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Abstract

Conversational Question Answering (Con-
vQA) is a Conversational Search task in a
simplified setting, where an answer must be
extracted from a given passage. Neural lan-
guage models, such as BERT, fine-tuned on
large-scale ConvQA datasets such as CoQA
and QuAC have been used to address this
task. Recently, Multi-Task Learning (MTL)
has emerged as a particularly interesting ap-
proach for developing ConvQA models, where
the objective is to enhance the performance of
a primary task by sharing the learned structure
across several related auxiliary tasks. How-
ever, existing ConvQA models that leverage
MTL have not investigated the dynamic adjust-
ment of the relative importance of the different
tasks during learning, nor the resulting impact
on the performance of the learned models. In
this paper, we first study the effectiveness and
efficiency of dynamic MTL methods including
Evolving Weighting, Uncertainty Weighting,
and Loss-Balanced Task Weighting, compared
to static MTL methods such as the uniform
weighting of tasks. Furthermore, we propose
a novel hybrid dynamic method combining
Abridged Linear for the main task with a Loss-
Balanced Task Weighting (LBTW) for the aux-
iliary tasks, so as to automatically fine-tune
task weighting during learning, ensuring that
each of the tasks’ weights is adjusted by the rel-
ative importance of the different tasks. We con-
duct experiments using QuAC, a large-scale
ConvQA dataset. Our results demonstrate the
effectiveness of our proposed method, which
significantly outperforms both the single-task
learning and static task weighting methods
with improvements ranging from +2.72% to
+3.20% in F1 scores. Finally, our findings
show that the performance of using MTL in
developing ConvQA model is sensitive to the
correct selection of the auxiliary tasks as well
as to an adequate balancing of the loss rates of
these tasks during training by using LBTW.

1 Introduction

The task of Conversational Question Answering
(ConvQA), which consists in answering a question
from a given passage in the form of a dialogue
has become a vital task for Machine Reading Com-
prehension (MRC). In the ConvQA task, in order
to predict an answer, the system needs to extract
text spans from a given passage and understand
the question based on the given conversational his-
tory. Recently, the advancement in neural language
modeling such as BERT (Devlin et al., 2019), and
the introduction of two large-scale datasets, namely
CoQA (Reddy et al., 2019) and QuAC (Choi et al.,
2018) have further boosted research in the ConvQA
task. In particular, QuAC introduces a main task,
namely Answer Span prediction, which consists
in answering a question by extracting text spans
from a given passage as well as some auxiliary
tasks, namely Yes/No prediction, Follow up pre-
diction and Unanswerable prediction. Recently,
Multi-Task Learning (MTL), which is a way to
learn multiple different but related tasks simultane-
ously, has emerged as a popular solution to tackle
all these tasks in a uniform model (Qu et al., 2019b).
MTL can also be used to leverage the auxiliary
tasks to improve the performance of a system on
the main task. For example, for the QuAC dataset,
(Qu et al., 2019b; Yeh and Chen, 2019) adopted an
MTL approach that learns the auxiliary tasks and
the main task by sharing the encoder, and showed
an improvement in the used ConvQA model.

MTL methods can be categorised into static or
dynamic methods. In the static MTL methods, each
of the task’s weights used to combine the loss func-
tions of the various used tasks during training are
unchanged throughout the learning phase, which
may divert training resources to unnecessary tasks.
In contrast, in the dynamic MTL methods, each
of the task’s weights are adjusted automatically
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to balance the loss rate (Liu et al., 2019a) or to
balance the weights across tasks (Kendall et al.).
However, the implementation of a MTL dynamic
method is more complicated and has a lower train-
ing efficiency than static methods.

Most existing (Qu et al., 2019b; Yeh and Chen,
2019) Conversational Question Answering (Con-
vQA) models that leverage Multi-Task Learning
(MTL) use the static method with unchanged tasks’
weights during the training epochs. For instance,
the recently-proposed History Attention Mecha-
nism (HAM) model (Qu et al., 2019b) attempted to
apply Multi-Task Learning in order to improve the
effectiveness of conversational QA. However, the
tasks’ weights in the model were unchanged dur-
ing the training state and emphasise the main task.
FlowDelta (Yeh and Chen, 2019) is a ConvQA
model that also employed a static MTL method,
which sets all tasks’ weights equal to one. In the
static MTL methods used in HAM and FlowDelta,
all of the tasks’ weights have not been adjusted
throughout the learning phase. As a result, training
resources could be diverted to unnecessary tasks
with a negative impact on the performance of the
learned models. To improve the effectiveness of
Multi-Task Learning for Conversational Question
Answering, we propose a novel method, called Hy-
brid Task Weighting, which focuses on adjusting
the tasks’ weights by modelling the difference be-
tween the tasks’ weights, while still prioritising on
the main task.

Our contributions are summarised as follows:
(1) We leverage dynamic Multi-Task Learning with
BERT1 to effectively address the task of learning
Answer Span prediction with its auxiliary tasks in-
cluding Yes/No prediction, Follow up prediction,
and Unanswerable prediction; (2) To further en-
hance the performance of Multi-Task Learning, we
introduce a hybrid strategy, which automatically
fine-tunes the multiple tasks’ weights along the
learning steps. Our method uses Abridged Lin-
ear for the primary task and Loss-Balanced Task
Weighting for the auxiliary tasks; (3) The pro-
posed hybrid method yields the best performance
improvements over the baselines on the QuAC
dataset.

2 Related Work

In the following, we discuss related work about
Multi-Task Learning, Conversational Question An-
1 Our preliminary experiments found BERT to be more effec-
tive than ALBERT or RoBERTa.

swering, and using Multi-Task Learning in Conver-
sational Question Answering.

Multi-Task Learning: MTL is a learning
paradigm, which has achieved success in many ma-
chine learning applications, including Natural Lan-
guage Processing (Liu et al., 2015, 2019b), Speech
Processing (Hu et al., 2015; Wu et al., 2015), and
Computer Vision (Leang et al., 2020). For further
background on MTL, we refer the readers to the
recent review by (Ruder, 2017; Zhang and Yang,
2017). The MTL methods can be classified into
static methods or dynamic methods based on their
weighting strategy (Ming et al., 2019). In a static
method, before training the network, each of the
task’s weights is set manually, then these weights
are fixed throughout the training of the network (Qu
et al., 2019b; Yeh and Chen, 2019). In contrast,
the dynamic methods initialise each of the task’s
weights at the beginning of the training and auto-
matically update the weights during the training
process (Belharbi et al., 2016; Chen et al., 2018;
Liu et al., 2019a). Typically, the MTL networks
can be classified into either hard or soft parameter
sharing networks (Ruder, 2017). In hard parameter
sharing, also known as multi-head, the network is
applied by employing separate task-specific output
layers on top of a shared encoder. In soft parameter
sharing, all parameters are task-specific but all net-
works have mechanisms to handle the cross-task
learning. Following (Liu et al., 2015, 2019b; Xu
et al., 2019), we employ a hard parameter sharing
MTL approach because this network type reduces
the risk of overfitting (Ruder, 2017).

Conversational Question Answering: Con-
vQA is a Machine Reading Comprehension (MRC)
task where questions are formed in conversations.
Hence, a ConvQA approach needs to deal with
the conversation history to accurately understand
and answer the current question. To handle the
conversation history, existing works (Zhu et al.,
2018; Reddy et al., 2019) prepended previous ques-
tions and answers to the current question while (Qu
et al., 2019a,b; Yeh and Chen, 2019) employed a
history selection mechanism. Some prior studies
have integrated the conversation history into neural
language models such as BERT: For example, Qu
et al. (2019b) proposed the Positional History An-
swer Embedding (PosHAE) approach, which uses a
feature vector to encode the position of the answer
in the conversation history in the current question;
Similarly, Choi et al. (2018); Yeh and Chen (2019)
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used a Context Feature to mark historical answers
in the passage.

The two recent large-scale ConvQA datasets,
QuAC (Choi et al., 2018) and CoQA (Reddy et al.,
2019), have facilitated further research on this task.
The differences between these datasets are that the
questions in CoQA are predominantly factoid in
nature, while most questions in QuAC are non-
factoid. Moreover, QuAC also contains three aux-
iliary tasks; in contrast, CoQA only provides an
Unanswerable prediction task as an auxiliary task.
Hence, due to the presence of multiple auxiliary
tasks, our MTL study focuses on the QuAC dataset.

Multi-Task Learning for Conversational
Question Answering Models: Recently, existing
works (Qu et al., 2019b; Yeh and Chen, 2019) on
MTL for ConvQA have successfully adopted static
MTL methods. However, there is still room for
improvement since during the learning phase the
weights for the auxiliary tasks are unchanged and
therefore they not adjusted relative to the impor-
tance of the different tasks. We include these MTL
methods as baselines in our present work.

Instead, in this paper, we take advantage of a
dynamic method in MTL for ConvQA. The goal of
our proposed model is to improve the effectiveness
of the ConvQA task. As far we know, no prior work
has addressed the use of dynamic MTL methods for
the ConvQA task. In our proposed MTL approach,
we employ the Abridged Linear (Belharbi et al.,
2016) for the primary task and the Loss-Balanced
Task Weighting (Liu et al., 2019a) for the auxil-
iary tasks, which prioritises the primary task after
step t during training by setting the task’s weight to
one while also automatically fine-tuning the tasks’
weights by balancing the loss ratio of the auxiliary
tasks. In our model, we employ BERT (Devlin
et al., 2019), which is still a widely used and pop-
ular pre-trained model, with customised features
following (Qu et al., 2019b; Yeh and Chen, 2019).
In the following section, we describe in detail our
ConvQA model.

3 The BERT ConvQA Model

We first define the task in Section 3.1. An overview
of the proposed ConvQA model is provided in Sec-
tion 3.2. Section 3.3 describes how additional fea-
tures are integrated with the BERT encoder. Then
we explain how predictions are made for the main
Answer Span prediction task as well as the auxil-
iary tasks in Sections 3.4 & 3.5, respectively.

Table 1: An example dialog from the ConvQA dataset.

p

In 1934 he batted .344 with 18 home runs, 104 RBI, 102 runs scored and 192 hits in 138 games.
After a disappointing final season with the White Sox which saw Simmons bat just .267 with 16
home runs and 79 RBI in 128 game (first time in his 11-year career he did not reach .300+ & 100
RBI) he rebounded by hitting .327 with 13 home runs, 112 RBI and 96 runs scored in 1936 for
the Detroit Tigers. In 1937 he struggled again, this time with the Washington Senators, batting
just .279 with 8 home runs and 84 RBIs in 103 games. He rebounded with a stellar season in
1938, batting .302 with 21 home runs and 95 RBI in just 125 games for Washington. His 21
home runs that year gave Simmons the distinction of being the first player to hit 20 home runs
in a year for the Senators. CANNOTANSWER

q1 Where was he playing in 1933?
a1 CANNOTANSWER
q2 What did he do between 1933 and 1938?
a2 In 1934 he batted .344 with 18 home runs, 104 RBI, 102 runs scored and 192 hits in 138 games.
q3 Did he lead the league in hitting?
a3 After a disappointing final season with the White Sox

3.1 Task Definition

Following Choi et al. (2018), we describe the Con-
vQA task as follows: given a passage p, a conver-
sation history Hk consisting of a list of k questions
and ground truth answer pairs, i.e. Hk = [〈q, a〉],
and a new query qk+1, the task is to predict answer
ak+1 by predicting answer span indices i, j within
passage p. Table 1 exemplifies the ConvQA task,
showing an example passage p, and a history of
length k = 2 with corresponding questions and
answers; In particular, in response to question q3,
the aim of a ConvQA system is to correctly predict
the right answer a3 from all possible sentences in
p.

Moreover, as mentioned in Section 2, the QuAC
dataset (Choi et al., 2018) provides labels for aux-
iliary tasks that are relevant to the ConvQA task,
namely the affirmation (Yes/No) and continuation
(Follow up) classification tasks. For example, Yeh
and Chen (2019) showed how to leverage the unan-
swerable questions as another auxiliary task called
Unanswerable prediction. In the next section, we
provide an overview of a BERT-based model that
can be used for the ConvQA task; Moreover as an
MTL model, it can benefit from learning using the
auxiliary tasks. Later, in Section 4, we describe
different MTL methods for weighting the ConvQA
and auxiliary tasks during learning, which we ap-
ply and evaluate. We describe all auxiliary tasks in
detail in Section 6.1.

3.2 Model Overview

To tackle the tasks described in Section 3.1, we
present our ConvQA model by adopting a Multi-
Task Learning approach. Figure 1 illustrates the
architecture of our model, which consists of three
components: an encoder, an answer span predictor
and the auxiliary tasks predictor. For the encoder,
we deploy a BERT model that encodes the question
qk+1, the passage p, and the conversation history
Hk as a sequence of m words C = {c1, c2, ..., cm}
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Figure 1: The model architecture.

into contextualised token-level representations i.e.,
T̂k = F (qk+1, p,Hk), where F (·) is BERT’s en-
coder transformation function. These encodings
are customised to the task by integrating conversa-
tion history features (Section 3.3). Finally, these
representations are fed into the predictors’ modules
in a Multi-Task Learning setting (Sections 3.4 &
3.5).

3.3 BERT Encoder Features
In our model, we modify the BERT input to encap-
sulate two features – the Positional History Answer
Embedding (PosHAE) and the Context Features:

PosHAE: We use this modification feature in-
troduced by Qu et al. (2019b) to capture the con-
versation history into BERT. As exemplified by the
example in Table 1, questions in the QuAC dataset
often refer to entities in the previous answer(s).
Consequently, PosHAE was introduced to embed
the relative position of the terms that occur in previ-
ous answers within the conversational history Hk.

Context Feature: We integrate contextual
knowledge of the previous answer within the pas-
sage into BERT by following Yeh and Chen (2019)
who, applied BiDAF++ (Choi et al., 2018). In-
deed, BiDAF++ learns a passage embedding that
denotes whether a token in a recent answer is part
of passage p.

3.4 Answer Span prediction
Given the token-level representation T̂k produced
by BERT, we compute the probability of each to-
ken being the start token or the end token in order
to predict the answer span. In particular, to map
a token representation T̂k to a logit, two sets of
parameters are learned for the start vector and the
end vector, respectively. After that the softmax
function is applied to obtain probabilities across all
tokens in the sequence C (see Section 3.2). From
this, we obtain pSm, and pEm, which are the probabil-
ities of token m being the start token or end token,

as follows:

pSm = softmax(T̂k(m)), pEm = softmax(T̂k(m)).
(1)

Then for the Answer Span prediction task, we
compute the cross-entropy loss as follows:

LS = −
∑
M

1{m = mS} log(pSm),

LE = −
∑
M

1{m = mE} log(pEm),

Lans =
1

2
(LS + LE) (2)

where the ground truth of the start token and end
token are mS and mE , respectively, and 1{·} is
and indicator function to show that the predicted
token m is in the ground truth. Then the loss of
the Answer Span prediction Lans is calculated by
averaging the loss of the start and end tokens, LS
and LE .

3.5 Auxiliary Task Prediction
All auxiliary tasks in our datasets are formulated
as binary or multi-label classification tasks. To
address each auxiliary task, we take the sequence-
level representation ŝk that is obtained from the
[CLS] token (which is the first token of the se-
quence, produced by BERT). We apply a softmax
function on ŝk to compute the posterior probabil-
ities across the true and false labels for the multi-
label tasks; for the binary tasks, we use a sigmoid
function. After that, we compute cross-entropy
loss for the multi-label tasks and the binary cross-
entropy loss functions for the binary tasks. Next,
we describe the MTL approaches to combine the
loss functions from the auxiliary tasks with the loss
calculated on the main task.

4 Multi-Task Learning for ConvQA

We now describe and categorise existing loss
weighting approaches as either static or dynamic,
depending on whether the importance they place
on the loss of each task during learning is fixed or
varied. In the following, we describe existing static
and dynamic approaches (Sections 4.1 & 4.2), be-
fore describing our hybrid approach (Section 4.3).

4.1 Static MTL
Static MTL methods, which are the most frequently
used MTL approaches for ConvQA, apply a fixed
weighting of the different loss functions of the aux-
iliary tasks throughout the training process. This
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Figure 2: Dynamic Evolving Weighting approaches.

strategy is simple but yet expensive to fine-tune.
Instead, many previous studies just report the use
of uniform weights for tasks, such as setting all of
them to 1.0 (Yeh and Chen, 2019), or setting their
sum to 1 (Qu et al., 2019b). The total loss function
of this method is defined as follows:

Ltotal = µLans + λ
∑
a∈A
La (3)

whereA is the set of auxiliary tasks, µ is the weight
for the main task and λ is the weight for A.

4.2 Dynamic MTL

Applying static weighting to the auxiliary tasks can
unnecessarily apply learning resources to the aux-
iliary tasks, instead of the main task. Indeed, this
can lead to an overfitting to the wrong task and
hence to underfitting on the main task (Chen et al.,
2018). On the other hand, in the dynamic MTL ap-
proaches, the loss weighting of the tasks is instead
continually adjusted during learning. Examples of
dynamic approaches are Evolving Weighting (Bel-
harbi et al., 2016), Loss-Balanced Task Weight-
ing (Liu et al., 2019a), and Uncertainty Weight-
ing (Kendall et al.), discussed further below.

Evolving Weighting: Belharbi et al. (2016) pro-
posed to evolve the loss weighting during the train-
ing steps according to a schedule. A training step
is defined as the number of batches of the training
data, such that the total number of steps is the num-
ber of batches multiplied by the number of training
epochs. Four different schedules were proposed.
Figure 2 gives an overview of how the four sched-
ules vary the weights of the main and auxiliary
tasks – µ and λ, respectively – across the training
steps. These four schedules are described below:

Stairs schedule: The initial emphasis is on the
auxiliary task, with µ = 0 and λ = 1. At a given
training step t, µ = 1 and λ = 0.

Algorithm 1: Hybrid Task Weighting
Given S tasks and parameter α.
Initialise neural network weights W .
for each epoch i do

for each batch of data B do
Get the loss on each task `B ∈ RS

Store the first batch loss as `(0,i) ∈ RS

if step t ≤ tτ
Set the main task weight µ = ( tT )

else
Set the main task weight µ = 1

for each auxiliary task s do
Set the auxiliary task weight λ = (

`(B,s)

`(0,i,s)
)α

Update weighted loss `(B,s) = `(B,s) × λ
Update weighted loss `(B,m) = `(B,m) × µ
Set the total loss `total = `(B,m) +

∑s
i=1 `i

Linear schedule: The weight of the auxiliary
task decreases linearly at each training step, such
that the auxiliary weight λ = 1 tends to 0; in con-
trast, the weight of the main task increases linearly,
i.e. λ = (1− µ). In particular, given that the total
number of steps T is known in advance, λt = t

T .
Abridged Linear schedule: In a linear schedule,

µ rises over the full training schedule to step T.
This may not place sufficient emphasis on the main
task during training. Instead, in the Abridged Lin-
ear schedule the weight on the auxiliary task λ falls
linearly to 0 by a threshold step tτ . After tτ , all
emphasis is on the main task (i.e. µ = 1).

Exponential schedule: The weights evolve ex-
ponentially to the step number, i.e. µ = exp(−tσ ),
where t is the current number of training steps, and
σ is the slope, as shown in Figure 2.

Loss-Balanced Task Weighting (LBTW) (Liu
et al., 2019a): This MTL method aims to reduce
negative transfer by using the task-specific loss
to balance the different auxiliary tasks. Negative
transfer is when the performance of the task is
decreased by Multi-Task Learning compared to the
single-task learning. This method employs the loss
ratio between the current loss and the initial loss
of each task to adjust the task’s weight. The task
with the loss ratio closest to one needs to contribute
more to the total loss. By increasing the weight of
the task with loss ratio that is closest to one, this
method attempts to balance the task importances.

Uncertainty Weighting (Kendall et al.): This
method is the most often used Multi-Task Learn-
ing approach, which is a weighting strategy that
consists in analysing the uncertainty of each task.
In this method, each of the task’s weights is ad-
justed by deriving a multi-task loss function when
maximising the Gaussian likelihood (Ruder, 2017).
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4.3 Hybrid Task Weighting
Among the existing dynamic MTL methods, Un-
certainty Weighting (Kendall et al.), and Loss-
Balanced Task Weighting (Liu et al., 2019a) both
weight all tasks without prioritising on the main
task, such that resources are unnecessarily allo-
cated to other tasks, thereby leading to a possible
underfitting on the main task (Guo et al.). For this
reason, we propose a Hybrid Task Weighting ap-
proach, which applies an Abridged Linear schedule
for weighting the main task and LBTW (Liu et al.,
2019a) for weighting the auxiliary tasks. In par-
ticular, for the Abridged Linear schedule, we take
a step threshold tτ = T /10, i.e. 10% of all steps,
which is the same as the warm-up ratio we use (see
Section 6.4 for further details). To apply LBTW for
the auxiliary tasks, a hyperparameter α is used to
balance the influence of the task-specific weights,
i.e. α=0.5 (Liu et al., 2019a). For each batch, the
weight of each task is calculated by using the loss
ratio between the loss at step t and the loss at t=0,
thereby balancing the loss rates of the auxiliary
tasks. Algorithm 1 provides further details about
the implementation of our hybrid approach.

5 Research Questions

In this paper, we address two key research ques-
tions. Firstly, one of our central contributions is
the comparison of existing Multi-Task Learning
(MTL) strategies, when used in the same Con-
versational Question Answering (ConvQA) model
both in terms of effectiveness and efficiency. By
doing this, we investigate whether there is an ac-
tual difference between the static and dynamic loss
weighting methods, in guiding the learning process.
Moreover, to the best of our knowledge, there has
been no previous study that investigated dynamic
loss weighting for the ConvQA task on the QuAC
dataset. Hence, our first research question is:

RQ1: What is the most effective and efficient
Multi-Task Learning method for ConvQA?

Secondly, we investigate the effectiveness of the
combination of the auxiliary tasks to improve the
performance of the main QuAC task, namely we
posit the following research question:

RQ2: Does applying the proposed MTL Conv-
QA model using each of the auxiliary tasks result
in effectiveness improvements over learning using
only the main task?

6 Experimental Setup

In this section, we describe the used dataset, QuAC,
and its auxiliary tasks in Section 6.1. We present
the list of our baselines in Section 6.2. We discuss
the used evaluation metrics in Section 6.3, and the
applied hyper-parameter settings in Section 6.4.

6.1 Dataset

To conduct our evaluation of the MLT methods
when integrated into the BERT ConvQA model,
we choose QuAC (Choi et al., 2018), a large-scale
dataset for ConvQA over passages extracted from
Wikipedia articles. Unlike other Machine Reading
datasets such as SQuAD (Rajpurkar et al., 2016,
2018), this dataset is considered to be a multi-turn
dataset where the questions and answers simulate
conversations. The main reason for choosing this
dataset for our experiments is that it provides not
only an Answer span prediction as the main task
but it also provides other auxiliary tasks namely,
the affirmation (Yes/No prediction) and continu-
ation (Follow up prediction) classification tasks.
Moreover, we also observe that if an answer in
QuAC is tagged as CANNOTANSWER, then this
means that the corresponding question cannot be
answered. Hence, from these kind of answers, we
define another Unanswerable prediction task as an
additional auxiliary task to use in our MTL method.
We describe below each of the used auxiliary tasks:

Yes/No prediction: This task consists of three
possible labels: yes, no, neither where yes or no are
represented as the sought answer to this question
type; otherwise it will be ‘neither’. Choi et al.
(2018) observed that there were 25.8% of yes/no
questions in the QuAC dataset.

Follow up prediction: This classification task
consists in predicting the continuation of a given
question, and has three possible labels: follow up,
maybe follow up, don’t follow up.

Unanswerable prediction: This task has two
possible labels: yes/no allocated by inspecting
the answer text associated to each question in the
dataset. If the answer text is CANNOTANSWER,
the label is yes otherwise it is no. 20.2% of all
questions in the QuAC dataset are unanswerable.

6.2 Baselines

We use as baselines all methods described in Sec-
tion 4. Hence, our baselines consist of the Static
MTL methods from Section 4.1, namely sum to
1 and equal to 1, and the dynamic MTL meth-
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ods from Section 4.2, namely Evolving Weighting
(Stair, Linear, Abridged Linear, and Exponential),
Loss-Balanced Task Weighting, and Uncertainty
Weighting as baselines. In addition, we also include
Single-Task Learning as a baseline to illustrate the
effectiveness of Multi-Task Learning as well as our
proposed Hybrid Task Weighting method.

6.3 Evaluation Metrics.
Since we are using the QuAC dataset, we naturally
adopt the two evaluation metrics in the correspond-
ing challenge, which consist of the word-level F1,
and the human equivalence score (HEQ). The word-
level F1, commonly used in Machine Comprehen-
sion and in the ConvQA tasks (Rajpurkar et al.,
2016, 2018; Choi et al., 2018), evaluates the over-
lap between the system’s prediction and the ground
truth answer span. Meanwhile, the HEQ metric
is used to evaluate the percentage of examples for
which the deployed model’s F1 is equivalent to or
higher than the human F1. This metric is com-
posed of HEQ-Q, computed on the question level,
and HEQ-D, computed at the dialogue level. The
QuAC challenge defines the human performance
to have an HEQ-Q and HEQ-D of 100%. Finally,
we use the McNemar’s test to measure statistical
significance between the prediction performances.

6.4 Hyper-parameter Settings.
We implement all models using the Pytorch version
of BERT from HuggingFace (Wolf et al., 2019),
namely using the bert-base-uncased2

model as our encoder. Following Qu et al. (2019b),
the model configuration is as follows: the max
sequence length is set to 12, the stride in the
sliding window is set to 128, the max question
length is set to 64, the max answer length set to
35, the number of training epochs is set to 5 and
the batch size is set to 12. To train our BERT
ConvQA model, we use the BertAdam weight
decay optimiser, with an initial learning rate of
5e-5 while the learning rate warming up portion
is 10%. For all our experiments, we use a single
Nvidia TITAN RTX GPU.

7 Experimental Results

We first report our evaluation results for various
MTL methods using our ConvQA model in Sec-
tion 7.1. Our findings for the usefulness of the
auxiliary tasks in MTL are detailed in Section 7.2.
2 https://huggingface.co/transformers/pretrained models.html

7.1 RQ1: Effectiveness and Efficiency of the
MTL Methods

We investigate the performance of the baselines
in comparison to our proposed hybrid method for
Multi-Task Learning on the validation set3 of the
QuAC dataset. All MTL methods are trained on
the provided QuAC training set by using all the
auxiliary tasks, namely the Yes/No prediction, the
Follow up prediction and the Unanswerable predic-
tion classification tasks. In this section, we focus
on the performance of the system on the main task
(i.e. the Answer Span prediction task).

First, we examine the effectiveness of the MTL
methods, including our proposed methods and
those baselines listed in Section 4. Table 2 illus-
trates the single-task learning baseline (denoted
STL) in the first column and the MTL methods in
the following columns. Within Table 2, the best
result in each row is highlighted in bold. From
this table, we observe that the F1 performance of
all the MTL methods is better than the STL base-
line. Indeed, our proposed method, Hybrid Task
Weighting, achieves the best F1 and HEQ-Q perfor-
mances, at 72.28 and 68.71, respectively. The best
reported HEQ-D score is achieved by the Exponen-
tial Evolving Weighting method at 13.1 followed
by our Hybrid Task Weighting method at 13.0. In-
deed, our proposed method is more effective than
the Abridged Linear and the Loss-Balanced Task
Weighting dynamic methods, showing that while it
emphasises the main tasks (c.f. Abridged Linear),
it also balances the auxiliary tasks through use of
the LBTW method. Moreover, all of the dynamic
task weighting methods significantly outperform
the STL model, except for the Stair and Uncertainty
Weighting methods (McNemar’s test, p < 0.05).

Next, we investigate the efficiency of the tested
MTL methods by comparing the average number
of iterations per second needed during training and
evaluation. Table 3 depicts the efficiency of the
MTL methods for the BERT ConvQA model. In
this table, the higher the number, the higher the
efficiency, while the best result is highlighted in
bold. We observe that the Linear Evolving Weight-
ing yields the best efficiency in comparison to all
other methods – at 2.31 iterations per second during
learning – while the static task weighting method
(equal to 1) exhibits the best evaluation efficiency

Overall the efficiency of most models during
3 QuAC’s test set is only accessible by submitting to their
leaderboard. Hence, we provide results using the provided
validation set.
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Table 2: Effectiveness of various task-weighting methods for Conversational Question Answering. † denotes a
result statistically different from that of our proposed Hybrid Task Weighting model (McNemar’s test, p < 0.05);
‡ denotes a significant improvement over the STL baseline. The highest value for each measure is highlighted.

Single-task
learning

Static
task weighting

Evolving Weighting Loss-Balanced
Task Weighting

Uncertainty
Weighting

Hybrid
Task Weighting

Sum to 1 Eq.1 Linear Exponential Abridged Linear Stair
F1 69.08 † 69.56 † 69.40 † 70.97 †‡ 71.16 †‡ 71.37 †‡ 69.73 † 69.41 †‡ 69.20 † 72.28 ‡

HEQ-Q 65.51 66.06 65.65 67.49 67.88 67.78 66.24 65.71 65.43 68.71
HEQ-D 11.6 11.10 10.7 12.8 13.1 12.10 11.80 11.6 11.3 13.00

Table 3: Efficiency of different MTL methods. The
highest value for each phase is highlighted.

Model
#iters/sec

Training Evaluating
Single-task learning 2.23 3.95

Static task weigthing
Sum to 1. 2.13 4.05
All eq. 1 2.25 4.12

Evolving Weighting

Linear 2.31 3.99
Exponential 2.26 3.90

Abridged Linear 2.20 3.84
Stair 2.15 4.07

Loss-Balanced Task Weighting 2.05 3.91
Uncertainty Weighting 1.5 3.94
Hybrid Task Weighting 2.04 4.04

evaluation is fairly similar, at around 3.8 to 4.1
iterations per second. We argue that this is be-
cause during the evaluation phase, all models have
the same structure, and only differ in terms of
weights. On the other hand, during learning, the
Evolving Weighting method is slightly faster than
the other baseline methods including our own pro-
posed method due to the simple manner in which
it calculates the task weight. Moreover, training
the ConvQA model using the Uncertainty Weight-
ing method exhibits more training time than other
methods. Indeed, this approach has the most com-
plex implementation.

In response to RQ1, we find that our BERT
ConvQA model learned through Multi-Task Learn-
ing by using a hybrid approach has the best effec-
tiveness, yielding statistically significant improve-
ments over the baselines. Moreover, we observe
that there is little difference between the efficiency
of our proposed method, and that of the static task
weighting methods, or the single-task learning in
both the training and evaluation phases even though
our approach has a more complex implementation.

7.2 RQ2: Combination of Auxiliary Tasks vs.
Single-Task Learning

Next, we conduct experiments to determine the
best combination of auxiliary tasks, which helps
to improve the performance of the main task. In
these experiments, all models are learned by using
our proposed method as the Multi-Task Learning

Table 4: Comparison of different combinations of auxil-
iary tasks. † denotes a statistically significant improve-
ment over STL with p < 0.05 using the McNemar’s
test. The highest value for each measure is highlighted.

F1 HEQ-Q HEQ-D
STL 69.08 65.51 11.6
Yes/No 68.60 64.98 11.6
Follow up 69.76 † 66.74 12.0
Unanswerable 72.27 † 68.87 13.5
Yes/No + Follow up 72.66 † 68.87 11.7
Yes/No + Unanswerable 72.48 † 69.02 13.2
Follow up + Unanswerable 71.91 † 68.52 14.2
All 72.28 † 68.71 13.0

strategy for the BERT ConvQA model. We vary the
choice of auxiliary tasks from those detailed in Sec-
tion 6.1, namely Yes/No prediction, Follow up pre-
diction and Unanswerable prediction. Single-task
learning acts as a baseline for these experiments.

Table 4 presents the effectiveness of the differ-
ent combinations of auxiliary tasks (each row is a
different combination). We observe that the high-
est scores for the F1, HEQ-Q and HEQ-D mea-
sures are not obtained from the same combination.
In particular, applying Multi-Task Learning using
the Yes/No and Follow up tasks achieves the best
F1 performance compared to the other combina-
tions. However, when using the HEQ-Q metric,
it is apparent that the combination of the Yes/No
prediction and Unanswerable prediction is the best.
Furthermore, the combination of the Follow up pre-
diction and Unanswerable prediction yields the best
model in terms of the HEQ-D metric. From these
results, we further analyse why the models that
include Unanswerable prediction as one of the aux-
iliary tasks, have higher HEQ scores in comparison
to models that use either the Yes/No prediction or
the Follow up prediction as the auxiliary tasks. We
found that a key issue is the number of correct pre-
dictions for the unanswerable questions. The more
correct answers achieved on this type of questions,
the more likely the performance will be higher in
terms of HEQ. From the table, we also observe that
the model that fused all the auxiliary tasks is not
the best choice for MTL, and its performance on
all metrics is similar to the model that used only
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the Unanswerable prediction auxiliary task.
In answer to RQ2, we conclude that most of the

combination models are better than just learning
the main task, except the model that solely used
the Yes/No prediction as an auxiliary task. This
raises the question as to why the model that com-
bines all the auxiliary tasks does not outperform
the models that includes Unanswerable as an auxil-
iary task. We conjecture that negative transfer (see
Section 4.2) might be a possible reason explaining
the drop in the performance of MTL. We leave the
investigation of this issue to future work.

8 Conclusions

We have proposed a method for Conversational
Question Answering, which learns to predict the
correct answer span, by applying Multi-Task Learn-
ing (MTL). Our proposed hybrid MTL method
makes use of Evolving Weighting by Abridged
Linear for learning the main task, while the auxil-
iary tasks are addressed using Loss-Balanced Task
Weighting. Our experiments on the QuAC dataset
demonstrated that our ConvQA model learned
through Multi-Task Learning by using a hybrid
approach has the best effectiveness, yielding sta-
tistically significant improvements over the base-
lines. Furthermore, we showed that the use of a
combination of the auxiliary tasks resulted in an en-
hancement to the main task performance compared
to single-task learning. For future work, we plan
to consider the integration of a question re-writer
as well as the use of an attention mechanism for
capturing the dialog context.
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