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Recent literature (e.g., Smith and Pater 2017)
documents cases that admit a better fit in Maxi-
mum Entropy (ME; Goldwater and Johnson, 2003;
Hayes and Wilson, 2008) than in Stochastic (or
Noisy) HG (SHG; Boersma and Pater, 2016). ME
is thus richer than SHG. How much richer? This
paper addresses this question by comparing ME
and SHG in terms of their equiprobable mappings.

Equiprobability - A phonological process ap-
plies uniformly to all forms that belong to
a natural class because they share some rel-
evant properties while differing in irrelevant
ways. For instance, vowel harmony tar-
gets backness but ignores number of syllables.
The Finnish mappings (/maa-nd/,[maana]) and
(/rakastaja-nd/, [rakastajana]) differ in length, but
are equivalent for vowel harmony (back). These
equivalences are a key property of phonology.
How should they be extended to probabilistic
phonology? A probabilistic grammar assigns
to each UR a probability distribution P(SR | UR)
over the set of candidate SRs. Two mappings
(UR,SR) and (UR, SR) are equiprobable if every
grammar in the typology assigns them the same
probability: P(SR|UR) = P(SR|UR). We sub-
mit that equiprobability is the proper way of ex-
tending phonological equivalence from categor-
ical to probabilistic phonology. E.g., the fact
that words that only differ for length are equiva-
lent for harmony means they have the same prob-
ability of harmonizing: P([maana]|/maa-nd/) =
[P([rakastajana] | /rakastaja-n&/).

ME - Given a winner and a loser mapping, their
difference vector consists of the constraint viola-
tions of the loser discounted by the violations of
the winner. Suppose the mapping (UR, SR) has 4
difference vectors ¢y, ...,cs. The gray region in
fig. (a) is their convex hull. The lightgray region
consists of points larger than a point in this con-
vex hull. Two mappings (UR,SR) and (UR,SR)
are equiprobable in ME iff they define the same
lightgray region. The vectors ¢; and ¢y are extreme
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points: they determine the shape of the lightgray
region and must therefore be shared by the two
mappings in order for them to share the lightgray
regions. The vectors ¢3 and ¢4 are instead interior
points: they do not contribute to the shape of the
region. Yet, since we have established that ¢; and
¢y are shared, we can effectively “peel them off”
the two sides of the ME probability identity. In
other words, we can ignore ¢; and ¢ and only fo-
cus on ¢3 and ¢4. They are extreme points of the
new lightgray region in fig. (b) and must thus be
shared. And so on. In conclusion, the two map-
pings (UR, SR) and (UR,SR) are equiprobable in
ME iff they share exactly the same set of differ-
ence vectors. Realistically, this happens only if
(UR, SR) and (UR, SR) are the same mapping. ME
thus admits no equiprobable mappings.

SHG - The gray region in fig. (c) is the con-
vex cone of the difference vectors ¢1,...,c4. The
lightgray region consists of points larger than a
point in this cone. Indeed, the geometry of SHG
is analogous to that of ME, with cones in place
of convex hulls. Two mappings (UR,SR) and
(UR, SR) are SHG equiprobable iff they define the
same lightgray region. The difference vector ¢;
sits on the border but can be shifted (rescaled)
without affecting the lightgray region.  The
equiprobable mapping (UR, SR) thus needs not
share this difference vector ¢; but only a rescaling
thereof. Furthermore, nothing can be said in this
case about the interior vectors c¢g, ..., ¢4. In con-
clusion, the two mappings (UR, SR) and (UR, SR)
are equiprobable in SHG iff each non-interior dif-
ference vector is a rescaling of a non-interior dif-
ference vector of the other mapping. This SHG
condition is weaker than than the ME condition
above. First, because ME requires identity of dif-
ference vectors while SHG only requires rescal-
ing. Second, because ME looks at all difference
vectors while SHG ignores interior ones. SHG
thus does admit equiprobable mappings.

Test case - We test ME’s and SHG’s predic-
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tions on Finnish secondary stress. In Finnish, (i)
primary stress falls on the initial syllable; (ii) sec-
ondary stress falls on every other syllable after that
(iii) except that a light syllable is skipped if the
syllable after that is heavy; (iv) unless that heavy
syllable is final (Hanson and Kiparsky 1996).
The skipping clause (iii) exhibits probabilistic
variation in long words: both (pré.fes.so)(ril.la)
(with skipping) and (pré.fes)(so.ril)la (without skip-
ping) are attested. The rate of skipping depends
on vowel quality and preceding syllable weight
(Anttila 2012). Despite secondary stress being
hard to hear, Finnish has a segmental alterna-
tion that can be used as stress diagnostic: a
short underlying /#/ is deleted when extrametri-
cal. Thus, skipping correlates with t-retention, as
in (pro.fes.so)(réi.ta); no-skipping correlates with t-
deletion, as in (prd.fes)(so.re)ja.

To model this distribution of Finnish sec-
ondary stress, we constructed an input space con-
sisting of 48 noun types systematically varying
stem length, syllable weight, and vowel qual-
ity. These phonological forms are evaluated by
eight constraints capturing the phonological fac-
tors mentioned above. We computed SHG/ME
uniform probability inequalities for this model us-
ing CoGeTo (available online at [omitted]), a
suite of Tools for studying SHG and ME based on
their rich underlying Convex Geometry, as illus-
trated by the results above. SGH predicts seven
blocks of equiprobable mappings ordered through
uniform probability inequalities (denoted <) as in
fig. (d). This confirms the formal result above that
SHG does allow for equiprobable mappings.

To evaluate these predicted equiproba-

ble blocks, we computed the observed t-
retention/deletion rates for each stem type in a
corpus of approximately 9 million nouns (tokens).
The five black SHG-equiprobable blocks are
consistent with the data (all stems are nearly cat-
egorical), but the two red blocks are problematic.
Yet, the difference between t-deletion/retention
rates for stems of the lirumlaarumi- and inkunaabeli-
type is not statistically significant (y? = 2.9849,
df =1, p=0.08404). Furthermore, there are only
two stems in the symposiumi-type and both could
be re-analyzed as 4-syllable stems, consistently
with their high t-deletion rate (Anttila and Shapiro
2017). We have no explanation for the high
t-deletion rate for stems of the polyamidi-type
(N = 69). We conclude that the Finnish data are
generally consistent with SHG’s predictions.
Does ME offer a more principled treatment of
the two problematic red blocks? That is not the
case. In fact, as expected given the formal re-
sult above, ME breaks up these two red equiprob-
able blocks and orders their stem types through
uniform probability inequalities as in fig. (¢). On
the retention side (top row), ME seems promising:
corpus frequencies mirror the predicted probabil-
ity inequalities. Yet, on the deletion side (bottom
row), ME fails to flip the inequalities, yielding the
opposite of what we observe. Such counterintu-
itive probability reversals seem to recur in ME.
Addendum - OT induces even more equiproba-
ble blocks than HG: it predicts “syllable counting”
by grouping together odd-parity stems of different
lengths, pointing at a linguistically interesting dif-
ference between ranked and weighted constraints.
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