A Wrong Answer or a Wrong Question?
An Intricate Relationship between Question Reformulation and Answer
Selection in Conversational Question Answering

Svitlana Vakulenko’
University of Amsterdam
s.vakulenko@uva.nl

Abstract

The dependency between an adequate ques-
tion formulation and correct answer selection
is a very intriguing but still underexplored area.
In this paper, we show that question rewrit-
ing (QR) of the conversational context allows
to shed more light on this phenomenon and
also use it to evaluate robustness of different
answer selection approaches. We introduce a
simple framework that enables an automated
analysis of the conversational question answer-
ing (QA) performance using question rewrites,
and present the results of this analysis on the
TREC CASsT and QuAC (CANARD) datasets.
Our experiments uncover sensitivity to ques-
tion formulation of the popular state-of-the-art
models for reading comprehension and pas-
sage ranking. Our results demonstrate that the
reading comprehension model is insensitive to
question formulation, while the passage rank-
ing changes dramatically with a little variation
in the input question. The benefit of QR is
that it allows us to pinpoint and group such
cases automatically. We show how to use this
methodology to verify whether QA models are
really learning the task or just finding short-
cuts in the dataset, and better understand the
frequent types of error they make.

1 Introduction

Conversational question answering (QA) is a new
and important task which allows systems to ad-
vance from answering stand-alone questions to an-
swering a sequence of related questions (Choi et al.,
2018; Reddy et al., 2019; Dalton et al., 2019). Such
sequences contain questions that usually revolve
around the same topic and its subtopics, which
is also common for a human conversation. The
most pronounced characteristics of such question
sequences are anaphoric expressions and ellipsis,
which make the follow-up questions ambiguous
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outside of the conversation context. For example,
consider a question “When was it discovered?”. It
is not possible to answer the question without re-
solving the pronoun it (example of an anaphoric
expression). Ellipsis are even harder to resolve
since they omit information without leaving any
references. For example, a question “When?”” can
naturally follow an answer to the previous question,
such as “Friedrich Miescher discovered DNA.”

Question rewriting (QR) was recently introduced
as an independent component for conversational
QA (Elgohary et al., 2019; Vakulenko et al., 2020;
Yu et al., 2020). Query rewriting received consider-
able attention in the information retrieval commu-
nity before but not in a conversational context (He
etal.,2016). Ren et al. (2018) performed similar ex-
periments using query reformulations mined from
search sessions. However, half of their samples
were keyword queries rather than natural language
questions and their dataset was not released to the
community. In this paper, we show that QR is not
only operational in extending standard QA models
to the conversational scenario but can be also used
for their evaluation.

An input to the QR component is a question and
previous conversation turns. The QR component is
designed to transform all ambiguous questions, e.g.,
“When?”, into their unambiguous equivalents, e.g.,
“When was DNA discovered?”. Such unambiguous
questions can be then processed by any standard
QA model outside of the conversation history.

Clearly, the quality of question formulation inter-
acts with the ability to answer this question. In this
paper, we show that introducing QR component
in the conversational QA architecture, by decou-
pling question interpretation in context from the
question answering task, provides us with a unique
opportunity to gain an insight on the interaction be-
tween the two tasks. Ultimately, we are interested
in whether this interaction can potentially help us
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to improve the performance on the end-to-end con-
versational QA task. To this end we formulate our
main research question:

How do differences in question formulation in
a conversational setting affect question answering
performance?

The standard approach to QA evaluation is
to measure model performance on a benchmark
dataset with respect to the ground-truth answers,
such as text span overlap in the reading compre-
hension task, or NDCG @3 in the passage retrieval
task. However, such evaluation setups may also
have their limitations with respect to the biases
in the task formulation and insufficient data diver-
sity that allow models to learn shortcuts and over-
fit the benchmark dataset (Geirhos et al., 2020).
There is already an ample evidence of the pitfalls in
the evaluation setup of the reading comprehension
task highlighting that the state-of-the-art models
tend to learn answering questions using superficial
clues (Jia and Liang, 2017; Ribeiro et al., 2018;
Lewis and Fan, 2019).

We aim to further contribute to the research area
studying robustness of QA models by extending
the evaluation setup to the conversational QA task.
To this end, we introduce an error analysis frame-
work based on conversational question rewrites.
The goal of the framework is to evaluate robust-
ness of QA models using the inherent properties of
the conversational setup itself. More specifically,
we contrast the results obtained for ambiguous and
rewritten questions outside of the conversation con-
text. We show that this data is very well suited for
analysing performance and debugging QA models.
In our experiments, we evaluate two popular QA
architectures proposed in the context of the con-
versational reading comprehension (QuAC) (Choi
et al., 2018) and conversational passage ranking
(TREC CASsT) (Dalton et al., 2019) tasks.

Our results show that the state-of-the-art models
for passage retrieval are rather sensitive to differ-
ences in question formulation. On the other hand,
the models trained on the reading comprehension
task tend to find correct answers even to incom-
plete ambiguous questions. We believe that these
findings can stimulate more research in this area
and help to inform future evaluation setups for the
conversational QA tasks.

2 Experimental Setup

To answer our research question and illustrate the
application of the proposed evaluation framework
in practice, we use the same experimental setup
introduced in our earlier work (Vakulenko et al.,
2020). This architecture consists of two indepen-
dent components: QR and QA. It was previously
evaluated against competitive approaches and base-
lines setting the new state-of-the-art results on the
TREC CAsT 2019 dataset. The QR model was
also shown to improve QA performance on both
passage retrieval and reading comprehension tasks.

In the following subsection, we describe the
datasets, models, and metrics that were used in
our evaluation. Note, however, that our error analy-
sis framework can be applied to other models and
metrics as well. The only requirement for apply-
ing the framework is the QR-QA architecture that
provides two separate outputs in terms of ques-
tion rewrites and answers. We show that the same
framework can be applied for both reading com-
prehension and passage retrieval tasks, although
they produce different types of answers and require
different evaluation metrics.

2.1 Datasets

‘We chose two conversational QA datasets for the
evaluation of our approach: (1) TREC CAsT
for conversational passage ranking (Dalton et al.,
2019), and (2) CANARD, derived from Question
Answering in Context (QuAC) for conversational
reading comprehension (Choi et al., 2018). Since
TREC CAsT is a relatively small dataset, we used
only CANARD for training our QR model. The
same QR model trained on CANARD was then
evaluated on both CANARD and TREC CAsT in-
dependently.

Following the setup of the TREC CAsT 2019,
we use the MS MARCO passage retrieval (Nguyen
et al., 2016) and the TREC CAR (Dietz et al.,
2018) paragraph collections. After de-duplication,
the MS MARCO collection contains 8.6M docu-
ments and the TREC CAR - 29.8M documents.
The model for passage retrieval is tuned on a
sample from the MS MARCO passage retrieval
dataset, which includes relevance judgements for
12.8M query-passage pairs with 399k unique
queries (Nogueira and Cho, 2019). We evaluated
on the test set with relevance judgements for 173
questions across 20 dialogues (topics).

We use CANARD (Elgohary et al., 2019) and



QuAC (Choi et al., 2018) datasets jointly to anal-
yse performance on the reading comprehension
task. CANARD is built upon the QuAC dataset
by employing human annotators to rewrite origi-
nal questions from QuAC dialogues into explicit
questions. CANARD contains 40.5k pairs of ques-
tion rewrites that can be matched to the original
answers in QuAC. We use CANARD splits for
training and evaluation. Each answer in QuAC is
annotated with a Wikipedia passage from which it
was extracted alongside the correct answer spans
within this passage. We use the question rewrites
provided in CANARD and passages with answer
spans from QuAC. In our experiments, we refer
to this joint dataset as CANARD for brevity. Our
model for reading comprehension was also pre-
trained using MultiQA dataset (Fisch et al., 2019)
to further boost its performance. MultiQA contains
75k QA pairs from six standard QA benchmarks.

2.2 Conversational QA Architecture

Our architecture for conversational QA is designed
to be modular by separating the original task into
two subtasks. The subtasks are (1) QR, responsible
for the conversational context understanding and
question formulation, and (2) QA that exactly cor-
responds to the standard non-conversational task of
answer selection (reading comprehension or pas-
sage retrieval). Therefore, the output of the QR
component is an unambiguous question that is sub-
sequently used as input to the QA component to
produce the answer.

Question Rewriting The task of question rewrit-
ing is to reformulate every follow-up question in a
conversation, such that the question can be unam-
biguously interpreted without accessing the conver-
sation history. The input to the QR model is the
question with previous conversation turns separated
with a [SEP] token (in our experiments, we use
up to maximum of 5 previous conversation turns).
Using our running example, the input would be:
Friedrich Miescher discovered DNA [SE P] When?
and the expected output from the QR model is:
When was DNA discovered?.

Our QR model is based on a unidirectional Trans-
former (decoder) designed for the sequence gener-
ation task. It was initialised with the weights of the
pre-trained GPT2 (Radford et al., 2019) and further
fine-tuned on the QR task. The training objective
in QR is to predict the output sequence as in the
ground truth question rewrites produced by human

annotators. The model is trained via the teacher
forcing approach. The loss is calculated with the
negative log-likelihood (cross-entropy) function.
At inference time, the question rewrites are gen-
erated recursively turn by turn for each of the dia-
logues using the previously generated rewrites as
input corresponding to the dialogue history, i.e.,
previous turns.

For our experiments, we adopt the same QR
model architecture proposed in the previous work
(Transformer++) (Anantha et al., 2020; Vakulenko
et al., 2020). It was shown to outperform a co-
reference baseline and other Transformer-based
models on CANARD, TREC CAsT and QReCC.

Question Answering We experiment with two
different QA models that reflect the state-of-
the-art in reading comprehension and passage
retrieval (Nogueira and Cho, 2019). All our
QA models are initialised with a pre-trained
BERT srce (Devlin et al., 2019) and then fine-
tuned on each of the target tasks.

Our model for reading comprehension follows
the standard architecture design for this task. We
restrict our implementation to the simplest but a
very competitive model architecture that more com-
plex approaches usually build upon (Liu et al.,
2019; Lan et al., 2019). This model consists of
a Transformer-based bidirectional encoder and an
output layer that predicts the answer span. The in-
put to the model is the sequence of tokens formed
by concatenating a question and a passage, the two
are separated with a [SE P] token.

Our passage retrieval approach is implemented
following Nogueira and Cho (2019). It uses
Anserini for the candidate selection phase with
BM25 (top-1000 passages) and BERT 4rgE for
the passage re-ranking phase.! The re-ranking
model was tuned on a sample from MS MARCO
with 12.8M query-passage pairs and 399k unique
queries.

2.3 Maetrics

We use the standard performance metrics for each
of the QA subtasks. We use normalized discounted
cumulative gain (NDCG @ 3) and precision on the
top-passage (P@]) to evaluate quality of passage
retrieval (with a relevance threshold of 2 in accor-
dance with the official evaluation guidelines for
CAsT). We use F1 metric for reading comprehen-
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Table 1: Break-down analysis of the passage retrieval
on TREC CASsT. Each row represents a group of QA
samples that exhibit similar behaviour. We consider
three types of input for every QA sample: the ques-
tion from the test set (Original), generated by the best
QR model (Transformer++) or rewritten manually (Hu-
man). The numbers correspond to the count of QA sam-
ples for each of the groups. The numbers in parenthesis
indicate how many questions in the ground truth do not
need rewriting, i.e., Human = Original.

Table 2: Break-down analysis of all reading compre-
hension results for the CANARD dataset, similar to Ta-
ble 1. Observe that Table 1 is much more sparse than
Table 2. There are almost no cases for which original or
model-rewritten questions outperformed human rewrit-
ing when ranking passages. On the contrary, Table 2
indicates a considerable number of anomalous cases in
which the reading comprehension model was able to
answer incomplete follow-up questions but failed in an-
swering ground-truth questions (rows 2-4).

P@1 NDCG@3
Original QR Human =1 >0 >0.5 =1
x x x 49(14) 10(1) 55(20) 154 (49)
v’ X X 0 0 0 0
X v’ X 2 0 1 0
v’ Vv’ X 0 1 1 0
X X v’ 19 10 25 4
v’ X v’ 0 1 0 0
X v’ N 48 63 47 11
v’ v’ v’ 55(37) 88(52) 44(33) 4(4)
Total 173 (53)

sion, which measures word overlap between the
predicted answer span and the ground truth.

In contrast with QA, there is no established
methodology for reporting the QR performance yet.
Existing studies tend to report performance using
BLEU metrics following the original CANARD
paper (Yu et al., 2020; Lin et al., 2020).

We conducted a systematic evaluation of dif-
ferent performance metrics to find a subset that
correlates with the human judgement of the quality
of question rewrites (see more details in (Anantha
et al., 2020)). Our analysis showed that ROUGE-1
Recall (ROUGE-1 R) (Lin, 2004) and Universal
Sentence Encoder (USE) (Cer et al., 2018) em-
beddings correlate with the human judgement of
the rewriting quality the most (Pearson 0.69 for
ROUGE-1 R and Pearson 0.71 for USE). Therefore,
we also use ROUGE-1 R and USE in this study to
measure similarity between the model rewrites and
the ground truth.

ROUGE is traditionally employed for evalua-
tion of the text summarisation approaches. While
ROUGE is limited to measuring lexical overlap be-
tween the two input texts, the USE model outputs
dense vector representations that are designed to
indicate semantic similarities between sentences
beyond word overlap.

3 Our Error Analysis Framework

To trace how the difference in question formulation
affects QA performance we compare the QR perfor-
mance metrics with the QA performance metrics
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Original QR  Human F1 >0 F1 >0.5 Fl=1
X X X 847 (136) 1855 (235) 2701 (332)
v’ X X 174 193 181
X v’ X 19 35(2) 40 (1)
v’ v’ X 135 153 120
X X v’ 141 288 232
v’ X v’ 65 (1) 57 (1) 40
X v’ v’ 226 324 269
v’ v’ v’ 3964 (529) 2666 (428) 1988 (333)
Total 5571 (666)

on the case-by-case basis, i.e., for each question-
answer pair. Notice that we can apply the same
approach for both retrieval and reading compre-
hension evaluation (see Table 2 for the results on
reading comprehension).

Table 1 illustrates our approach. Each row of
the table represents one of the combinations of
the possible QA results for 3 types of question
formulation. For every answer in a dataset we have
3 types of question formulation: (1) an original,
possibly implicit, question (Original), (2) rewrites
produced by the QR model (QR) and (3) rewrites
produced by a human annotator (Human).

v~ indicates that the answer produced by the
QA model was correct or X — incorrect, according
to the thresholds provided in the right columns.
For example, the first row of the table indicates
the situation, when neither the original question,
nor they generated or human rewrite were able to
solicit the correct answer (x x x). We then can
automatically calculate how many samples in our
results fall into each of these bins.

We assume human question rewrites as the
ground truth. Therefore, all cases in which these
rewrites did not result in a correct answer are errors
of the QA component (rows 1-4 in Tables 1-2). The
next two rows 5-6 show the cases, where human
rewrites succeeded but the model rewrites failed,
which we consider to be a likely error of the QR
component. The last two rows are true positives
for our model, where the last row combines cases
where the original question was just copied with-
out rewriting (numbers in brackets) and other cases
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Figure 1: Break-down analysis for passage retrieval (left) and reading comprehension (right) results (best in color).
This plot visualises the difference between the error distributions reported in Tables 1-2 with a sliding cut-off
threshold. The blue region at the top of the plots represents the proportion of errors in QA. The orange region
represents the proportion of errors in QR. The light green region shows the proportion of samples that were both
rewritten and answered correctly. The pink region at the bottom shows the importance of QR for the task. The
larger the region the more questions were answered correctly without any rewriting. We observe that the difference
between the two plots is very pronounced. The impact of QR is noticeable in passage retrieval, which is more
sensitive to question formulation than the reading comprehension model.

when rewriting was not required.

Since there is no single binary measure for
the answer correctness, we can pick different cut-
off thresholds for the QA metrics. For example,
P@1=1 will consider the answer correct if it came
up at the top of the ranking; or F1=1 will consider
the answer correct only in cases with full span
overlap, i.e, exact matches only. Figure 1 extends
this analysis by considering all thresholds in the
range [0; 1] with 0.02 intervals for NDCG@3 in
retrieval and F1 in reading comprehension. This
figure shows the proportion of different error types
as well as the results sensitivity to the choice of the
performance threshold.

4 Evaluation Results

Our approach allows us to estimate that the ma-
jority of errors stem from the QA model: 29% of
the test samples for retrieval and 55% for read-
ing comprehension. 11% of errors can be directly
attributed to QR in the retrieval setup and 5% in
reading comprehension.

To estimate the impact of QR on QA, we con-
sider only the last four rows in Table 2 for which
QA model return a correct answer for Human ques-
tions. Then, we divide the number of questions
for which the Original question leads to the correct
answer, i.e., without rewriting, by the total number
of questions that can be answered correctly by our
QA model (discarding the number of questions that
were not rewritten by the annotators indicated in

11

parenthesis). For example, to estimate the num-
ber of questions correctly answered in CANARD
(F1 = 1) without rewriting, i.e., using the Original
question as input to the QA model:

40 + 1988 — 333

=0.77
232 440 4 269 + 1988 — 333

(D

The proportion of QR errors for retrieval setup
is higher than for reading comprehension setup. In
particular, we found that the majority of questions
in CANARD test set (77% F1 = 1) can be correctly
answered using only the Original questions without
any question rewriting, i.e., even when the ques-
tions are ambiguous. For TREC CAsT, the chances
of reaching the correct answer set using an ambigu-
ous question are much lower (21% P@1 = 1). See
Tables 3-4 for the complete result set with different
cut-off thresholds.

There are two anecdotal cases where our QR
component was able to generate rewrites that
helped to produce better ranking than the human-
written questions. The first example shows that
the re-ranking model does not handle paraphrases
well. Original question: “What are good sources
in food?”, human rewrite: “What are good sources
of melatonin in food?”, model rewrite: “What are
good sources in food for melatonin”. In the second
example the human annotator and our model chose
different context to disambiguate the original ques-
tion. Original question: “What about environmen-
tal factors?”’, human rewrite: “What about environ-



Table 3: The fraction of questions in TREC CAsT that
were answered correctly without rewriting.

P@1 NDCG@3
Questions =1 >0 >05 =1
All 045 055 038 021
Human != Original 0.21 0.34 0.13 0

Table 4: The fraction of questions in CANARD that
were answered correctly without rewriting.

Questions F1>0 F1>05 Fl=1
All 0.92 0.82 0.80
Human != Original 091 0.79 0.77

mental factors during the Bronze Age collapse?”,
model rewrite: “What about environmental factors
that lead to led to a breakdown of trade”. Even
though both model rewrites are not grammatically
correct they solicited correct top-answers, while
the human rewrites failed, which indicate flaws in
the QA model performance.

5 QA-QR Correlation

In this section, we check whether the QR metrics
can predict the QA performance for the individual
questions by measuring the correlation between
the QR and QA metrics. This analysis shows how
the change in question formulation affects the an-
swer selection. In other words, we are interested
whether similar questions also produce similar an-
swers, and whether distinct questions result in dis-
tinct answers.

To discover the correlation between question and
answer similarity, we discarded all samples, where
the human rewrites do not lead to the correct an-
swers (top 4 rows in Tables 1-2). The remaining
subset contains only the samples in which the QA
model was able to find the correct answer. We then
compute ROUGE for the pairs of human and gener-
ated rewrites, and measure its correlation with P@1
to check if rewrites similar to the correct question
will also produce correct answers, and vice versa.

There is a strong correlation for ROUGE = 1,
i.e., when the generated rewrite is very close to the
human one. However, when ROUGE < 1 the an-
swer is less predictable. Even for rewrites that have
a relatively small lexical overlap with the ground-
truth (ROUGE < 0.4) it is possible to retrieve a
correct answer, and vice versa.
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Figure 2: Strong correlation (Pearson 0.77) between
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duced by the passage retrieval model (Recall).
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Figure 3: Weak correlation (Pearson 0.31) between
question similarity (ROUGE) and answers produced by
the reading comprehension model (Jaccard).

We further explore the effect of the QR qual-
ity on the QA results by comparing differences
of the answer sets produced when given different
rewrites. We compare answers produced separately
for human and model rewrites using the same input
question. However, this time we look at all the
answers produced by the QA model irrespective of
whether the answers were correct or not. This setup
allows us to better observe how much the change
in the question formulation triggers the change in
the produced answer.

Figure 2 demonstrates strong correlation be-
tween the question similarity, as measured by
ROUGE, and the answer set similarity. We mea-
sured the similarity between the top-1000 answers
returned for the human rewrites and the generated
rewrites by computing recall (R@1000). Points in
the bottom right of this plot show sensitivity of the
QA component, where similar questions lead to
different answer rankings. The data points that are
close to the top center area indicate weaknesses of



the QR metric as a proxy for the QA results: often
questions do not have to be the same as the ground
truth questions to solicit the same answers. The
blank area in the top-left of the diagonal shows that
a lexical overlap is required to produce the same
answer set, which is likely due to the candidate
filtering phase based on the bag-of-word represen-
tation matching.

We also compared ROUGE and Jaccard similar-
ity for the tokens in reading comprehension results
but they showed only a weak correlation (Pearson
0.31). This result confirms our observation that the
extractive model tends to be rather sensitive to a
slight input perturbation but will also often provide
the same answer to very distinct questions.

Thus, our results show that the existing QR met-
rics have a limited capacity in predicting the perfor-
mance on the end-to-end QA task. ROUGE corre-
lates with the answer recall for the retrieval model,
but cannot be used to reliably predict answer cor-
rectness for the individual question rewrites. Since
ROUGE treats all the tokens equally (except for the
stop-word list) it is unable to capture importance of
the individual tokens that modify question seman-
tics. The correlation of the QA performance with
the embedding-based USE metric is even lower
than with ROUGE for the both QA models.

6 Discussion

We showed that QA results can identify question
paraphrases. However, this property directly de-
pends on the ability of the QA model to match
equivalent questions to the same answer set.

Wrong answer or wrong question? Our pas-
sage retrieval model is using BM25 as a filtering
step, which relies on the lexical match between the
terms in the question and the terms in the passage.
Hence, synonyms, like “large” and “big”, cannot be
matched with this model. This effect explains that
dissimilar questions are never matched to the same
answers in Figure 2. The drawback of this model
is that it suffers from the “vocabulary mismatch”
problem (Van Gysel, 2017).

A one-word difference between a pair of ques-
tions may have a very little as well as a very dra-
matic effect on the question interpretation. This
class of errors corresponds to the variance evident
from Figure 2.

Our error analysis indicates that small pertur-
bations of the input question, such as anaphora
resolution, often cause a considerable change in
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the answer ranking. For example, the pair of the
original question: “Who are the Hamilton Electors
and what were they trying to do?”, and the human
rewrite: “Who are the Hamilton Electors and what
were the Hamilton Electors trying to do?” produce
ROUGE =1 but R@1000 = 0.33. We also identi-
fied many cases in which inability of the QR com-
ponent to generate apostrophes resulted in incorrect
answers (original question: “Describe Netflixs sub-
scriber growth over time”, and the human rewrite:
“Describe Netflix’s subscriber growth over time”).

In contrast, our reading comprehension models
is based solely on the dense vector representations,
which should be able to deal with paraphrases. In
practice, we see from Figure 3 that this feature may
also introduce an important drawback, when the
model produces a correct answer even when given
an incorrectly formulated question. This stability
and undersensitivity of the reading comprehension
model may indicate biases in the dataset and evalu-
ation setup. When the answers no longer depends
on the question being asked, but can be also pre-
dicted independently from the question, the QA
model evidently fails to learn the mechanisms un-
derlying QA. Instead, it may learn a shortcut in
the benchmark dataset that allows to guess correct
questions, such as likely answer positioning within
an article.

Our experiments show that the retrieval-based
setup is more adequate in judging model robust-
ness. The size of the answer space is sufficiently
large so as to exclude spurious cues that the model
can exploit for shortcut learning. The role of QR
is, therefore, much more evident in this task, since
to be able to find the correct answer the question
has to be formulated well by disambiguating con-
versational context. While it may be redundant to
overspecify the question when given several pas-
sages to choose the answer from, it becomes of a
vital importance when given several million pas-
sages. This argument holds, however, only when
assuming a uniform answer distribution, which is
often not the case unless for sufficiently large web
collections. This particular observation brings us
to the next question that we would like to discuss
in more detail.

Rewrite or not to rewrite? Our experiments
demonstrated the challenges in the quality control
of the QR task itself. Human rewrites are not per-
fect themselves since it is not always clear whether
and what should be rewritten. Considering the



human judgment of the QR quality independent
from the QA results, little deviations may not seem
important. However, from the pragmatic point of
view, they may have a major impact on the overall
performance of the end-to-end system.

The level of detail required to answer a particu-
lar question is often not apparent and depends on
the dataset. However, we can argue that inconsis-
tencies, such as typos and paraphrases, should be
handled by the QA component, since they do not
originate from the context interpretation errors.

Further on, we evaluated our assumption about
human rewrites as the reliable ground truth. Our
evaluation results indeed showed that human rewrit-
ing was redundant in certain cases. There are cases
in which original questions without rewriting were
already sufficient to retrieve the correct answers
from the passage collection (see last row of the
Table 1). In particular, we found that 10% of the
questions in TREC CAsT were rewritten by human
annotators that did not need rewriting to retrieve
the correct answer. For example, original ques-
tion: “What is the functionalist theory?”, human
rewrite: “What is the functionalist theory in soci-
ology?”. However, in another question from the
same dialogue, omitting the same word from the
rewrite leads to retrieval of an irrelevant passage,
since there are multiple alternative answers.

The need for QR essentially interacts with the
size and diversity of the possible answer space,
e.g., collection content, with respect to the question.
Some of the questions were correctly answered
even with underspecified questions, e.g., original
question: “What are some ways to avoid injury?”,
human rewrite: “What are some ways to avoid
sports injuries?”, because of the collection bias.

The goal of QR is to learn patterns that correct
question formulation independent from the collec-
tion content. This approach is similar to how hu-
mans handle this task when formulating search
queries, i.e., based on their knowledge of language
and the world. Humans can spot ambiguity regard-
less of the information source by modeling the ex-
pected content of the information source even with-
out the need to have direct access to it. Clearly, this
expectation may not be optimal or even sufficient
to be able to formulate a single precise question,
which is exactly the point at which the need for an
information-seeking dialogue naturally arises.

When the question formulation procedure is de-
signed to be independent of the collection content,
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it also allows for querying several sources with the
same question. This property is especially help-
ful when the content of the collection is unknown,
which also allows to work with 3rd party APIs to
access information in a distributed fashion. We may
see a similar effect as in human-human communi-
cation here as well, when the need for an automated
information-seeking dialogue between distributed
systems may arise to better negotiate the informa-
tion need and disambiguate the question further
with respect to the content of each remote informa-
tion source.

7 Related Work

Several recent research studies reported that state-
of-the-art machine learning models lack in robust-
ness across several NLP tasks (Li and Specia, 2019;
Zeng et al., 2019). In particular, these models were
found to be sensitive to input perturbations.

Jia and Liang (2017) analysed this problem in the
context of the reading comprehension task. They
showed in the experimental evaluation that QA
models suffer from overstability, i.e., they tend
to provide the same answer to a different question,
when it is sufficiently similar to the correct question.
Lewis and Fan (2019) also showed this deficiency
of the state-of-the-art models for reading compre-
hension that learn to attend to just a few words in
the question.

Our evaluation results support these findings us-
ing the conversational settings. We showed that
many ambiguous questions in QuAC can be an-
swered correctly without the conversation history
(see Table 2). In contrast, this effect is absent in the
passage retrieval setup (see Table 1 or Figure 1).
These results suggest that the passage retrieval eval-
uation setup is more adequate for training robust
QA models.

Previous work that focused on analysing and ex-
plaining performance of Transformer-based models
on the ranking task used word attention visualisa-
tion and random removals of non-stop words (Dai
and Callan, 2019; Qiao et al., 2019). The analysis
framework proposed here provides a more system-
atic approach to model evaluation using ambiguous
and rewritten question pairs, which is a by-product
of applying QR in conversational QA.

Our approach is most similar to the one proposed
by Ribeiro et al. (2018), who used semantically
equivalent adversaries to analyse performance in
several NLP tasks, including reading comprehen-



sion, visual QA and sentiment analysis. Similarly,
in our approach, question rewrites, as paraphrases
with different levels of ambiguity, are a natural
choice for evaluation of the conversational QA per-
formance. The difference is that we do not need
to generate semantically equivalent questions but
can reuse question rewrites as a by-product of in-
troducing the QR model as a component of the
conversational QA architecture.

8 Conclusion

QR is a challenging but a very insightful task de-
signed to capture linguistic patterns that identify
and resolve ambiguity in question formulation. Our
results demonstrate the utility of QR as not only
enabler for conversational QA but also as a tool
that helps to understand when QA models fail.

We introduced an effective error analysis frame-
work for conversational QA using QR and used it
to evaluate sensitivity of two state-of-the-art QA
model architectures (for reading comprehension
and passage retrieval tasks). Moreover, the frame-
work we introduced is agnostic to the model ar-
chitecture and can be reused for performance eval-
uation of different models using other evaluation
metrics as well.

QR helps to analyse model performance and dis-
cover their weaknesses, such as oversensitivity and
undersensitivity to differences in question formula-
tion. In particular, the reading comprehension task
setup is inadequate to reflect the real performance
of a question interpretation component since am-
biguous or even incorrect question formulations are
likely to result in a correct answer span. In passage
retrieval, we observe an opposite effect. Since the
space of possible answers is very large it is im-
possible to hit the correct answer by chance. We
discover, however, that these models tend to suffer
from oversensitivity instead, i.e., when even a sin-
gle character will trigger a considerable change in
answer ranking.

In future work, we should extend our evalua-
tion to dense passage retrieval models and exam-
ine their performance using the conversational QA
setup with the QR model. We should also look
into training approaches that could allow QA mod-
els to further benefit from the QR component. As
we showed in our experiments QR provides use-
ful intermediate outputs that can be interpreted by
humans and used for evaluation. We believe that
QR models can be also useful for training more ro-
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bust QA models. Both components can be trained
jointly, which is inline with Lewis and Fan (2019),
who showed that the joint objective of question
and answer generation further improves QA perfor-
mance.
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