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Our goal is to link two different formal notions

of complexity: the complexity classes defined by

Formal Language Theory (FLT)—in particular,

the Sub-regular Hierarchy (Rogers et al., 2013;

Lai, 2015; Heinz, 2018)—and Statistical Com-

plexity Theory (Feldman and Crutchfield, 1998;

Crutchfield and Marzen, 2015). The motivation

for exploring this connection is that factors involv-

ing memory resources have been hypothesized to

explain why phonological processes seem to in-

habit the Sub-regular Hierarchy, and Statistical

Complexity Theory gives an information-theoretic

characterization of memory use. It is currently not

known whether statistical complexity and FLT de-

fine equivalent complexity classes, or whether sta-

tistical complexity cross-cuts the usual FLT hierar-

chies. Our work begins to bridge the gap between

FLT and Information Theory by presenting char-

acterizations of certain Sub-regular languages in

terms of statistical complexity.

Statistical complexity theory. Statistical com-

plexity theory deals with stochastic processes:

probabilistic models of infinitely-long sequences.

For a process X generating sequences of sym-

bols indexed as . . . Xt−2, Xt−1, Xt, Xt+1, . . . , we

define the notation
←−
X (“the past”) to mean

. . . Xt−2, Xt−1, and
−→
X (“the future”) to mean

Xt, Xt+1, . . . .

The statistical complexity of a stochastic pro-

cess is the minimal amount of information about

the past required to faithfully reproduce the fu-

ture. Suppose that we want to simulate a stochastic

process by generating each symbol based on some

memory representation M of the past, and that we

want to find a memory representation M that sim-

ulates the process as well as possible while hav-

ing minimal information content, measured in bits.

This quantity of minimal information is called sta-

tistical complexity. Formally, the statistical com-

plexity S of a process X is the minimum entropy

of a memory representation M that perfectly sim-

ulates the process:

S ≡ min
M :DKL[

−→
X |
←−
X ||
−→
X |M ]=0

H[M ], (1)

where H[M ] is the entropy of the random variable

M :

H[M ] ≡ −
∑

x

pM (x) log pM (x), (2)

and DKL[·||·] is conditional Kullback-Leibler di-

vergence (see Cover and Thomas, 2006), which is

zero for identical conditional distributions. There-

fore, Eq. 1 indicates the minimum entropy of any

memory representation M subject to the constraint

that M must allow us to generate a distribution

over future sequences
−→
X which is identical to the

distribution we would have generated given the

past
←−
X .

Further insight comes from considering the dif-

ferent factors that contribute to statistical com-

plexity. Using information-theoretic identities, we

break the statistical complexity into two terms:

S = H[M ] = I[M :
−→
X ] +H[M |

−→
X ]

= I[
←−
X :
−→
X ]

︸ ︷︷ ︸

E

+H[M |
−→
X ]

︸ ︷︷ ︸

C

,

where I[· : ·] is mutual information, the amount

of information in one random variable about an-

other. The term E is called excess entropy and

quantifies the amount of information in the past

which is useful for predicting the future. The term

C is called crypticity and quantifies the amount

of information stored in M which does not end up

being useful for predicting the future.

These quantities are easily understood in terms

of memory resources used for incremental lan-

guage production and comprehension. Statisti-

cal complexity measures memory load or storage



cost; it can be finite even for non-finite-state pro-

cesses, as long as the sum in Eq. 2 converges.

Excess entropy measures integration cost: it says

how many bits of information from the past are

used when processing the future. Crypticity is the

difference between statistical complexity and ex-

cess entropy, and measures the amount of informa-

tion stored in the minimal memory representation

M which does not ultimately end up being used to

predict the future.

In order to study memory efficiency, we use

these quantities to define an efficiency metric, the

E/S ratio, which is excess entropy divided by sta-

tistical complexity. The E/S ratio tells the propor-

tion of bits stored in memory which end up being

useful for predicting the future.

Preliminaries. We study Sub-regular languages

defined using Probabilistic Deterministic Finite-

state Automata (PDFAs). A PDFA is character-

ized by a set of internal states Q, an alphabet Σ,

an emission distribution O of symbols ∈ Σ con-

ditional on a state ∈ Q, a transition function

T : Q × Σ → Q defining which state the ma-

chine transitions into after emitting a symbol, and

distinguished initial and final states. In a PDFA,

the transition function T is deterministic; in a gen-

eral Probabilistic Finite-state Automaton (PFA), it

may be stochastic, in which case we have a transi-

tion distribution rather than a transition function.

Our indexing convention is: at time t, the PDFA

is in state qt; it generates symbol xt before transi-

tioning into the next state qt+1. The time indexing

convention is shown in Figure 1.

qt−2 qt−1 qt qt+1 qt+2

Xt−2 Xt−1 Xt Xt+1

−→
X , Future

←−
X , Past

Figure 1: Time-indexing conventions for a finite-state
machine.

q0 q1

b : 1/4
c : 1/4
# : 1/4 a : 1/3

a : 1/4

c : 1/3
# : 1/3

Figure 2: SL2 PDFA of ¬ab, Σ = {a, b, c}

We use the following construction to gener-

ate a stationary ergodic stochastic process from a

PDFA: whenever the PDFA emits an end-of-word

symbol #, it always transitions back into the ini-

tial state. The resulting infinite stream of sym-

bols is amenable to analysis using statistical com-

plexity theory. In the literature on statistical com-

plexity, a PDFA of this form is called a unifilar

Hidden Markov Model (Travers and Crutchfield,

2011, unifilar HMM).

Below, we describe how to calculate S,

E, and C from the minimal trimmed PDFA

(Heinz and Rogers, 2010) for Strictly k-Local

(SLk) languages.

Statistical complexity. For a unifilar HMM,

the statistical complexity reduces to the entropy

of the stationary distribution over internal states

(Travers and Crutchfield, 2011). To get the sta-

tionary distribution over internal states Q, we first

construct a state transition matrix: a stochastic

matrix whose entries represent the probability of

going into state qt+1 after being in state qt. For a

general PFA, the entries of this matrix are given by

marginalizing over the emission distribution O:

p(qt+1|qt) =
∑

xt∈Σ

pO(xt|qt)pT (qt+1|xt, qt),

where pT is the probability of transitioning into

state qt+1 after generating symbol xt from state

qt. In a PDFA, this probability is given by the de-

terministic transition function T , so the transition

probability pT reduces to a Kronecker delta func-

tion:

pT (qt+1|xt, qt) = δqt+1=T (xt,qt).

Finally, the stationary distribution over states Q is

given by the left eigenvector of the state transition

matrix associated with eigenvalue 1.

In general, the statistical complexity of a pro-

cess depends on the minimal number of states re-

quired to represent the process as a PDFA. For

an SLk language, statistical complexity is upper

bounded as S ≤ (k − 1) log |Σ|.

Excess entropy. For SLk languages,

E = I[Xt−k+1, . . . , Xt−1 : Xt, . . . , Xt+k−2].

In the case of SL2 languages, we compute

E by constructing a symbol transition ma-

trix, a stochastic matrix whose entries represent



p(xt+1|xt), marginalizing over qt and qt+1. We

also need the stationary distribution over symbols,

derived from the symbol transition matrix by the

same procedure as above.

Crypticity. Crypticity C = S − E. In gen-

eral, crypticity is bounded above by the uncer-

tainty about the emitting state given a symbol:

C ≤ H[Qt|Xt],

with equality iff X is an SL2 language.

Sub-regular Hierarchy. We consider two rela-

tional structures, namely the successor (+1) and

precedence (<) relations. Languages with suc-

cessor relation keep track of k-long sub-strings

of the input, such as {aa, ab, ac, ba, . . .} in an

SL2 language. On the other hand, languages

with precedence relation keep track of k-long sub-

sequences, such as {a . . . a, a . . . b, . . .} in an SP2

language. Different sub-regular languages corre-

spond to distinct PDFAs. For each relational struc-

ture, languages with the higher logical power are

considered to be more expressive. For example,

SL languages are a subset of locally testable (LT)

languages. The subset relations are indicated by

lines connecting higher and lower regions in Fig-

ure 3.

Relational

structures

Logical power

Conjunctions of

Negative Literals

Propositional

First Order

Monadic

Second Order

+1 <

SL (0.11) SP (0.18)

LT (0.40) PT (0.20)

LTT (0.43)

SF (?)

Regular

Figure 3: Sub-regular Hierarchy, with E/S ratios cal-
culated from the examples in the text.

Table 1 shows calculated statistical complex-

ity, excess entropy, and crypticity for the minimal

trimmed PDFAs of example languages in the Sub-

regular Hierarchy, including Strictly Local (SL),

Locally Testable (LT), Locally Threshold Testable

(LTT), Strictly Piecewise (SP), Piecewise Testable

(PT).

The information quantities align with the hy-

pothesis in FLT literature: the languages which

SL2 LT2 LTT2 SP2 PT2

Statistical complexity 0.97 1.53 1.94 0.99 1.53

Excess entropy 0.09 ≥0.61 ≥0.83 ≥0.18 ≥0.30

Crypticity 0.75 ≤0.91 ≤1.10 ≤0.80 ≤1.22

E/S ratio 0.11 ≥0.40 ≥0.43 ≥0.18 ≥0.20

Table 1: Information quantities for PDFAs shown in
figures. SL2 = Figure 2; LT2 = Figure 4; LTT2 = Fig-
ure 5, SP2 = Figure 6; PT2 = Figure 7. Quantities
marked with ≤ or ≥ are bounds based on Markov ap-
proximations.

are more expressive have higher memory storage

requirements. E/S ratios characterize the sub-

set relation in the Sub-regular Hierarchy, for both

successor and precedence relations: the higher re-

gions in the hierarchy have higher amount of E/S
ratio, as illustrated in Figure 3.

q0 q1 q2

b : 1/3
c : 1/3 a : 1/3

a : 1/4
b : 1/4
c : 1/4

a : 1/3

c : 1/3

b : 1/3

# : 1/4

Figure 4: LT2 PDFA of Some-ab, Σ = {a, b, c}

q0

q1 q2

q3

b : 1/3
c : 1/3

a : 1/3
c : 1/3

b : 1/4
c : 1/4

a : 1/3
c : 1/3

a : 1/3

b : 1/3

a : 1/4

# : 1/4

# : 1/3

Figure 5: LTT2 PDFA of One-ab, Σ = {a, b, c}

q0 q1

b : 1/4
c : 1/4
# : 1/4

a : 1/3
c : 1/3

a : 1/4

# : 1/3

Figure 6: SP2 PDFA of ¬a . . . b, Σ = {a, b, c}

The information-theoretic characterization illu-

minates the comparison across relational struc-

tures. For example, SL and SP languages cor-

respond to different types of phonotactics: SL



q0 q1 q2

b : 1/3
c : 1/3

a : 1/3
c : 1/3

a : 1/4
b : 1/4
c : 1/4

a: 1/3 b: 1/3

#: 1/4

Figure 7: PT2 PDFA of Some-a . . . b, Σ = {a, b, c}

only describes local phonotactics, while SP corre-

sponds to patterns of long-distance agreement. In

the examples we have examined, SL and SP have

similar information quantities when they share

the same k-factor. We conjecture that SLk and

SPk languages have similar memory efficiency be-

cause they are both described by Conjunction of

Negative Literals (McNaughton and Papert, 1971,

CNL; the combination of ¬ and ∧).

Conclusion. We have investigated whether there

is a coherent relationship between complexity

metrics calculated using Statistical Complexity

Theory on one hand, and the Sub-regular hierar-

chy of languages on the other hand. Our prelim-

inary results, based on example languages repre-

senting a number of Sub-regular classes, suggest

that increasing logical power corresponds to in-

creasing information-theoretic memory storage re-

quirements. Our current study is limited in that

we have only calculated complexity metrics for se-

lected examples of each language class. Future

work will work to establish general formal rela-

tionships between language classes and statistical

complexity.

Regardless of whether statistical complexity

turns out to map cleanly onto FLT hierarchies,

we believe it provides a promising framework

for characterizing bounds on complexity of hu-

man languages and phonotactics in particular. The

theory of statistical complexity provides a clear

way to quantify and reason about memory stor-

age cost and memory integration cost in a highly

general information-theoretic setting. Therefore

it is entirely reasonable to expect that there may

be bounds on the complexity of linguistic sub-

systems, defined using the language of statistical

complexity.

In this connection, we note that statistical com-

plexity depends on a number of factors that are

not usually relevant in FLT, such as the transi-

tion probabilities and number of states in a PDFA.

Although these factors are not relevant in FLT,

they may nonetheless be relevant for characteriz-

ing constraints on the phonology and phonotactics

of human languages. By characterizing complex-

ity using Statistical Complexity Theory, we can

take these factors into account in a principled way.
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