned with the cor-
responding symbols on the ‘output’ tape by using
the special symbol [ as a padding symbol.

To understand why the function is [1,1,1]-
MISL, consider its MT-FST in Figure 1. Besides
the initial and final state, there is only one state q;.
q1 keeps track of the last k —1 suffix on each of the
three input-strings. Because k—1 = [1,1,1]—1 =

[¢,2 4 .Cl: [ vV

[+1,0.+1]):c [0+1,+1]:v

start —>
[x,x,x]:

[+1,+1,+1]: X

[x,x,X]:

[+1,+1,+1]: X\

Figure 1: MT-FST for 1-to-1 slot-filling.

O

Input Tapes C: | k t

v: | O g

T: | C C
k t

c <=0
i—"<i—"
cAQc

Output Tape:

Figure 2: Alignment of kutib with a synchronous MT-
FSA (cf. Kiraz, 2001; Hulden, 2009).

[0, 0, 0], the state ¢; does not keep track of any pre-
vious input-symbol seen. When deciding on what
to output and which state to go to, only the current
input symbols on the 3 tapes were needed.

4.1.2 1-to-1 slot-filling with four or more
consonants

Extensions of 1-to-1 slot-filling are also [1,1,1]-
MISL. If the root contains four consonants
C=tr3m and the template has four consonant slots
T=CVCCVC (Table 1b), then the output turzim
is generated with the same [1,1,1]-MISL function
that’s modeled by the MT-FST in Figure 1. A sam-
ple derivation is provided in the appendix.

If the root contains more consonants C=mynts
than the template has consonant slots T=CVCCVC
(Table 1c), the output shows deletion of the ad-
ditional consonant: muynit not *muynits. This
is [1,1,1]-MISL. It is modeled by the same MT-
FST in Figure 1 but with the additional transition
arc: [c, Xy, x| : [+1,0,0] : X between q1,q1. A
sample FST and derivation are provided in the ap-
pendix.

4.1.3 1-to-1 slot-filling and pre-associated
affixes

Given a root C=ksb, some outputs show an addi-
tional affix, e.g. the infix <¢> in k<t>usib. The
affix <t> is pre-associated to a slot after the first
consonant. Pre-associated templates can be com-
puted either representationally or derivationally.
Both are local.”

"A third alternative is to treat the infix <¢> as part of a
separate input-string or input-tape. The template is CCVCVC

where C is pre-associated to <¢>. This is analogous to giv-
ing each morpheme its own autosegmental tier (McCarthy,



Current | C-tape V-tape T-tape Output  Output
State Symbol  String
1. qo Xktbix XuiX XNCVCVCx
2. q xktbx C:x:+1 | xuix  V:x:+1 | XCVCVCx  T:x:+1 | A
3. ¢ xktbx C:k:+1 | xuix V0 XCVCVCx Tic:+1 | k k
4. ¢ xktbx C:t:0 xxuix  Vie+l | XxCVCVCx  Tivi+1l | u ku
5. ¢ xktbx C:t:+1 xuix  V::0 XCVCVCx Tic:+1 |t kut
6. q xktbx  C:b:0 xuix,  V:i:+l XCVCVCx T+l | i kuti
7. ¢ xktbx  C:b:+1 | xuix  V:x:0 XCVCVCx Tici+1 | b kutib
8. qr xktbx  Cix:+1 | xuix  C:ix:+1 | XCVCVCx  Tix:+1 | A kutib

Table 2: Derivation of kutib using the MT-FST in Figure 1.

The representational route is to enrich the tem-
plate with the affix itself: T=CtVCVC (Hudson,
1986). The root and template are then combined
to generate k<t>usib. This function is [1,1,1]-
MISL. It is computed by the same MT-FST in
Figure 1 but with the additional transition arc:
X, X, t] : [0,0,¢] : X between ¢, 1. A sample
FST and derivation are provided in the appendix.

A derivational alternative is to derive k<<t>usib
from an un-affixed base kusib by infixing <t>
(McCarthy, 1993). Generating kusib from [ksb,
ui, CVCv(] is [1,1,1]-MISL. Infixing <#> onto
kusib is 2-ISL. The representational route can be
interpreted as the composition of the derivational
approach.

4.2 1-to-many slot filling
4.2.1 Final spread

Final spread in katab has 1-to-many slot-filling
(Table 1e). The word consists of the following in-
put strings: C=ktb, V=a, T=CVCVC. The vocal-
ism V consists of only one vowel a because of the
Obligatory Contour Principle (McCarthy, 1981).
The vowel a undergoes final spread by being asso-
ciated with multiple V slots in the T-string.

Computing final vowel spread is [1,2,1]-MISL
with ko = 2 on the V-string, not ko = 1. Knowing
to spread the final vowel requires a window of size
2 on the V-string. The locality window stays at
1 for the C,T-strings because they do not play a
role. For illustration, we provide an MT-FST for
final vowel spread in the appendix. The states keep
track of the last 1-suffix on the V-tape and last 0-
suffix on C,T-tapes. A sample FST and derivation
are provided in the appendix.

1981). But computing this type of input-structure cannot be
modeled in an MT-FST because MT-FSTs work over multiple
linear strings, not over graphs.

Consonants can also undergo final spread:
f(lsm, a, CVCVC] = samam (Table 1f).® This is
[2,1,1]-MISL, analogous to final spread of vowels
except that the locality window is now larger over
the C-string instead of the V-string.

4.2.2 Medial spread

In contrast to final spread, medial spread involves
associating a string-medial vowel or consonant to
multiple slots on the T-string: kuutib with a long-
vowel u (Table 1g) or kuttib with a geminate ¢ (Ta-
ble 1h). Like pre-associated affixes (§4.1.3), me-
dial spread can be analyzed either representation-
ally or derivationally. An alternative edge-in anal-
ysis is discussed in §5.2.

For gemination, the representational route in-
volves enriching the template with a special sym-
bol, i.e., a consonant mora pc in T=CVCuy VC
(Kay, 1987; McCarthy, 1993; Beesley, 1998).
With this template, generating kuttib is [2,1,1]-
MISL with k=2 over the C-string. A correspond-
ing MT-FST and derivation is in the appendix us-
ing X7 = {C,V, uc}, and ¢ = {k, t} for illus-
tration. Long vowels have the same computational
treatment but with py- as a special symbol.

A derivational alternative is to derive kuttib
from kutib by infixing a consonant mora pc fol-
lowed by consonant spreading. Generating the
base kutib is [1,1,1]-MISL. Infixing the mora
kutpcib is 4-I1SL and spreading the consonant kut-
tib is 2-ISL. As with preassociation (§4.1.3), the

8Since McCarthy (1981), the analysis of final conso-
nant spread has been controversial (Hudson, 1986; Hober-
man, 1988; Yip, 1988; McCarthy, 1993; Gafos, 1998; Bat-El,
2006). Alternative analyses involving reduplication, prefer-
ence for local spreading, or right-to-left association can be
potentially non-local and are discussed in §5. Computation-
ally, Beesley (1998) formalizes consonant spread with a spe-
cial symbol X as an equivalent treatment for medial spread.
This formalization is [2,1,1]-MISL, just like (§4.2.2.



representational solution is a composition of the
derivational solution; both are local functions.

5 Possible non-locality in Semitic

Certain templatic processes in Semitic are not lo-
cal: reduplication and loanword adaptation in Ta-
ble 3, amassed from many sources (McCarthy,
1981; Broselow and McCarthy, 1983; Bat-El,
2011).

5.1 Reduplication

Semitic RPM shows intensive reduplication which
varies on root size (Broselow and McCarthy,
1983): root doubling in for biconsonantal roots in
laflaf (Table 3i) and first-C copying for triconso-
nantal roots in barbad (Table 3j). Root-doubling is
analogous to total reduplication. Initial-C copying
involves copying the first consonant of the root and
placing it in a prespecified spot on the template.’

Reduplication is computationally challenging.
Cross-linguistically, partial reduplication patterns
can range from being ISL to subsequential (Chan-
dlee and Heinz, 2012). Total reduplication is
above the subsequential threshold and cannot be
modeled by 1-way FSTs but requires determinis-
tic 2-way FSTs (Dolatian and Heinz, 2018). If we
assume that there’s no bound on the size of the
root, then root-doubling cannot be computed by
a MISL function for any k. The function would
need a 2-way MT-FST which could go back and
forth on the C-tape. Similarly, if we assume that
there’s no bound on the number n of consonants
between the two copies of the root-initial con-
sonant, then the function is not MISL for any
k. Analogously to subsequential functions over
single-input FSTs, root-initial copying would be
Multi-Subsequential. However, the assumption on
root size is not correct. All roots which undergo
the above reduplication processes have a bounded
size (2 or 3). If we discard this assumption, then
both reduplicative processes are MISL for a large
value of k.1

5.2 Local spreading in loanword adaptation

In loanword adaptation of verbs in Arabic, the
most productive template is CVCCVC with the vo-

Technically, the relevant inputs need to be annotated to
trigger reduplication, e.g. initial-C copying with T=CVCFVC
and root doubling with C=z/-RED. We abstract away from
this for clarity.

""The value of the k is [3,1,1] for initial-C copying, but
[3,1,3] for root-doubling because the function keeps track of
the root size and the current C-slot.

calism a: CaCCaC (Bat-El, 2011). When a bor-
rowed consonantal root has four consonants, the
template is filled with 1-to-1 slot filling of conso-
nants: telephone [telefon] and talfan (Table 3k).
But when a borrowed root has three consonants,
then the input undergoes medial gemination: SMS
and sammas, not final spread *samsas (Table 31).

There are many ways to analyze this difference
between three vs. four-consonant roots. One is
suppletive allomorphy: four-consonant roots use
the template CVCCVC, three-consonant roots use
the template CVCuc VC. Choosing the template is
ISL-4. Once chosen, the root, vocalism, and tem-
plate can then be submitted to an MISL function.
This analysis is plausible because, outside of loan-
word adaptation, Semitic templates do have sup-
pletion conditioned by root-size: the comparative
in Egyptian Arabic is VCCVC for triconsonantal
roots: kbr — akbar, but VCVCC for biconsonantal
roots: fd — afadd (Davis and Tsujimura, 2018).

An alternative is to use a template CVC-
CVC without any representational markup for
gemination. The correct outputs are generated
based on avoiding non-local spreading. For a
three-consonant root, medial gemination is gen-
erated because the grammar (in OT-parlance)
prefers outputs with local spreading of consonants
sammas instead of outputs with non-local spread-
ing samsas. An analogous anti-long-distance
spreading mechanism has been proposed for me-
dial gemination (§4.2.2) and for the fact that i
cannot spread (§4.2.1) (Hudson, 1986; Hoberman,
1988; Yip, 1988).!! Computationally, the choice
of local spreading depends on the following infor-
mation:

1. Having the context CCV on the template:
k = 3 on T-string

2. Being the final consonant in the root or not:
k = 2 on C-string

3. The existence of an additional C slot on the
template: XCCV,Cx vs. XCCVyx: k =
|Vx| + 1 on T-string

The last condition is important. Consider the
contrast in kuttib and kutba ‘writers’ derived from
the templates C;V,C>C3V,Cy andC;V,C2C3V,.

"These have also been analyzed with edge-in association.
Instead of association operating from left-to-right, Yip (1988)
argues that these templates are simultaneously or consecu-
tively right-to-left and left-to-right. Such an analysis though
has unclear computational expressivity; we conjecture that
it may be analogous to Weak Determinism (Heinz and Lai,
2013) over multiple inputs.



Table 3: Partial paradigm of Arabic root-and-pattern morphology with variable MISL k-values.

Slot-filling pattern Binyan Gloss Output Root Vowels Template k-value
Reduplication of
i| ...proot laflaf ‘wrapped intensely’ | If a cveeve varies
1 f
X
1 — £1 ™~ f
I I I I
c v ¢ C Vv cC
\
a J
j | .. firstC barbad ‘shaved unevenly’ brd a CVCFVC varies
I \ I
c v CcC C VvV C
\
a J
Loanword adaptation of... Source noun Adapted Verb
k | ... four-consonant root telephone talfan ‘he phoned’ tifn  a cveeve varies
t 1 f n
[ [ [ [
C v C C v C
\ \/
a
1 | ... three-consonant root SMS sammas ‘he SMS-ed’ sms a cveeve varies
s m s
\ \ \ \
C v C C \% C
\
a

The C,Cj3 substring in C;V,C2C3V,C4 maps to
gemination: kuttib, while the CC substring in
CVCCV maps to 1-to-1 spreading: kutba. The
choice depends on if the C'; (', substrings precedes
an extra consonant slot C4 on the template or not.
If there is no bound on the number of intervening
vowels V, then the function is not MISL for any k.
If there is a bound, then it is MISL for a k which is
sufficiently large enough to encode these contexts.
In Arabic, V), can be at most two vowels slots in or-
der to encode long vowels: kuttaab ‘writers’. This
makes the function MISL with £k = 5 on the T-
string, £k = 3 on the C-string.

6 Conclusion

This paper examined the computational expressiv-
ity of non-concatenative morphology, in particu-
lar, Semitic root-and-pattern morphology (RPM).
Generalizing Input Strictly Local (ISL) functions
to handle multiple inputs, we showed that the
class of Multiple-Input Strictly Local (MISL)
functions can compute almost all Semitic RPM.
These MISL functions are computed by determin-
istic asynchronous multi-tape finite-state trans-

ducers.  This computational result looks be-
yond various points of theoretical contention in
Semitic. The result also narrows the gap in math-
ematical results between concatenative and non-
concatenative morphology.
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A Appendix

Below are MT-FSTs and derivation tables for
some of the described Semitic processes.

A.1 1-to-1 slot-filling with four consonants

In Table 1b, the input root C has 4 consonants tr3m
and the template T has enough consonantal slots
CVCCVC. The vocalism V is ui. The output is
turzim. A derivation table is provided in Table 4
using the [1,1,1]-MISL MT-FST from Figure 1.

A.2 1-to-1 slot-filling with larger roots

In Table lc, the root C==mynts contains more
consonants than the template T=CVCCVC. With
a vocalism V=ui, the output is muynit with final
consonant deletion. This function is modeled by
the [1,1,1]-MISL MT-FST in Figure 3, illustrated
with the derivation in Table 5.

[€,3 5. X]: [, .Cl: [3 v V]

[+1,0,0]: A [+1,0,+1]:c [0,+1,+1]:v

[x,x,x]:

start e [+1,+1,+1]: X\ [+1,+1,+1]: X\

Figure 3: MT-FST for 1-to-1 slot-filling with final con-
sonant deletion

A.3 1-to-1 slot-filling and pre-associated
affixes

The template T=CtVCVC has a preassociated af-
fix (t). With a root C=ksb and vocalism V=ui, the
output is ktusib. A [1,1,1]-MISL MT-FST is pro-
vided in Figure 4 along with a sample derivation in
Table 6. The symbol A represents any input sym-
bol from the input alphabet of segments {t,n,m}
which are possible segmental affixes in McCarthy
(1981).

[ 5,2 % Al [¢,3 5 .Cl: DN

[0.0+1]:A [+1.0,+1]:c [0.4+1,+1]:v

[x,x,x]:

start ; @ [+1,4+1,+1]:\ [+1,+1,+1]:X

Figure 4: MT-FST for 1-to-1 slot-filling with pre-
associated affixes

A4 1-to-many slot-filling with final spread of
vowels

In Table le, the vocalism V=a has fewer vowels
than the template T=CVCVC. This triggers final
spread of vowels. With a root C=kzb, the output is
katab. This function is modeled with the [1,2,1]-
MISL MT-EFST in Figure 5, illustrated with a sam-
ple derivation in Table 7. The vowel alphabet is
only {a,u}. In Standard Arabic, only the vowels
a,u spread; the vowel i does not. This is discussed
in §5.2. The FST does not visually represent the
dedicated final state gy. Instead, all non-initial
states are marked as accepting states. A state is
accepting if upon reading [X,X,x], it advances
[+1,+1,+1] to state g;.

A.5 1-to-many slot filling with medial spread
of consonants

In Table 1g, the template T=CVCucVC contains
a marker for gemination. With root C=ktb and vo-
calism V=ui, the output is kuttib. This is modeled
by the [2,1,1]-MISL MT-FST in Figure 6. with a
sample derivation in Table § for a nonce word kut-
tik with root C=ktk. For illustrative reasons, the
consonant alphabet is only {k,t}. The final state
qy is not visualized for space reasons.



Current | C-tape V-tape T-tape Output  Output
State Symbol  String
1. qo Xtrzmx XuiX XNCVCCVCx
2. q xtrgmix  Cixc+l | xuix  Vixi+l | XCVCCVCx  Tix+1 | A
3. q xtrgmx  Citi+l xuix Va0 xXCVCCVCx T:C:+1 |t t
4. ¢ xtrzmx  Cir:0 xuix  Vie+l | xXCVCCVCx  T:Vi+1 | u tu
5. q1 xtrzmx  Ciri+l | xuix  Vii:0 XCVCCVCx T:C:+1 | r tur
6. ¢1 xtrgmx  C:z:+1 | xuix  V:i:0 xCVCCVCx T:C:+1 | 3 turs3
7. ¢ xtrzmx  C:m:0 | xuix  Vii+l | xCVCCVCx  T:Vi+1 | i turzi
8. q xtrgmx  Cim+1 | xuix  Vix:0 XNCVCCVCx T:C:+1 | m turzim
9. ¢ xtrgmix  Cix:+1 | xuix  Vix:+1 | XCVCCVCx  Tix:+1 | A turzim
Table 4: Derivation of turzim using the MT-FST in Figure 1.
Current | C-tape V-tape T-tape Output  Output
State Symbol  String
1. g Xmyntsx Xuix XNCVCCVCx
2. q1 xmyntsx  C:x:+1 | xuix  Vix:+1l | XCVCCVCx  Tix:+1 | A
3. ¢ xmyntsx  C:m:+1 | xuix V0 XCVCCVCx T:C:+l1 | m m
4. @ xmyntsx  C:y:0 xuix  Vie+l | XCVCCVCx  T:Vi+l | u mu
5. q1 xmyntsx  C:y:+1 | xuix V:i:0 xCVCCVCx T:C+l1 | G muG
6. q xmyntsx  Cim+1 | xuix  V:i:0 xCVCCVCx T:C:+1 | n muGn
7. @1 xmyntsx  C:t:0 xuix  Vi+l XCVCCVCx T:Vi+1 | i muGni
8. a1 xmyntsx  C:t:+1 | xuix  V:ix:0 | xCVCCVCx T:C:+1 |t muGnit
9. @ xmyntsx  Cisi+l | xuix  Vix:0 | xCVCCVCx T:x:0 | A muGnit
10. ¢ xmyntsk  Cix:+l | xuix  Vixi+l | XCVCCVCx  T:x+1 | A muGnit
Table 5: Derivation of muynit using the MT-FST in Figure 3
Current | C-tape V-tape T-tape Output  Output
State Symbol  String
1. qo xksbx Xuix XNCtVCVCix
2. q xksbx  C:x:+1 | xuix  Vix:+1 | xCtVCVCx  T:x:+1 | A
3. ¢ xksbx C:k:+1 | xuix  V:u:0 xCtVCVCx T:C:+1 | k k
4. q xksbx  C:s:0 xuix V0 xCtVCVCx T:r:+1 t kt
5. q1 xksbx C:s:0 xuix  Vie+l | XCtVCVCx T:Vi+1 | u ktu
6. q xksbx C:s:+1 | xuix  V:i:0 XCtVCVCx T:C:+1 | s ktus
7. q xksbx  C:b:0 xuix  Vii+l xCtVCVCx T:V:+1 | i ktusi
8. ¢ xksbx  C:b:+1 | xuix  Vix:0 | xCtVCVCx T:C:+1 | b ktusib
9. ¢ xksbx C:x:+1 | xuix  Vix:+1 | xCtVCVCx T:x:+1 | A ktusib

Table 6: Derivation of k(t)usib using the MT-FST in Figure 4



[c, ¥ %.Cl:

[Z5¢, %,V

[0,0,41]:u

[Z .0, V]

[0,4+1,+1]:u

[+1,0,+1]:¢

[X,x,x]:

[+1+1,+1]: A

[3y.aV]:

[0,+1,+1]:a

[E5.%,Cl: [Zx.aV]:

[X 5w V] [, £ .Cl:

[0,+1,+1]:u [+1,0,+1]:¢

[2y.aV]: [3 5.0, V]:

[0,+1,+1]:a [0,+1,+1]:u

[e, 35.Cl:

[0,0+1]:a [0,+1,+1]:a [+1,0+1]:c

Figure 5: MT-FST for 1-to-many slot-filling with final spread of vowels

Current | C-tape V-tape T-tape Output  Output
State Symbol  String
1. qo xktbx Xax XNCVCVCKx
2. q xktbx C:x:+1 | xaKx V:x:+1 | XCVCVCx T:x:+1 | A
3. ¢ xktbx C:k:+1 | xaKx V:a:0 xCVCVCx T:C:+1 | k k
4. @9 xktbx C:t:0 xaxX  Via+l | XCVCVCx T:Vi+l | a ka
5. g9 xktbx C:t:+1 Xax V:x:0 XCVCVCx T:r:+1 t kat
6. g9 xktbx C:b:0 xax,  Vix:0 XCVCVCx T:Vi+1 | a kata
7. @2 xktbx C:b:+1 | xax  V:x:0 XCVCVCx T:C:+1 | b katab
8. qy xktbx  C:x:+1 | xax C:x:+1 | XCVCVCx  T:x:+1 | A katab
Table 7: Derivation of katab using the MT-FST in Figure 5
Current | C-tape V-tape T-tape Output  Output
State Symbol  String
1. qo ktkx Xuix NCVCucVCx
2. ¢ xktkix  Cix:+1 | xuix  Vix:+l | XCVCucVCx  Tix:+1 | A
3. @ xktkx C:k:+1 | xuix  V:u:0 xCVCucVCx  T:C:+1 k k
4. @9 xktkx  C:k:0 xuix  Viu+l | XCVCucVCx  T:V:i+1 u ku
5. qs3 xktkx  C:t:+1 xuix  V:i:0 XCVCucVCx  T:C:+1 t kut
6. qs3 xktkx  C:k:0 xuix  V:i:0 XCVCucVCx  T:pc:+1 | ¢t kutt
7. q3 xktkx  C:k:0 xuiX  Vii+l XCVCucVCx T:Vi+1 i kutti
8. g3 xktkx  Cik:+1 | xuix  Vix:0 XMCVCucVCx  T:C:+1 | k kuttik
9. qy xktkx  Cix:+1 | xuix  Vix:+1l | XCVCucVCx  Tix:+1 | A kuttik

Table 8: Derivation of kuttik using the MT-FST in Figure 6



[, Xx.pcl [X5.v.V] [k.X5.C]

[0,0,+1]:k [0,+1,+1]:v [+1,0,+1]:k

k.3 5 ,Cl: q2 kX, N)

[+1,0,+1]:k

[X.wV]
[0,+1,+1]:v

[t,2 5 .Cl: [k, 5 Cl:

start —{ do G103, A, 2)

[+1,0,+1]:t [+1,0,+1]:k

[, %, x]:

[+1,+1,+1]:A

[t.3 % .Cl:

g3, N

[+1,0,+1]:t

[Ex, Zx.ncl [Zx»V] .2 %.C]

[0,0,+1]:t [0,4+1,+1]:v [+1,0,+1]:t

Figure 6: MT-FST for 1-to-many slot-filling with medial spread of consonants
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