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Abstract

Natural language generation (NLG) systems
are commonly evaluated using n-gram over-
lap measures (e.g. BLEU, ROUGE). These
measures do not directly capture semantics
or speaker intentions, and so they often turn
out to be misaligned with our true goals for
NLG. In this work, we argue instead for
communication-based evaluations: assuming
the purpose of an NLG system is to convey in-
formation to a reader/listener, we can directly
evaluate its effectiveness at this task using the
Rational Speech Acts model of pragmatic lan-
guage use. We illustrate with a color refer-
ence dataset that contains descriptions in pre-
defined quality categories, showing that our
method better aligns with these quality cate-
gories than do any of the prominent n-gram
overlap methods.

1 Introduction

Natural language generation (NLG) models are in-
creasingly prominent as core components in di-
alogue agents, story generators, summarization
tools, image captioning systems, and others. NLG
models are generally evaluated according to met-
rics that are defined in terms of the n-gram over-
lap between the model-generated candidate and
human-generated reference texts. However, these
metrics suffer from a well-known limitation: they
assume that quality candidates will always share
many exact token matches with ones generated by
humans. This assumption is false for many com-
mon linguistic phenomena. For example, synony-
mous expressions receive low scores with most
of these metrics even though humans find them
equally good, and negated candidates receive high
scores even where the negation leads to dramatic
deviation from the reference texts. Such met-
rics are particularly ineffective in scenarios where
there are many potentially appropriate utterances
(Liu et al., 2016; Novikova et al., 2017).

To avoid this problem, one might turn to hu-
man judgments to assess the quality of model-
generated language. In this setting, humans rate
language according to grammaticality, typicality,
informativeness, interestingness, and other qual-
itative dimensions (Lowe et al., 2017; Hashimoto
et al., 2019; Chaganty et al., 2018). This addresses
the problems with n-gram overlap methods, but it
is expensive, and the human task does not reflect
natural language use, which can lead to unreliable
data.

One shortcoming of these methods is that they
fail to take into account the communicative func-
tion of language; a speaker’s goal is not only to
produce well-formed expressions, but also to con-
vey relevant information to a listener. Likewise,
a listener is not only an assessor of quality, but
also an agent that forms beliefs based on speak-
ers’ utterances. Thus, our NLG systems should
be expected to use language to communicate as
well, and we should evaluate these systems, not
based on surface-level features of their utterances,
but rather on the information they convey.

In this work, we argue for such communication-
based evaluations. In language use, the speaker
intends to communicate information to the listener
using an utterance, and the listener infers some
information from that utterance. This provides
the basis for evaluation: if the listener’s inference
aligns with the speaker’s intentions, the utterance
was successful. If these intentions are not aligned,
the utterance was less successful.

We formalize communication-based NLG eval-
uations using the Rational Speech Acts model
of pragmatic language use (Frank and Goodman,
2012). To motivate this approach, we rely on a
color reference game (Monroe et al., 2017, 2018).
In this game, a speaker and a listener see a set
of three colors. The speaker is told one color is
the target and tries to communicate the target to



the listener using a natural language utterance. A
good utterance is more likely to lead the listener to
select the target, while a bad utterance is less likely
to do so. In turn, effective metrics should assign
high scores to good utterances and low scores to
bad ones.

To test our evaluation proposal, we asked
crowdworkers to write color descriptions falling
into three separate quality categories: those that
describe only the target color (descriptive candi-
dates); those that describe the target color and
at least one other color in the context (ambigu-
ous candidates); and those that describe only one
non-target color in the context (misleading can-
didates). We then assess the extent to which
our method’s scores align with these categories.
For comparison, we also investigate the extent to
which n-gram overlap metrics correlate with ut-
terance quality, focusing specifically on BLEU,
METEOR, ROUGE, and CIDEr. We find that
our communication-based metrics correlate more
strongly than n-gram overlap metrics do. Our find-
ings suggest that, when evaluating NLG models
grounded in a task, it is more effective to use task
performance than n-gram overlap metrics.

2 Related Work

2.1 NLG Evaluation

Existing NLG evaluation methods make use of
n-gram overlap scores, human evaluations, and
model-based evaluations. Our own method blends
human evaluation and model-based evaluation, as
we advocate using humans or building models to
act on generated language

Other model-based evaluations take a variety
of forms. Some involve training models to esti-
mate human judgments of utterance quality (Lowe
et al., 2017; Dušek et al., 2017; Kann et al.,
2018). Others require training models to dis-
tinguish between language generated by humans
and models—an adversarial evaluation (Bowman
et al., 2016; Liu et al., 2016; Kannan and Vinyals,
2016; Bruni and Fernández, 2017). These meth-
ods focus on the utterance in a vacuum and tend to
not to consider how language will actually interact
with other conversational participants. They treat
humans as assessors of quality or adversarial lis-
teners, whereas our proposal takes the perspective
that listeners are cooperative interlocutors who use
the language they hear to inform their beliefs about
the world.

Our approach can also be seen as part of a larger
effort to incorporate context into NLG evaluation.
Prior work in this area includes the image caption-
ing metric SPICE, which uses scene graphs to as-
sess candidate captions (Anderson et al., 2016).
Similarly, Lowe et al. (2017) use conversational
context to predict how human annotators would
score dialogue agents, and the importance of con-
text in assessment of this domain is noted by Liu
et al. (2016). Our work incorporates contextual
information by modeling the task a hypothetical
listener will perform with the language produced.

2.2 Task-based Language Evaluation

Our work is particularly relevant for evaluation of
utterances in task-specific scenarios. Overwhelm-
ingly, work in this area uses humans perform-
ing some task with model-generated utterances
to evaluate these utterances (Andreas and Klein,
2016; Andreas et al., 2017; Golland et al., 2010;
Mao et al., 2016; Vedantam et al., 2017). Addi-
tionally, automatic evaluation metrics have been
proposed. Monroe et al. (2017) and Cohn-Gordon
et al. (2018) use a combination of language models
conditioned on the context and Bayes’ rule, while
Mao et al. (2016) use their joint image and text
classifier to evaluate potential object descriptions.
We compare these two approaches as well. Addi-
tionally, referring expressions tend not to be evalu-
ated using n-gram overlap metrics; Vedantam et al.
(2017)’s use of CIDEr is an exception. As far as
we know, these communication-based and n-gram
overlap evaluation approaches have not previously
been compared.

2.3 Communicative Informativity

Our communication-based evaluation method is
closely related to the Rational Speech Acts (RSA)
framework of pragmatic language use. This
framework describes communication between two
agents as a rational act where one agent, the
speaker, chooses to communicate some informa-
tion to another agent, the listener. The speaker
chooses their utterance to maximize their utility,
which in the framework involves choosing the ut-
terance most helpful to the listener (Goodman and
Frank, 2016). This idea has been used to model a
wide range of linguistic phenomena.

This utility function is very similar to our pro-
posed method’s scoring function—differing only
in a cost term. To our knowledge, this is the first
case where this rational speaker utility function is



used to evaluate language rather than model hu-
man utterance selection.

3 N-gram Overlap Evaluation Metrics

We now introduce the n-gram overlap metrics we
adopt as baselines for our evaluations. These met-
rics evaluate candidate utterances by identifying
the n-grams shared between the candidate utter-
ances and human-generated reference utterances.
They are commonly used for evaluation in a va-
riety of domains and are consistently compared
when evaluating the effectiveness of different met-
rics for various tasks (summarization, image cap-
tioning, dialogue; Novikova et al. 2017; Kilickaya
et al. 2017; Sharma et al. 2017).

BLEU BLEU (BiLingual Evaluation Under-
study) was conceived as a method for automat-
ically evaluating machine translation systems by
comparing the tokens in the system outputs to ref-
erence sentences constructed by expert translators
(Papineni et al., 2002). BLEU consists of two
components—a modified n-gram precision and a
brevity penalty. The modified n-gram precision re-
wards candidate translations that contain the same
n-grams as the references. Calculated precisions
for n-grams of different sizes are then geometri-
cally averaged together. Conventionally, n-gram
overlaps for n = 1, 2, 3, and 4 are calculated. The
second component of the BLEU score, the brevity
penalty, acts as a recall constraint. Long candi-
date utterances could achieve a high modified n-
gram precision by containing many n-grams, but
the brevity penalty negatively impacts the score of
candidates longer than the reference.

METEOR METEOR (Metric for Evaluation
of Translation with Explicit ORdering), like
BLEU, is designed for assessing utterances gener-
ated by machine translation systems (Banerjee and
Lavie, 2005). METEOR searches for an align-
ment between the candidate and reference sen-
tence using a form of beam search. Stemmed
words, synonyms, and even paraphrases are con-
sidered in seeking the optimal alignment. This
alignment is used to a calculate an F-score, usu-
ally favoring recall over precision. METEOR also
has a “fragmentation score” that penalizes non-
contiguous alignments and addresses issues re-
lated to word order. High METEOR scores mean
large overlap between the tokens in the reference
and candidate (including synonymy) as well as the

correct word order.

ROUGE ROUGE (Recall Oriented Under-
study of Gisting Evaluation) is a class of n-gram
overlap metrics for assessing summaries (Lin,
2004). Like BLEU, many ROUGE metrics op-
erate on the n-gram level, but unlike BLEU, their
main component is an n-gram recall score that
gives the proportion of n-grams in a reference
that are in the candidate rather than a precision
score that gives the proportion of n-grams in the
candidate that are in the reference. The version
of ROUGE we use here is called ROUGE-L. It
uses the longest common subsequence between
the candidate summary and reference summary to
calculate an F-score heavily favoring recall. As
such, a high ROUGE-L score indicates that a
large proportion of tokens from the reference oc-
cur in the candidate, so longer candidates are re-
warded (Vedantam et al., 2015).

CIDEr CIDEr (Consensus-based Image De-
scription Evaluation) is an n-gram overlap met-
ric that assesses image captions (Vedantam et al.,
2015). It attempts to capture how well a candi-
date agrees with the “consensus” of a large group
of references. It does this by creating TF-IDF vec-
tors for different n-grams sizes from the reference
and candidate captions and calculating a weighted
average of the cosine similarities between vectors
for different n-gram sizes. Inverse document fre-
quency is calculated over all of the reference sen-
tences in the dataset. High CIDEr scores indicate
that a candidate caption uses the same infrequent,
and likely informative, n-grams as a number of the
references.

While the metrics described above (other than
CIDEr) are defined for a single candidate and a
single reference, the intention is that they be used
with multiple reference texts per candidate, and
Finch et al. (2004) found that using more reference
sentences increases the reliability of these metrics.
Gains start at 4 and continue up until 50 reference
sentences in some cases (Vedantam et al., 2015).
This is because a greater number of references
provides more opportunities for the candidate to
get a higher score. Because of this, when com-
paring these metrics to our communication-based
evaluation we use multiple references.



4 Communication-based Evaluation

We now define our communication-based evalua-
tion method in general terms, leaving its specific
application to the color reference game to Sec-
tion 5.

For our evaluation, we treat an NLG system as a
speaker attempting to communicate about a topic
t. We denote the set of all world states relevant to t
as Wt, with a random world state drawn from this
set represented as wt 2 Wt. These world states
reflect any aspect of the world a speaker might
want to communicate. While this set is poten-
tially infinite, the topic t limits the set to just con-
tain alternatives relevant to what commands the
speaker’s attention. The speaker’s knowledge of
the state of the world relevant to their communica-
tive topic can then be represented as a distribution
over world states, S(wt), as they may have differ-
ent confidence levels about different alternatives.
The speaker’s goal is to communicate their distri-
bution to the listener with an utterance u. After
hearing u, the listener has some beliefs about the
same topic-relevant states, which we can represent
with the conditional distribution L(wt | u). This
distribution signifies the listener’s representation
of the world related to t, so, if the speaker is suc-
cessful, L(wt | u) should be close to S(wt). As
such, we can define our method M to measure the
similarity between these two distributions with the
KL-divergence:

M(u | S,L) = DKL(S(wt) k L(wt | u)) (1)

If the speaker has a specific target state wtarget in
mind, then all of the speaker’s probability mass
is on wtarget. In that situation, the KL-Divergence
is equivalent to the negative log-likelihood of the
listener’s probability of the true target color being
the target:

M(u | L, S) = � logL(wtarget | u) (2)

This value directly quantifies the listener’s ac-
curacy in guessing the speaker’s target state.

This metric can also be seen as measuring the
communicative informativeness of u in the sense
of RSA. As described previously, in this frame-
work, a speaker chooses an utterance to maxi-
mize their utility. Conventionally, this utility is
the quantity represented by our metric—the KL-
divergence between the speaker’s observed distri-
bution of the world and what they expect their lis-
tener’s distribution to be after hearing the potential

utterance. In this way, our approach can be seen as
defining NLG quality in terms of pragmatic lan-
guage use.

As is evident from this description, our method
requires NLG systems to be construed as produc-
ing utterances that would help a listener distin-
guish among relevant alternative states. For ex-
ample, an image captioning system has to be de-
signed, not just to create true captions for its in-
put images, but also to create captions that would
help a listener choose that input from among a set
of distractor images (Vedantam et al., 2017; Mao
et al., 2016; Cohn-Gordon et al., 2018). Similarly,
a summarization tool should produce summaries
that capture exactly the information that makes the
source text stand out with respect to related in-
puts (Zhang et al., 2018), and a pure text genera-
tion tool (a language model) might be refashioned
to produce texts conditional on specific pieces of
metadata (e.g. genre, author) so that we can as-
sess it based on a listener’s ability to recover that
metadata from distractors (Shen et al., 2019). In
general, we feel that these are healthy impositions
on these tasks, as they encourage the systems to be
grounded in specific contexts and to produce utter-
ances that are not just true but also informative.

5 Evaluating the Evaluation Approaches

We assess the effectiveness of our evaluation
method using the color reference game described
by Monroe et al. (2017), in which a speaker and
a listener each see the same set of three color
swatches (though perhaps in different orders) and
the speaker’s task is to convey the identity of their
(hidden) target color to the listener. This scenario
is ideal for our evaluation because the communica-
tive goal is clear, and we can easily adjust this goal
in ways that affect utterance quality.

5.1 Data

Our assessment hinges on the ability of a metric
to distinguish good candidate utterances from bad
ones. As such, we need utterances that are clear
and consistent in their quality. To ensure consis-
tent quality, we rely on humans to generate our
candidate utterances. The utterances we solicited
each fall into one of three categories: descriptive,
ambiguous, or misleading:

1. Descriptive Candidates: These consist of in-
formative descriptions that are intended to



Figure 1: A hypothetical context with captions of dif-
ferent qualities. The red arrow points to the target color.
The descriptive caption picks out the target, the am-
biguous one selects two colors, and the misleading cap-
tion picks out a distractor color.

distinguish between the target and the distrac-
tors (i.e. non-target) colors. These should re-
ceive the highest scores.

2. Ambiguous Candidates: These consist of
uninformative descriptions that are intended
to correctly describe the target and at least
one of the distractors. These should receive
scores in the middle of the scale.

3. Misleading Candidates: These consist of de-
scriptions that are intended to describe one
of the distractors and not the target. These
should receive the lowest scores.

We obtained our descriptive candidates by aug-
menting the dataset of Monroe et al. (2017). We
selected 360 distinct color context–utterance pairs
from the development set in which listeners were
able to correctly identify the target. Because these
metrics perform better with more references, we
collected 5 reference descriptions for each of the
360 contexts from Mechanical Turk workers. In-
stead of having workers play the reference game
in pairs, we described the game and asked that
they play the speaker role. Separately, we then had
three crowdworkers perform the listener role with
each utterance. We kept only the utterances where
at least two of the listeners identified the target cor-
rectly. We ended up with a total of 1,912 descrip-
tive candidates with on average 5.2 references per
context.

The Monroe et al. (2017) dataset does not con-
tain labeled ambiguous descriptions, so we ob-
tained our ambiguous candidates by having Me-
chanical Turk workers play the color reference

game in the 360 color contexts as “ambiguous”
speakers. The ambiguous speakers were asked
to provide a description that applied to the target
color while making it difficult for the listener to
select the target. Any ambiguous descriptions that
matched descriptive candidates for their context
exactly were discarded. Some examples include
“Blue” when the context contains a dark blue tar-
get and a light blue distractor, or “Color of the
rainbow”. Whether these captions are ambigu-
ous in the sense that they communicate no rele-
vant information or merely underspecified in the
sense that that they do not provide enough infor-
mation, these captions are of lower quality than
the descriptive ones. There are 1,343 ambiguous
candidates.

Finally, the Monroe et al. (2017) corpus does
not explicitly contain misleading descriptions, but
we did obtain a portion of our misleading candi-
dates from their dataset. To do so, we made sure
to select our 360 contexts as 180 context pairs.
Each pair contains the same colors, but with a dif-
ferent target color. Therefore, a descriptive can-
didate for one context in the pair is a misleading
caption for the other—the description directs the
listener to the wrong color. Descriptive candidates
from contexts with the same colors but different
targets are our misleading candidates. We expect
that these misleading candidates should be differ-
ent from the descriptive ones, but they may be the
same if all the colors are similar. To ensure that the
descriptive and misleading candidates were dis-
tinct in the cases where the colors were different,
we removed misleading candidates found in their
context’s reference sets if the distance between
colors had a distance of at least 20 according to the
CIEDE2000 standard (Sharma et al., 2005). There
are 1,909 misleading candidates in all.

Because descriptive candidates pick out the tar-
get color, they are better than ambiguous candi-
dates, and because ambiguous candidates apply to
the target color, they are better than misleading
candidates. An effective evaluation metric should
then assign the highest scores to descriptive can-
didates, middle-of-the-range scores to ambiguous
candidates, and the lowest scores to misleading
candidates. An example of what these captions
might look like can be found in Figure 1.

Our dataset and code can be found at https:
//github.com/bnewm0609/comm-eval.

https://github.com/bnewm0609/comm-eval
https://github.com/bnewm0609/comm-eval


5.2 Models for Communication-based

Evaluation

To use our communication-based evaluation
method in the color reference game scenario, we
need to define our world states, speaker distribu-
tions, and listener distributions. The set of world
states Wt includes one state in which each color
in the context is the target, and the speaker’s ob-
served distribution S(wt) puts all its probability
mass on the true target color. The listener’s dis-
tribution L(wt | u) requires further consideration.
This distribution can be modeled as any distribu-
tion over the world states conditioned on an utter-
ance. We introduce three ways to generate such
a distribution: human listeners, a Literal Listener
model, and a Pragmatic Listener model.

To obtain a human listener in the sense of our
evaluation, we had Mechanical Turk workers play
the role of listeners in the reference game: they
were given color contexts and candidate descrip-
tions from each of the quality categories and were
asked to select the color that the candidate best de-
scribes. The distribution they represent, L(wt |
u), has all of its probability mass on the color they
select. We had three workers play the reference
game with each candidate utterance we collect.

If human data is unavailable, the distribution
L(wt | u) can be modeled computationally. We
consider two such models.

The first model is a “Literal Listener”. The
model takes an utterance as input and uses it to
directly compute a distribution over world states.
Following Monroe et al. (2017), we parameterize
this Literal Listener with an LSTM that produces a
mean color vector µ and covariance matrix ⌃ from
an utterance, and these are used to score each con-
text color f :

score(f) = �(f � µ)⌃(f � µ) (3)

The scores are then normalized using a softmax
function to obtain the required distribution over
colors representing L(wt | u). We trained our
model on the ⇡15,000 utterances in the training
set specified by Monroe et al. (2017), and eval-
uated on the test set of approximately the same
size. We found that the target is assigned the high-
est score 76.53% of the time, much higher than
chance performance of 33%.

In contrast to our Literal Listener model, our
“Pragmatic Listener” model finds the probability
of the candidate utterance given that each color

in the context is the target, P (u | wt). These
probabilities are used to derive L(wt | u) using
Bayes’ rule. To find the probability of the utter-
ance, we use an LSTM as a conditional language
model. The model is trained and structured fol-
lowing Monroe et al. (2017), and initialized with
pretrained GloVe embeddings (Pennington et al.,
2014). Inverting with Bayes’ rule involves spec-
ifying a prior over utterances, and we treat this
prior as uniform for simplicity. This model is
pragmatic in the sense that it explicitly takes into
account the view of a hypothetical speaker. This
is the path taken in the automatic metrics used
by Monroe et al. (2018) and Cohn-Gordon et al.
(2018). This listener assigns the highest score to
the target color in 75.02% of test-set contexts, also
much better than chance.

Finally, we use our listener and speaker distri-
butions to assign a score to the utterance follow-
ing (1). Because the speaker’s distribution has all
probability on one world state, the score M(u |
L, S) reduces to the negative log likelihood of the
target world state wtarget given the utterance, as in
(2) above. To put this score into a space similar to
the F-measure spaces of the n-gram overlap met-
rics, we report e�M(u|L,S), or equivalently, the lis-
tener’s probability for the target color.

It is important to note that because the states
are defined only in terms of the target color, the
only aspect that matters to an utterance’s quality
is whether it leads a listener to select the target.
We do not explicitly evaluate stylistic aspects such
as grammaticality or politeness, though the world
states and distributions could be augmented to in-
clude these as in Kao et al. 2014. By defining our
task in this manner, we are assuming that stylistic
elements do not contribute to communicative suc-
cess. While this is certainly not true in many situ-
ations, we believe is appropriate for this particular
context.

5.3 Comparisons

To evaluate the effectiveness of our metrics at
detecting how well utterances communicate a
speaker’s beliefs, we investigate the extent to
which good utterances receive high scores and bad
utterances receive low scores. We evaluate all of
the utterances in each of the three quality cate-
gories: descriptive, ambiguous, and misleading.

First, for our baseline experiments, we run the
n-gram overlap metrics to compare each of the de-



Figure 2: Violin plots showing the distribution of scores assigned by each metric across the three caption qualities.
In the first two columns, we have the four n-gram overlap baselines. In the third column, we have the listener model
metrics. On the right, we have the gold-standard human listener results. Violin plots are created with Gaussian
kernel density estimate with bandwidth 0.2. Horizontal bars show ranges and means.

Metric ⇢ r ⌧

Human 0.701 0.701 0.661

Literal Listener 0.581 0.613 0.486
Pragmatic Listener 0.554 0.556 0.444

BLEU-1 0.363 0.350 0.290
ROUGE-L 0.441 0.439 0.378
METEOR 0.482 0.479 0.404
CIDEr 0.401 0.417 0.340

Table 1: Pearson’s ⇢, Spearman’s r, and Kendall’s ⌧
correlation values between assigned scores and quality
categories. BLEU-1 is reported because it is the best
of the BLEU scores. All correlations are significant at
p < 0.05 and all Pearson’s correlations are different at
p < 0.05 according to a Williams’ test.

scriptive, ambiguous, and misleading candidates
to references from their contexts. We run these
assessments with the nlgeval package (Sharma
et al., 2017). We report the smoothed distributions
of n-gram overlap scores for each category sepa-
rately in the left two columns of Figure 2.

Next, we run our two communication-based
evaluation models on each of these candidates.
The score reported for an utterance is the probabil-
ity the model assigns to the true target color being
the target after processing the utterance. Again,

we report the distribution of scores separated by
category in the third column of Figure 2.

Finally, we plot our ground-truth human-
listener scores. If the human listener correctly
identified the target, the caption they saw received
a score of 1; if they did not, the caption received
a score of 0. Because we asked three crowdwork-
ers to play the role of the listener for the captions
we collected, we have 4,353 scores for descriptive
captions, 4,029 for ambiguous captions, and 4,353
for misleading captions. The smoothed distribu-
tion of scores is on the far right in Figure 2.

We want to see the extent to which these scores
correlate with the quality categories of the given
utterances. Following the logic of Section 5.1,
we assign descriptive candidates a score of 1, am-
biguous candidates a score of 2, and misleading
candidates a score of 3, and we report correla-
tions calculated by Pearson’s ⇢, Spearman’s r, and
Kendall’s ⌧ . In this situation, we have large num-
bers of points around certain scores (e.g. 1 for the
Literal Listener), and these scores have meaning
themselves, so we report Pearson’s ⇢. We are also
interested in the overall monotonicity of the metric
scores across categories—we want to avoid good
candidates receiving bad scores and vice versa. As
such, we report the Spearman’s r and Kendall’s ⌧
as well. The magnitudes of these coefficients are
in Table 1.



We are also interested in the extent to which our
method’s correlations differ from the n-gram over-
lap ones, so we run a Williams’ test for dependent
Pearson’s correlations. We find all Pearson’s cor-
relations are significantly different at p < 0.05.

6 Discussion

6.1 Qualitative Analysis

The results we observe are in accordance with the
widely attested observation that n-gram overlap
metrics do not capture human judgments particu-
larly well (Novikova et al., 2017; Kilickaya et al.,
2017). While all of the correlations are relatively
weak, METEOR is the strongest n-gram overlap
metric—its use of synonyms may very well aid it
in this color-reference scenario. The success of it
and ROUGE-L compared to other metrics points
to recall being an important component of infor-
mativity in this task. This makes sense: if a can-
didate utterance does not contain enough of the n-
grams found in a reference, it will likely be more
difficult for a listener to select the target. On the
other end, BLEU has the worst correlation. Ad-
ditionally, metrics like ROUGE-L, BLEU, and
CIDEr have been shown to correlate with human
judgments on a system rather than individual sen-
tence level (Novikova et al., 2017). Our results
corroborate this poor sentence-level performance.

Previous work has found that n-gram overlap
metrics are able to assign low scores to poorly
judged utterances but fail to assign high scores
to positively judged ones (Chaganty et al., 2018;
Novikova et al., 2017). Our results provide some
support for this claim, especially for METEOR
and CIDEr. BLEU and ROUGE-L, however,
give mid-to-high scores to a large number of ut-
terances regardless of their quality.

Finally, it is clear that human listeners are per-
forming a reasonable evaluation, tightly aligned
with the quality categories. We also observe that
the human listener score distribution is closely
mirrored by the Literal Listeners’ scores. How-
ever, the bimodal nature of the scores given to am-
biguous sentences is not ideal. We seek a met-
ric that assigns ambiguous utterances mid-range
scores to reflect that they convey some informa-
tion, but these are rare in the human responses and
model predictions. Despite this, the superiority of
the listener methods over the n-gram methods is
evident both in the shapes of the distributions and
their correlations.

6.2 Literal vs. Pragmatic Listener

Even though the Literal and Pragmatic Listener
models are more effective than n-gram overlap
metrics, they do evaluate the descriptive and am-
biguous candidates differently. As noted above,
the Literal Listener seems to work in a very po-
larized manner: captions are either good, earning
a high score, or bad, earning a low score, with-
out much in between. This is likely a result of
training the Literal Listener model with a cross-
entropy loss objective. This training scheme does
not reward high-entropy distributions over outputs
and pushes the model to always output a confident
score (closer to one). This problem is not quite as
apparent with the Pragmatic Listener, but many of
the descriptive and ambiguous candidates appear
to be assigned a range of higher scores. Interest-
ingly, the Pragmatic Listener’s distributions have
higher entropy than the Literal Listener’s. This
might be because the Pragmatic Listener is based
on a language model, so the probabilities it as-
signs reflect the probabilities of potentially mul-
tiple tokens. Some might be less informative than
others, which would smooth out the distribution
over colors. All told, the Literal Listener corre-
lates slightly better with the quality categories than
the Pragmatic Listener does.

6.3 Quality of the Listener Model

If our communication-based method is to be ef-
fective, the listener model used must be accu-
rate. This is because our evaluation method as-
sumes that communicative errors are the fault of
the speaker and not the listener. Realistically,
this is not the case—no listener, human or model,
is perfect. Although our listener models are not
100% accurate, they are still able to distinguish
between candidates of different qualities. In other
words, despite their imperfections, these models
are still reliable evaluators.

6.4 Shortcomings of Communication-based

Evaluation

Hashimoto et al. (2019) claim that a sufficient
evaluation method will incorporate the “quality”
of a model’s utterances as well as its “diversity”.
Quality is tied to precision—a good model’s utter-
ances are effective. Diversity is tied to recall—a
good model will be able to produce any utterance
a human might. Our method focuses solely on
the quality aspect of this picture. To see why this



may be problematic, note that a system that simply
looked up descriptions in our data given contexts
would appear perfect despite not meeting any di-
versity goals. This means that, if we want to mea-
sure diversity, we have to resort to a second met-
ric (e.g. perplexity or HUSE-D; Hashimoto et al.
2019). That said, current automatic measures of
quality, like n-gram overlap metrics, are not effec-
tive, and our proposed method addresses this.

Another caution is that our method depends
only on the communicative goal of the speaker,
which reduces the importance of other aspects of
utterance quality. For example, in our color refer-
ence game scenario, grammaticality of utterances
is only evaluated to the extent that grammatical
descriptions aid a listener in selecting the correct
color. If “blue dark on click the” and “click on
the dark blue” both lead to the listener selecting
the dark blue color, they will both be regarded
as equally good, even though only the second is
well-formed. Evaluating other aspects of qual-
ity, such as politeness, style, or tone, similarly re-
quires careful consideration. Each of these can be
thought of as achieving some communicative goal,
but this goal along with the listener models and
world states must be specified carefully to ensure
that such properties are taken into account.

7 Conclusion

We developed an NLG evaluation method that is
motivated by the idea that an utterance’s quality is
determined by how well it leads a listener to ac-
curately recover the speaker’s communicative in-
tentions. We evaluated the effectiveness of this
evaluation method using a simple color reference
game in which we could systematically vary ut-
terance quality and then assess how well different
methods correlate with quality in this sense. In this
setting, our communication-based method dramat-
ically out-performed standard n-gram-based meth-
ods. What’s more, our method can be used in
any setting in which there is a well-defined action
for a listener to perform in response to an utter-
ance. One could, for example, apply this evalua-
tion method to summarization, image captioning,
translation, and even pure text generation, with
tasks such as recovering the input from distrac-
tors, identifying salient points or features, or cap-
turing shades of meaning. Although our method
arguably does not capture every sense of quality
that we might have for NLG, it does key directly

into a fundamental goal we have for these systems,
which is that they communicate effectively with
humans using natural language.
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