
ACL 2020

The 5th Workshop on Representation Learning for NLP
(RepL4NLP-2020)

Proceedings of the Workshop

July 9, 2020

c©2020 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-952148-15-6

ii

Introduction

The 5th Workshop on Representation Learning for NLP (RepL4NLP-2020) will be hosted at ACL 2020.
The workshop is being organised by Spandana Gella, Johannes Welbl, Marek Rei, Fabio Petroni, Patrick
Lewis, Emma Strubell, Minjoon Seo and Hannaneh Hajishirzi; and advised by Isabelle Augenstein,
Kyunghyun Cho, Edward Grefenstette, Karl Moritz Hermann, and Chris Dyer. The workshop is
organised by the ACL Special Interest Group on Representation Learning (SIGREP).

The 5th Workshop on Representation Learning for NLP aims to continue the success of the 1st Workshop
on Representation Learning for NLP (about 50 submissions and over 250 attendees; second most
attended collocated event at ACL’16 after WMT), 2nd Workshop on Representation Learning for NLP,
3rd Workshop on Representation Learning for NLP, and 4th Workshop on Representation Learning for
NLP. The workshop was introduced as a synthesis of several years of independent *CL workshops
focusing on vector space models of meaning, compositionality, and the application of deep neural
networks and spectral methods to NLP. It provides a forum for discussing recent advances on these
topics, as well as future research directions in linguistically motivated vector-based models in NLP.

iii

Organizers:

Spandana Gella, Amazon AI
Johannes Welbl, University College London
Marek Rei, Imperial College London
Fabio Petroni, Facebook AI Research
Patrick Lewis, University College London & FAIR
Emma Strubell, Carnegie Mellon University & FAIR
Minjoon Seo, University of Washington & Naver
Hannaneh Hajishirzi, University of Washington

Senior Advisors:

Kyunghyun Cho, NYU and Facebook AI Research
Edward Grefenstette, Facebook AI Research & University College London
Karl Moritz Hermann, DeepMind
Laura Rimell, DeepMind
Chris Dyer, DeepMind
Isabelle Augenstein, University of Copenhagen

Keynote Speakers:

Kristina Toutanova, Google Research
Ellie Pavlick, Brown University & Google
Mike Lewis, Facebook AI Research
Evelina Fedorenko, Massachusetts Institute of Technology

Program Committee:

Muhammad Abdul-Mageed
Guy Aglionby
Roee Aharoni
Arjun Akula
Julio Amador Díaz López
Mikel Artetxe
Yoav Artzi
Miguel Ballesteros
Gianni Barlacchi
Max Bartolo
Joost Bastings
Federico Bianchi
Rishi Bommasani
Samuel R. Bowman
Andrew Caines
Claire Cardie
Haw-shiuan Chang

v

Lin Chen
Danlu Chen
Yue Chen
Yu Cheng
Manuel R. Ciosici
William Cohen
Christopher Davis
Eliezer de Souza da Silva
Luciano Del Corro
Zhi-Hong Deng
Leon Derczynski
Shehzaad Dhuliawala
Giuseppe Antonio Di Luna
Kalpit Dixit
Aleksandr Drozd
Kevin Duh
Necati Bora Edizel
Guy Emerson
Eraldo Fernandes
Orhan Firat
Rainer Gemulla
Kevin Gimpel
Hongyu Gong
Ana Valeria González
Batool Haider
He He
Ji He
Jiaji Huang
Sung Ju Hwang
Robin Jia
Mark Johnson
Arzoo Katiyar
Santosh Kesiraju
Douwe Kiela
Ekaterina Kochmar
Julia Kreutzer
Shankar Kumar
John P. Lalor
Carolin Lawrence
Kenton Lee
Xiang Li
Shaohua Li
Tao Li
Bill Yuchen Lin
Chu-Cheng Lin
Peng Liu
Feifan Liu
Fei Liu
Suresh Manandhar
Luca Massarelli

vi

Sneha Mehta
Todor Mihaylov
Tsvetomila Mihaylova
Swaroop Mishra
Ashutosh Modi
Lili Mou
Maximilian Mozes
Khalil Mrini
Phoebe Mulcaire
Nikita Nangia
Shashi Narayan
Thien Huu Nguyen
Tsuyoshi Okita
Ankur Padia
Ashwin Paranjape
Tom Pelsmaeker
Aleksandra Piktus
Vassilis Plachouras
Edoardo Maria Ponti
Ratish Puduppully
Leonardo Querzoni
Chris Quirk
Vipul Raheja
Muhammad Rahman
Natraj Raman
Surangika Ranathunga
Siva Reddy
Sravana Reddy
Roi Reichart
Devendra Sachan
Marzieh Saeidi
Avneesh Saluja
Hinrich Schütze
Tianze Shi
Vered Shwartz
Kyungwoo Song
Daniil Sorokin
Lucia Specia
Mark Steedman
Karl Stratos
Ming Sun
Jörg Tiedemann
Ivan Titov
Nadi Tomeh
Shubham Toshniwal
Kristina Toutanova
Lifu Tu
Lyle Ungar
Menno van Zaanen
Andrea Vanzo

vii

Shikhar Vashishth
Eva Maria Vecchi
Elena Voita
Yogarshi Vyas
Hai Wang
Bonnie Webber
Dirk Weissenborn
Rodrigo Wilkens
Yuxiang Wu
Yadollah Yaghoobzadeh
Haiqin Yang
Majid Yazdani
Wen-tau Yih
Hong Yu
Wenxuan Zhou
Dong Zhou
Xiangyang Zhou
Imed Zitouni
Diarmuid Ó Séaghdha
Robert Östling

viii

Table of Contents

Zero-Resource Cross-Domain Named Entity Recognition
Zihan Liu, Genta Indra Winata and Pascale Fung . 1

Encodings of Source Syntax: Similarities in NMT Representations Across Target Languages
Tyler A. Chang and Anna Rafferty . 7

Learning Probabilistic Sentence Representations from Paraphrases
Mingda Chen and Kevin Gimpel . 17

Word Embeddings as Tuples of Feature Probabilities
Siddharth Bhat, Alok Debnath, Souvik Banerjee and Manish Shrivastava . 24

Compositionality and Capacity in Emergent Languages
Abhinav Gupta, Cinjon Resnick, Jakob Foerster, Andrew Dai and Kyunghyun Cho 34

Learning Geometric Word Meta-Embeddings
Pratik Jawanpuria, Satya Dev N T V, Anoop Kunchukuttan and Bamdev Mishra 39

Improving Bilingual Lexicon Induction with Unsupervised Post-Processing of Monolingual Word Vector
Spaces

Ivan Vulić, Anna Korhonen and Goran Glavaš . 45

Adversarial Training for Commonsense Inference
Lis Pereira, Xiaodong Liu, Fei Cheng, Masayuki Asahara and Ichiro Kobayashi55

Evaluating Natural Alpha Embeddings on Intrinsic and Extrinsic Tasks
Riccardo Volpi and Luigi Malagò. .61

Exploring the Limits of Simple Learners in Knowledge Distillation for Document Classification with
DocBERT

Ashutosh Adhikari, Achyudh Ram, Raphael Tang, William L. Hamilton and Jimmy Lin 72

Joint Training with Semantic Role Labeling for Better Generalization in Natural Language Inference
Cemil Cengiz and Deniz Yuret . 78

A Metric Learning Approach to Misogyny Categorization
Juan Manuel Coria, Sahar Ghannay, Sophie Rosset and Hervé Bredin . 89

On the Choice of Auxiliary Languages for Improved Sequence Tagging
Lukas Lange, Heike Adel and Jannik Strötgen . 95

Adversarial Alignment of Multilingual Models for Extracting Temporal Expressions from Text
Lukas Lange, Anastasiia Iurshina, Heike Adel and Jannik Strötgen . 103

Contextual and Non-Contextual Word Embeddings: an in-depth Linguistic Investigation
Alessio Miaschi and Felice Dell’Orletta . 110

Are All Languages Created Equal in Multilingual BERT?
Shijie Wu and Mark Dredze . 120

Staying True to Your Word: (How) Can Attention Become Explanation?
Martin Tutek and Jan Snajder . 131

ix

Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning
Mitchell Gordon, Kevin Duh and Nicholas Andrews . 143

On Dimensional Linguistic Properties of the Word Embedding Space
Vikas Raunak, Vaibhav Kumar, Vivek Gupta and Florian Metze . 156

A Cross-Task Analysis of Text Span Representations
Shubham Toshniwal, Haoyue Shi, Bowen Shi, Lingyu Gao, Karen Livescu and Kevin Gimpel . 166

Enhancing Transformer with Sememe Knowledge
Yuhui Zhang, Chenghao Yang, Zhengping Zhou and Zhiyuan Liu . 177

Evaluating Compositionality of Sentence Representation Models
Hanoz Bhathena, Angelica Willis and Nathan Dass . 185

Supertagging with CCG primitives
Aditya Bhargava and Gerald Penn . 194

What’s in a Name? Are BERT Named Entity Representations just as Good for any other Name?
Sriram Balasubramanian, Naman Jain, Gaurav Jindal, Abhijeet Awasthi and Sunita Sarawagi . .205

x

Workshop Program

Thursday, July 9, 2020

9:30–9:45 Welcome and Opening Remarks

9:45–14:45 Keynote Session

9:45–10:30 Invited talk 1
Kristina Toutanova

10:30–11:00 Coffee Break

11:00–11:45 Invited talk 2
Ellie Pavlick

11:45–12:30 Invited talk 3
Mike Lewis

12:30–14:00 Lunch

14:00–14:45 Invited talk 4
Evelina Fedorenko

14:45–15:00 Outstanding Papers Spotlight Presentations

xi

Thursday, July 9, 2020 (continued)

15:00–16:30 Poster Session

Zero-Resource Cross-Domain Named Entity Recognition
Zihan Liu, Genta Indra Winata and Pascale Fung

Encodings of Source Syntax: Similarities in NMT Representations Across Target
Languages
Tyler A. Chang and Anna Rafferty

Learning Probabilistic Sentence Representations from Paraphrases
Mingda Chen and Kevin Gimpel

On the Ability of Self-Attention Networks to Recognize Counter Languages
Satwik Bhattamishra, Kabir Ahuja and Navin Goyal

Word Embeddings as Tuples of Feature Probabilities
Siddharth Bhat, Alok Debnath, Souvik Banerjee and Manish Shrivastava

Compositionality and Capacity in Emergent Languages
Abhinav Gupta, Cinjon Resnick, Jakob Foerster, Andrew Dai and Kyunghyun Cho

Learning Geometric Word Meta-Embeddings
Pratik Jawanpuria, Satya Dev N T V, Anoop Kunchukuttan and Bamdev Mishra

Variational Inference for Learning Representations of Natural Language Edits
Edison Marrese-Taylor, Machel Reid and Yutaka Matsuo

Improving Bilingual Lexicon Induction with Unsupervised Post-Processing of
Monolingual Word Vector Spaces
Ivan Vulić, Anna Korhonen and Goran Glavaš

Adversarial Training for Commonsense Inference
Lis Pereira, Xiaodong Liu, Fei Cheng, Masayuki Asahara and Ichiro Kobayashi

Evaluating Natural Alpha Embeddings on Intrinsic and Extrinsic Tasks
Riccardo Volpi and Luigi Malagò

xii

Thursday, July 9, 2020 (continued)

Exploring the Limits of Simple Learners in Knowledge Distillation for Document
Classification with DocBERT
Ashutosh Adhikari, Achyudh Ram, Raphael Tang, William L. Hamilton and Jimmy
Lin

Joint Training with Semantic Role Labeling for Better Generalization in Natural
Language Inference
Cemil Cengiz and Deniz Yuret

A Metric Learning Approach to Misogyny Categorization
Juan Manuel Coria, Sahar Ghannay, Sophie Rosset and Hervé Bredin

On the Choice of Auxiliary Languages for Improved Sequence Tagging
Lukas Lange, Heike Adel and Jannik Strötgen

Adversarial Alignment of Multilingual Models for Extracting Temporal Expressions
from Text
Lukas Lange, Anastasiia Iurshina, Heike Adel and Jannik Strötgen

Contextual and Non-Contextual Word Embeddings: an in-depth Linguistic Investi-
gation
Alessio Miaschi and Felice Dell’Orletta

Are All Languages Created Equal in Multilingual BERT?
Shijie Wu and Mark Dredze

Staying True to Your Word: (How) Can Attention Become Explanation?
Martin Tutek and Jan Snajder

Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning
Mitchell Gordon, Kevin Duh and Nicholas Andrews

On Dimensional Linguistic Properties of the Word Embedding Space
Vikas Raunak, Vaibhav Kumar, Vivek Gupta and Florian Metze

A Simple Approach to Learning Unsupervised Multilingual Embeddings
Pratik Jawanpuria, Mayank Meghwanshi and Bamdev

A Cross-Task Analysis of Text Span Representations
Shubham Toshniwal, Haoyue Shi, Bowen Shi, Lingyu Gao, Karen Livescu and
Kevin Gimpel

xiii

Thursday, July 9, 2020 (continued)

Enhancing Transformer with Sememe Knowledge
Yuhui Zhang, Chenghao Yang, Zhengping Zhou and Zhiyuan Liu

Evaluating Compositionality of Sentence Representation Models
Hanoz Bhathena, Angelica Willis and Nathan Dass

AI4Bharat-IndicNLP Dataset: Monolingual Corpora and Word Embeddings for In-
dic Languages: Monolingual Corpora and Word Embeddings for Indic Languages
Anoop Kunchukuttan, Divyanshu Kakwani, Satish Golla, Gokul N.C., Avik Bhat-
tacharyya, Mitesh M. Khapra and Pratyush Kumar

Supertagging with CCG primitives
Aditya Bhargava and Gerald Penn

What’s in a Name? Are BERT Named Entity Representations just as Good for any
other Name?
Sriram Balasubramanian, Naman Jain, Gaurav Jindal, Abhijeet Awasthi and Sunita
Sarawagi

16:30–17:30 Panel Discussion

17:30–17:40 Closing Remarks and Best Paper Announcement

xiv

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 1–6
July 9, 2020. c©2020 Association for Computational Linguistics

Zero-Resource Cross-Domain Named Entity Recognition

Zihan Liu, Genta Indra Winata, Pascale Fung
Center for Artificial Intelligence Research (CAiRE)

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

zihan.liu@connect.ust.hk

Abstract
Existing models for cross-domain named en-
tity recognition (NER) rely on numerous un-
labeled corpus or labeled NER training data
in target domains. However, collecting data
for low-resource target domains is not only ex-
pensive but also time-consuming. Hence, we
propose a cross-domain NER model that does
not use any external resources. We first intro-
duce a Multi-Task Learning (MTL) by adding
a new objective function to detect whether to-
kens are named entities or not. We then in-
troduce a framework called Mixture of Entity
Experts (MoEE) to improve the robustness for
zero-resource domain adaptation. Finally, ex-
perimental results show that our model outper-
forms strong unsupervised cross-domain se-
quence labeling models, and the performance
of our model is close to that of the state-of-the-
art model which leverages extensive resources.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in text understanding and information ex-
traction. Recently, supervised learning approaches
have shown their effectiveness in detecting named
entities (Ma and Hovy, 2016; Chiu and Nichols,
2016; Winata et al., 2019). However, there is a vast
performance drop for low-resource target domains
when massive training data are absent. To solve
this data scarcity issue, a straightforward idea is
to utilize the NER knowledge learned from high-
resource domains and then adapt it to low-resource
domains, which is called cross-domain NER.

Due to the large variances in entity names across
different domains, cross-domain NER has thus
far been a challenging task. Most existing meth-
ods consider a supervised setting, leveraging la-
beled NER data for both the source and target do-
mains (Yang et al., 2017; Lin and Lu, 2018).

However, labeled data in target domains is not
always available. Unsupervised domain adaptation

naturally arises as a possible way to circumvent
the usage of labeled NER data in target domains.
However, the only existing method, proposed by Jia
et al. (2019), requires an external unlabeled data
corpus in both the source and target domains to
conduct the unsupervised cross-domain NER task,
and such resources are difficult to obtain, especially
for low-resource target domains. Therefore, we
consider unsupervised zero-resource cross-domain
adaptation for NER which only utilizes the NER
training samples in a single source domain.

To meet the challenge of zero-resource cross-
domain adaptation, we first propose to conduct
multi-task learning (MTL) by adding an objective
function to detect whether tokens are named enti-
ties or not. This objective function helps the model
to learn general representations of named entities
and to distinguish named entities from sequences
in target domains. In addition, we observe that in
many cases, different entity categories could have
a similar or the same context. For example, in the
sentence “Arafat subsequently cancelled a meeting
between Israeli and PLO officials,” the person en-
tity “Arafat”, can be replaced with an organization
entity within the same context, which illustrates
the confusion among different entity categories and
makes zero-resource adaptation much more diffi-
cult. Intuitively, when the entity type of a token is
hard to be predicted based on the token itself and
the token’s context, we want to borrow the opin-
ions (i.e., representations) from different experts.
Hence, we propose a Mixture of Entity Experts
(MoEE) framework to tackle the confusion of en-
tity categories, and the predictions are based on the
tokens and the context, as well as all entity experts.

Experimental results show that our model is able
to outperform current strong unsupervised cross-
domain sequence tagging approaches, and reach
comparable results to the state-of-the-art unsuper-
vised method that utilizes extensive resources.

1

Text	Sequence

							W1 W2 Wn

BiLSTM

Conditional	Random	Field

							

Sequence	Tagging

Task1

Mixture	of	Entity
Experts

Conditional	Random	Field

							

Sequence	Tagging

Task2

Text	Sequence

... ...

PER	Expert LOC	Expert
Non-Entity

Expert

... Expert

Gate

...
Gate Label

Meta-Expert	Feature

(a) (b)

Figure 1: Model architecture (a) with multi-task learning and (b) with the Mixture of Entity Experts module.

2 Related Work

Most of the existing work on cross-domain NER
has been to investigate the supervised setting,
where both source and target domains have labeled
data (Daume III, 2007; Obeidat et al., 2016; Yang
et al., 2017; Lee et al., 2018). Yang et al. (2017)
jointly trained models on the source and target do-
main with shared parameters. Lin and Lu (2018)
added adaptation layers on top of existing mod-
els, and Wang et al. (2018) introduced label-aware
feature representations for NER adaptation. Lee
et al. (2018) utilized the idea of transfer learning
by first initializing a target model with parameters
learned from source-domain NER, and then using
labeled target domain data to fine-tune the model.
However, no prior work has focused on the unsuper-
vised setting of cross-domain NER, except for Jia
et al. (2019). In Jia et al. (2019), however, external
unlabeled data corpora resources in both the source
and target domains are required to train language
models for domain adaptations. This limitation has
motivated us to develop a model that doesn’t need
any external resources.

Tackling the low-resource scenario where there
are zero or minimal existing resources has always
been an interesting yet challenging task (Xie et al.,
2018; Liu et al., 2019b; Lample et al., 2017; Con-
neau et al., 2017; Shah et al., 2019). Instead of
utilizing large amounts of bilingual resources, Liu
et al. (2019a,b) only utilized a few word pairs for
zero-shot cross-lingual dialogue systems. Unsu-
pervised machine translation approaches (Lample
et al., 2017; Artetxe et al., 2017) have also been
introduced to circumvents the need of parallel data.

Winata et al. (2020) introduced the cross-accent
speech recognition task and utilized meta-learning
to cope with the data scarcity issue in target ac-
cents. Bapna et al. (2017) and Shah et al. (2019)
proposed to do cross-domain slot filling with min-
imal resources. To the best of our knowledge, we
are the first to propose methods on cross-domain
adaptation for NER with zero external resources.

3 Methodology

As illustrated in Fig. 1, our model combines a bi-
directional LSTM and conditional random field
(CRF) into a BiLSTM-CRF structure (Lample
et al., 2016) with MTL and MoEE modules. The
parameters of BiLSTM are shared in the multi-task
learning.

3.1 Multi-Task Learning

Due to the large variations of named entities across
domains, unsupervised cross-domain NER models
often suffer from an inability to recognize named
entities. Hence, we propose to learn general repre-
sentations of named entities and enhance the robust-
ness for adaptation by adding an objective function
to predict whether tokens are named entities or not,
which is represented as Task1 in Fig. 1(a). To do so,
based on the original named entity labels for each
token in the training set, we create another label
set, which represents whether tokens are named
entities or not. Specifically, in this process, all non-
entity tokens are consistent with the original labels,
and other tokens belonging to different entity cat-
egories are classified as being in the same class
representing the general named entity. Task2 in

2

Fig. 1(a) represents the original NER task, which is
to predict a concrete category for each token. Let
us denote X = [w1, w2, ..., wn] as the input text
sequence, and the MTL can be formulated as:

[h1, h2, ..., hn] = BiLSTM([w1, w2, ..., wn]),

[pT1
1 , p

T1
2 , ..., p

T1
n] = CRF1([h1, h2, ..., hn]),

[m1,m2, ...,mn] = MoEE([h1, h2, ..., hn]),

[pT2
1 , p

T2
2 , ..., p

T2
n] = CRF2([m1,m2, ...,mn]),

where CRF1 and CRF2 denote the CRF
layers for Task1 and Task2, respectively, and
[pT1

1 , p
T1
2 , ..., p

T1
n] and [pT2

1 , p
T2
2 , ..., p

T2
n] represent

the corresponding predictions.

3.2 Mixture of Entity Experts
Traditional NER models make predictions based
on the features of the tokens and the context. Due
to the confusion among different entity categories,
NER models could easily overfit to the source do-
main entities and lose generalization ability to the
target domain. Therefore, we introduce an MoEE
framework, as depicted in Fig. 1(b). It combines
representations generated by experts to produce the
final prediction. In this way, the knowledge from
different experts is incorporated to model the in-
herent confusion and improve the generalization
ability to target domains.

Each entity category acts as an entity expert,
which consists of a linear layer. Note that we con-
sider the non-entity as a special entity category.
The expert gate consists of a linear layer followed
by a softmax layer, which generates the confidence
distribution over entity experts. We use the gold la-
bels in Task2 to supervise the training of the expert
gate. Finally, the meta-expert feature incorporates
features from all experts based on the confiden-
tial scores from the expert gate. We formulate the
MoEE module as follows:

[expt1i , · · · , exptEi] = [L1(hi), · · · ,LE(hi)], (1)

[α1, · · · , αE] = Softmax(Linear(hi)), (2)

mi =
E∑

a=1

αa ∗ exptai , (3)

where mi is the meta-expert feature for the i-th
hidden state of the BiLSTM, where expt is the
feature generated from the expert, and L denotes
the linear layer. We show that the MoEE has E
experts following the number of entity categories
plus the non-entity category. The expert features

are computed based on the BiLSTM hidden states,
and the predictions are conditioned on the expert
features and the hidden states, which makes cross-
domain adaptation more robust.

3.3 Optimization
During training, we optimize for Task1, Task2 and
the expert gate with cross-entropy losses Ltask1,
Ltask2 and Lgate, respectively, as we detail below:

Ltask1 =
J∑

j=1

|Yj |∑

k=1

− log(pT1
jk · (yT1

jk)
T), (4)

Ltask2 =
J∑

j=1

|Yj |∑

k=1

− log(pT2
jk · (yT2

jk)
T), (5)

Lgate =
J∑

j=1

|Yj |∑

k=1

− log(pgatejk · (ygatejk)T), (6)

where J and |Yj | denote the number of training
data and the length of the tokens for each training
sample, respectively; pjk and yjk denote the predic-
tions and labels for each token, respectively; and
the superscripts of pjk and yjk represent the tasks.
Hence, the final objective function is to minimize
the sum of all the aforementioned loss functions.

4 Experiments

4.1 Dataset
We take the CoNLL-2003 English NER
data (Sang and De Meulder, 2003) contain-
ing 15.0K/3.5K/3.7K samples for the train-
ing/validation/test sets as our source domain. We
take the dataset containing 2K sentences from
SciTech News provided by Jia et al. (2019) as
our target domain. The datasets in the source and
target domains contain the same four types of
entities, namely, PER (person), LOC (location),
ORG (organization), and MISC (miscellaneous).

4.2 Experimental Setup
Embeddings We test our approaches on the Fast-
Text word embeddings (Bojanowski et al., 2017)
and the pre-trained model BERT (Devlin et al.,
2019). Entity names in the target domain are likely
to be out-of-vocabulary (OOV) words because they
don’t usually exist in the source domain training set.
FastText word embeddings are able to leverage the
subword information and avoid the OOV problem,
and BERT can solve this problem by using the BPE
encoding. We try both freeze and unfreeze settings

3

Model BERT FastText
Fine-tune unfreeze freeze

Baseline
Concept Tagger 67.14 62.34 66.86
Robust Sequence Tagger 67.31 63.66 68.12
Zero-Resource
BiLSTM-CRF 67.55 63.18 68.21
w/ MTL 68.76 64.62 69.35
w/ MoEE 68.06 65.24 69.27
w/ MTL and MoEE 68.59 64.88 69.53
Using high-resource data in source and target domains
Jia et al. (2019) 73.59

Table 1: F1-scores on the target domain. Models are
implemented based on the corresponding embeddings.

for FastText embeddings in the training. And for
the BERT model, we add different modules (e.g.,
MoEE) on top to do fine-tuning.

Baselines Since we are the first to conduct zero-
resource cross-domain NER, we compare our ap-
proach with strong unsupervised cross-domain se-
quence labeling models under minimal resources.
Concept Tagger was proposed by Bapna et al.
(2017) to utilize entity descriptions for unsuper-
vised cross-domain utterance slot filling, and Ro-
bust Sequence Tagger (Shah et al., 2019) was
introduced to combined both entity descriptions
and a few examples from each entity category for
the same unsupervised task. In addition, we also
compare our approach with the following baselines
BiLSTM-CRF (Lample et al., 2016), BiLSTM-
CRF w/ MTL, and BiLSTM-CRF w/ MoEE, as
well as with the state-of-the-art model of the unsu-
pervised cross-domain NER from Jia et al. (2019)
which utilizes a large corpus in both the source and
target domains.

Training Details For FastText embeddings 1

based models, we use a BiLSTM with a 200-
dimensional hidden state and two layers. The linear
layer size for each entity expert is 200. An Adam
optimizer with a learning rate of 1e-3, a batch size
of 32, and a dropout rate of 0.3 are used to train our
model. We utilize the binary models provided in
FastText to obtain the embeddings for OOV words.
For BERT-based models, given the strong textual
understanding ability of the BERT model, we re-
move the BiLSTM from the text encoder, and only
linear layer is utilized for sequence labeling (i.e.,
CRF layer is removed) (Devlin et al., 2019). As

1Available in https://fasttext.cc/docs/en/
pretrained-vectors.html

O LOC PER ORG MISC

StartEngine

of

investment

the

for

Gab

contact

to

attemps

Drudge

0.00

0.06

0.12

0.18

0.24

0.30

Figure 2: Confidence scores on different entity experts
from the expert gate. “O” denotes non-entity expert.

for the evaluation, we use the standard IOB (in-out-
begin) format to calculate the F1-score.

4.3 Results & Discussion

From Table 1, our model combined with MTL and
the MoEE outperforms the strong baselines Con-
cept Tagger and Robust Sequence Tagger on all
the embedding settings that we test. We conjecture
that these two baselines, which utilize slot descrip-
tions or slot examples, are suitable for limited slot
names in the slot filling task, while they fail to cope
with wide variances of entity names in the NER
task across different domains, while our model is
more robust to the domain variations. MTL helps
our model recognize named entities in the target
domain, while the MoEE adds information from
different entity experts and helps our model de-
tect the specific named entity types. Surprisingly,
the performance of our best model (with freezed
FastText embeddings) is close to that of the state-
of-the-art model that needs a large data corpus in
the source and target domains, which illustrates our
model’s generalization ability to the target domain.

We observe that the freezed FastText embed-
dings bring better performance than unfreezed ones.
We conjecture that the embeddings could overfit
to the source domain if we unfreeze them in the
training. Additionally, using freezed FastText em-
beddings is slightly better than BERT fine-tuning.

4

We speculate that the reason is that NER is a word-
level sequence tagging task, while the BERT model
leverages subword embeddings, which could lose
part of the word-level information for the task.

We visualize the confidence scores on different
entity experts for each token in Fig. 2. The expert
gate can align non-entity tokens to the non-entity
expert with strong confidence. For some entity to-
kens, e.g., “Drudge”, the expert gate gives high
confidence on more than one expert (e.g., “PER”
and “ORG”) since the model is not sure whether
“Drudge” is a “PER” or “ORG”. Our model is ex-
pected to learn the “PER” and “ORG” expert rep-
resentations based on the hidden state of “Drudge”,
which contains the information of this token and
its context, and then combine the expert represen-
tations for the prediction.

5 Conclusion

In this paper, we propose a zero-resource cross-
domain framework for the named entity recognition
task, which consists of multi-task learning and Mix-
ture of Entity Experts modules. The former learns
the general representations of named entities to
cope with the model’s inability to recognize named
entities, while the latter learns to combine the rep-
resentations of different entity experts, which are
based on the BiLSTM hidden states. Experimen-
tal results show that our model outperforms strong
cross-domain sequence tagging models, and the
performance is close to that of the state-of-the-art
model that utilizes extensive resources.

Acknowledgments

This work is partially funded by ITF/319/16FP and
MRP/055/18 of the Innovation Technology Com-
mission, the Hong Kong SAR Government.

References
Mikel Artetxe, Gorka Labaka, Eneko Agirre, and

Kyunghyun Cho. 2017. Unsupervised neural ma-
chine translation. arXiv preprint arXiv:1710.11041.

Ankur Bapna, Gokhan Tür, Dilek Hakkani-Tür, and
Larry Heck. 2017. Towards zero-shot frame seman-
tic parsing for domain scaling. Proc. Interspeech
2017, pages 2476–2480.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4(1):357–370.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Hal Daume III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
256–263.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Chen Jia, Xiaobo Liang, and Yue Zhang. 2019. Cross-
domain ner using cross-domain language modeling.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2464–2474.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043.

Ji Young Lee, Franck Dernoncourt, and Peter Szolovits.
2018. Transfer learning for named-entity recogni-
tion with neural networks. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC-2018).

Bill Yuchen Lin and Wei Lu. 2018. Neural adaptation
layers for cross-domain named entity recognition.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2012–2022.

Zihan Liu, Jamin Shin, Yan Xu, Genta Indra Winata,
Peng Xu, Andrea Madotto, and Pascale Fung. 2019a.
Zero-shot cross-lingual dialogue systems with trans-
ferable latent variables. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1297–1303.

5

Zihan Liu, Genta Indra Winata, Zhaojiang Lin, Peng
Xu, and Pascale Fung. 2019b. Attention-informed
mixed-language training for zero-shot cross-lingual
task-oriented dialogue systems. arXiv preprint
arXiv:1911.09273.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074.

Rasha Obeidat, Xiaoli Z. Fern, and Prasad Tadepalli.
2016. Label embedding approach for transfer learn-
ing. In ICBO/BioCreative.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142–147.

Darsh Shah, Raghav Gupta, Amir Fayazi, and Dilek
Hakkani-Tur. 2019. Robust zero-shot cross-domain
slot filling with example values. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5484–5490, Florence,
Italy. Association for Computational Linguistics.

Zhenghui Wang, Yanru Qu, Liheng Chen, Jian Shen,
Weinan Zhang, Shaodian Zhang, Yimei Gao, Gen
Gu, Ken Chen, and Yong Yu. 2018. Label-aware
double transfer learning for cross-specialty medical
named entity recognition. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1–15.

Genta Indra Winata, Samuel Cahyawijaya, Zihan Liu,
Zhaojiang Lin, Andrea Madotto, Peng Xu, and
Pascale Fung. 2020. Learning fast adaptation on
cross-accented speech recognition. arXiv preprint
arXiv:2003.01901.

Genta Indra Winata, Zhaojiang Lin, Jamin Shin, Zihan
Liu, and Pascale Fung. 2019. Hierarchical meta-
embeddings for code-switching named entity recog-
nition. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3532–3538.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A
Smith, and Jaime G Carbonell. 2018. Neural cross-
lingual named entity recognition with minimal re-
sources. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 369–379.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. In Inter-
national Conference on Learning Representations.

6

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 7–16
July 9, 2020. c©2020 Association for Computational Linguistics

Encodings of Source Syntax: Similarities in NMT Representations Across
Target Languages

Tyler A. Chang
Carleton College
Northfield, MN

changt@carleton.edu

Anna N. Rafferty
Carleton College
Northfield, MN

arafferty@carleton.edu

Abstract

We train neural machine translation (NMT)
models from English to six target languages,
using NMT encoder representations to predict
ancestor constituent labels of source language
words. We find that NMT encoders learn
similar source syntax regardless of NMT tar-
get language, relying on explicit morphosyn-
tactic cues to extract syntactic features from
source sentences. Furthermore, the NMT
encoders outperform RNNs trained directly
on several of the constituent label prediction
tasks, suggesting that NMT encoder represen-
tations can be used effectively for natural lan-
guage tasks involving syntax. However, both
the NMT encoders and the directly-trained
RNNs learn substantially different syntactic
information from a probabilistic context-free
grammar (PCFG) parser. Despite lower over-
all accuracy scores, the PCFG often performs
well on sentences for which the RNN-based
models perform poorly, suggesting that RNN
architectures are constrained in the types of
syntax they can learn.

1 Introduction

Neural machine translation (NMT) encoder repre-
sentations have been used successfully for cross-
task and cross-lingual transfer learning in a variety
of natural language contexts (Eriguchi et al., 2018;
McCann et al., 2017; Neubig and Hu, 2018). Pre-
vious work has investigated whether these repre-
sentations encode syntactic information (Shi et al.,
2016), as syntactic information is useful in many
natural language tasks (Chen et al., 2017; Pun-
yakanok et al., 2008). The deep recurrent neural
network (RNN) architectures used by many NMT
encoders can learn syntactic features, even without
explicit supervision (Blevins et al., 2018; Futrell
et al., 2019); NMT encoders specifically have been
found to encode information about ancestor con-
stituent labels for words (Blevins et al., 2018) and

even full syntactic parses of source language sen-
tences (Shi et al., 2016).

Cross-linguistically, there is mixed evidence
for how target language impacts the encoding
of information in NMT encoder representations.
Kudugunta et al. (2019) found that representations
clustered based on target language family when
sentence representations were aligned in a shared
space. However, Belinkov et al. (2017) found
only small effects of target language on the ability
of NMT encoder states to predict part-of-speech
(POS) tags. Because POS tags are typically re-
liant only on local features within sentences, these
contrasting results could suggest that (1) localized
encoded information is independent of NMT target
language, or (2) encoded syntactic information in
general is independent of NMT target language. In
this work, we address the second possibility.

To evaluate more global syntactic information
in NMT encoder representations, we assess the
ability of NMT encoder states to predict ancestor
constituent labels of words; this task is adopted
from Blevins et al. (2018). Extending Blevins et al.
(2018), we train NMT models towards multiple tar-
get languages and evaluate performance on individ-
ual constituent labels (e.g. noun phrases). We find
that significant syntactic information is encoded re-
gardless of target language, and target language has
little impact on the syntactic information learned
by NMT encoders. Furthermore, we find that NMT
encoders rely on explicit morphosyntactic cues to
extract syntactic information from sentences.

Finally, by training deep RNNs directly on the
constituent label prediction task, we find that RNNs
with explicit syntactic training data learn simi-
lar syntax to the NMT encoders. In contrast, a
probabilistic context-free grammar (PCFG) parser
performs significantly differently from both RNN-
based models, suggesting that RNNs may be con-
strained by their reliance on explicit syntactic cues.

7

2 Methodology

We trained NMT models from English to six differ-
ent target languages, assessing the ability of NMT
encoder states to predict POS, parent, grandparent,
and great-grandparent constituent labels of words.

2.1 NMT Models

NMT models were trained on the United Na-
tions (UN) Parallel Corpus, using the fully aligned
subcorpus of approximately 11 million sentences
translated to all six UN official languages: En-
glish, Spanish, French, Russian, Arabic, and Chi-
nese (Ziemski et al., 2016). NMT models were
trained from English to each target language using
OpenNMT’s PyTorch implementation (Klein et al.,
2017) with byte pair encoding for subword tok-
enization in all languages (Sennrich et al., 2016).
Each NMT encoder and decoder was a unidirec-
tional four-layer long short-term memory (LSTM;
Hochreiter and Schmidhuber, 1997) network with
500 dimensions, using dot-product global atten-
tion in the decoder (Luong et al., 2015). Each
NMT model was trained for 11 epochs (approxi-
mately 2,000,000 steps) using Adam optimization
(Kingma and Ba, 2014).1 The model with the best
performance on the UN evaluation dataset for each
language was used to generate encoder representa-
tions in the constituent label prediction task.

2.2 Constituent Label Predictions

Dataset Constituent label predictions used tree-
parsed sentences from the CoNLL-2012 dataset,
containing sentences from English news and mag-
azine articles, web data, and transcribed conversa-
tional speech (Pradhan et al., 2012).

As in Blevins et al. (2018), constituent label mod-
els were trained on the CoNLL-2012 development
dataset and tested on the test dataset. A subset
of the CoNLL-2012 training dataset was used as
an evaluation dataset; the training, evaluation, and
test datasets each contained approximately 160,000
English words.

Prediction models We trained simple feedfor-
ward neural networks to predict ancestor con-
stituent labels (POS, parent, grandparent, and great-
grandparent) of words, given the NMT encoder
state after reading the word. The NMT encoders
were kept fixed during constituent label training.

1The first 10 epochs used learning rate 0.0002; the learning
rate was halved every 30,000 steps during the final epoch.

Figure 1: Results for the constituent label prediction
tasks, trained from NMT encoder representations. Dots
indicate mean accuracies (based on 20 feedforward
models), bars indicate two standard deviations from the
mean, and dashed lines represent baseline accuracies.

We used the deepest encoder layer as our encoder
representation; deeper layers have been shown to
perform better on constituent label prediction tasks
(Blevins et al., 2018).

Each feedforward network contained one 500-
dimensional hidden layer, and each model was
trained until it completed 10 consecutive epochs
with no improvement on the evaluation dataset. To
account for variation between models based on ran-
dom initialization of weights and shuffling of the
training data, we trained 20 feedforward models for
each combination of NMT encoder target language
and constituent label (POS, parent, grandparent, or
great-grandparent).

Baselines We computed a baseline accuracy for
each constituent label prediction task by simply
predicting the most frequent constituent label given
the current input word (e.g. given the current input
word “dog,” the most frequent POS tag would be
NN for “singular noun”). This baseline accuracy is
the maximum possible accuracy for a deterministic
model that only knows the current input word.

8

3 Results

NMT encoders learned syntax. As shown in
Figure 1, NMT encoder representations for all tar-
get languages except the autoencoder resulted in
accuracy scores above the baseline for the parent,
grandparent, and great-grandparent constituent la-
bel tasks (adjusted p < 0.001 for all comparisons,
using one sample t-tests). The English autoencoder
was the only target language without consistent
performance above the baselines for these tasks;
NMT autoencoders have been found to memorize
sentences without learning syntactic information
(Shi et al., 2016). These results indicate that with
the exception of autoencoders, NMT encoder repre-
sentations contain syntactic information regardless
of target language.

Models performed poorly for POS tags. In
contrast to Blevins et al. (2018) but in line with
Belinkov et al. (2017), all target languages per-
formed slightly below the baseline for the POS
prediction task (adjusted p < 0.001 for all compar-
isons, using one sample t-tests). This result may be
because POS encodes less useful information than
other features for machine translation tasks. For
instance, Belinkov et al. (2017) found that mod-
els performed above the baseline if the task was
modified to predict semantic tags.

3.1 Similarities Across Target Languages

While there were statistically significant differ-
ences in accuracy between target languages for
all four constituent label tasks (one-way ANOVA,
p < 0.001 for all tasks), these differences were
quite small. The non-English target languages
varied by less than 2% within each of the parent,
grandparent, and great-grandparent constituent la-
bel tasks (see Figure 1).

NMT encoders learned similar syntax. To fur-
ther test the hypothesis of similar syntactic infor-
mation across encoder representations, we assessed
the performance of the NMT encoders on individ-
ual constituent labels (e.g. noun phrases). To do
this, we considered the constituent label predictions
as the results of a binary classification task for each
individual label. For instance, when considering
the noun POS tag, all POS tags were separated into
two categories: noun and not noun. Then, we com-
puted F1 scores for individual constituent labels for
each NMT model, allowing us to quantify similar-
ities between NMT encoders based on individual

Tokenized BLEU
AR EN ES FR RU ZH
37.3 99.9 56.3 44.8 37.8 24.9

Detokenized BLEU
AR EN ES FR RU ZH
38.0 100.0 56.3 44.5 37.4

Table 1: BLEU scores before and after detokenizing
the NMT translations for the UN test set. The detok-
enized BLEU score was not computed for Chinese be-
cause words were generally not separated by spaces in
the Chinese dataset.

label performance.
Individual constituent label F1 scores correlated

extremely highly between non-English target lan-
guages (all pairwise Pearson correlations r > 0.93
for the POS task; r > 0.98 for the parent task;
r > 0.99 for the grandparent and great-grandparent
tasks). In other words, the models performed well
or poorly on the same individual labels regardless
of target language. Figure 2 shows individual con-
stituent label F1 scores for each NMT target lan-
guage, displaying the three most frequent labels for
each constituent label task. Similar to the overall
accuracy scores, raw differences in F1 scores were
small between non-English target languages.

In particular, the similar F1 scores were not sim-
ply proportional to label frequencies. For instance,
all target languages performed similarly well when
identifying noun grandparent constituents (25%
of grandparent labels, F1 scores 0.59-0.60) and
question-sentence grandparent constituents (0.6%
of grandparent labels, F1 scores 0.55-0.61), despite
over a 20% difference in corresponding label fre-
quencies.2 Similar F1 scores across non-English
target languages suggest that NMT encoders en-
code very similar syntactic information regardless
of target language.

Translation quality still varied. Despite similar
syntactic information encoded across target lan-
guages, the NMT models exhibited a wide range
of BLEU scores, as shown in Table 1. This indi-
cates that morphological and non-syntactic features
have large impacts on translation performance. For
instance, inflectional morphology (e.g. verb con-
jugation and noun pluralization) has been found

2There was a loose correlation between F1 scores and label
frequencies, but this correlation could not fully account for
the similarity of F1 scores across target languages.

9

M
ea

n
 F

1
 S

co
re

Great-Grandparent Grandparent

Parent POS

Label
Frequency: 23% 21% 14% 25% 25% 21%

47% 19% 9.4% 13% 11% 8.7%
Label
Frequency:

Label
Frequency:

Label
Frequency:

Figure 2: Mean F1 scores (based on 20 feedforward models) for individual constituent label predictions, treating
each prediction task as a binary classification task. Bars indicate two standard deviations from the mean. We
display the three most frequent labels for each task, comparing across all target languages. Each label’s frequency
in the CoNLL-2012 test set is displayed on its corresponding plot.

to account for differences in performance between
languages in language modeling tasks (Cotterell
et al., 2018), although these results vary depending
on the metric used for morphological complexity
(Mielke et al., 2019). Because differences in trans-
lation performance could not be easily explained
using encoded syntactic information alone, it seems
likely that the NMT models were either unable to
extract more syntactic information from the train-
ing data or that the models did not find additional
syntactic information to be useful.

3.2 Linguistic Analysis of Errors

To gain a better understanding of how NMT en-
coders extract syntax, we conducted a qualitative
analysis of sentences for which the constituent la-
bel prediction models exhibited high error rates.

Selection of sentences We selected sentences
based on the great-grandparent constituent label
task because this task exhibited the highest ac-
curacy scores above the baseline, indicating a
large amount of learned syntax. There were high
pairwise correlation scores for per-sentence great-
grandparent constituent label accuracies between
all non-English target languages (all Pearson corre-
lations r > 0.85), so we selected sentences simply

based on their average constituent label accuracy
across the five non-English target languages.

We considered the 50 complete sentences with
the highest average great-grandparent constituent
accuracies and the 50 complete sentences with the
lowest average great-grandparent constituent ac-
curacies.3 The top 50 sentences all had average
great-grandparent accuracies above 90%, and the
bottom 50 sentences all had accuracies below 35%.
Linguistic patterns found in the top and bottom 50
sentences are compiled in Table 2.

NMT encoders relied on explicit cues. The bot-
tom 50 sentences contained a disproportionate num-
ber of null features. These features omit words
or morphemes that would indicate syntactic struc-
ture in a sentence. For instance, null copulas omit
forms of the verb “to be,” as in the sentence “He
pronounced the homework [was] finished.” Appos-
itives, where two noun phrases are placed one after
another to describe the same entity (e.g. “Grant, the
star baker”), serve as relative clauses with the usual
explicit syntactic cues omitted (e.g. “Grant, [who
is] the star baker”). Of the bottom 50 sentences, 16
contained at least one null copula or appositive; the

3Sentences were marked as “complete” by a native English
speaker. We considered only sentences from text sources (e.g.
not transcribed conversational speech).

10

Feature Top 50 Bottom 50
sentences sentences

Average length 9.3 words 21.7 words
Average
great-grandparent
constituent label
accuracy

0.949 0.310

Question sentences 2 10
Infinitive phrases 26 5
Sentences with
negation

13 4

Sentences
containing a null
copula or
appositive

0 16

Embedded
sentences
(excluding
infinitives)

◦ Head before 9 5
◦ Head after 0 10

Table 2: Linguistic features in the top and bottom
50 sentences, selected based on great-grandparent con-
stituent label accuracies per sentence.

top 50 sentences contained none of either feature.
This suggests that when generating encoder repre-
sentations, NMT models typically do not identify
syntactic structures based on non-explicit cues.

However, the models performed well on complex
syntactic structures containing explicit morphosyn-
tactic cues. They performed well on sentences con-
taining infinitives (e.g. “to eat” or “to pillage”) and
negation (e.g. “I did not eat”), exhibiting far more
of these features in the top 50 sentences than in
the bottom 50 sentences (see Table 2). Both infini-
tives and negation have clear morphosyntactic cues
indicating sentence structure. The “to” in each in-
finitive clearly introduces the infinitized verb, and
the word “not” before a verb clearly indicates a
negated clause. These results suggest that NMT
encoders rely on explicit morphosyntactic cues to
extract syntactic structure from sentences.

NMT encoders recognized embedded sentences.
In fact, the NMT encoders were able to use mor-
phosyntactic cues to identify embedded sentences.
An embedded sentence appears within another
phrase (e.g. within the verb phrase “said that [sen-
tence]”). The phrase head which introduces an em-
bedded sentence can appear before or after the em-

bedded sentence (e.g. “Alex said [sentence]” versus
“[sentence], said Alex”). Because the NMT en-
coders were forward-directional RNNs, they could
not be expected to recognize embedded sentences
where the corresponding phrase head appeared af-
ter the embedded sentence. However, the mod-
els performed well on many sentences where the
phrase head appeared before the embedded sen-
tence, exhibiting nine such structures in the top 50
sentences (see Table 2). In many of these sentences,
the head and complementizer (e.g. “said that” or
“dogs that”) clearly indicate the beginning of an
embedded sentence.

Interestingly, the NMT encoders were often able
to recognize embedded sentences even when there
was a null complementizer introducing the embed-
ded sentence, such as “that” omitted in “The dog
wished [that] he was taller.” Of the nine embedded
sentences in the top 50 sentences, six had a null
complementizer. This result may partially be ex-
plained by verb bias, the tendency for certain verbs
to be followed by particular types of phrases (Gar-
nsey et al., 1997). For instance, the verb “prove”
is more often followed by a sentence complement
(e.g. “proved [that] the criminal was lying”) than
a direct object (e.g. “proved the theorem”). Peo-
ple are more likely to omit complementizers when
the head verb biases heavily towards a sentence
complement (Ferreira and Schotter, 2013); in these
cases, the verb itself serves as a syntactic cue for
the upcoming embedded sentence. Of the six null
complementizers in the top 50 sentences, five fol-
lowed a sentence-complement-biased verb. Then,
it appears that NMT encoders are able to recognize
embedded sentences using a combination of verb
bias and explicit complementizers.

4 NMT Syntax vs. Other Models

The similarity of syntactic information in NMT en-
coder representations across target languages could
suggest that regardless of target language, a similar
amount of syntactic information is helpful for trans-
lation. However, it is also possible that the structure
of the constituent label task limited the syntactic
information the encoders could represent, as pre-
dicting a label based only on a partial sentence is
an inherently ambiguous task. A third alternative
is that the RNN encoder architectures limited the
information preserved in each representation.

To further explore how well the NMT encoders
extracted syntactic information from raw sentences,

11

we compared their constituent label prediction
performance to two alternative models: an RNN
trained directly for the constituent label task, and a
probabilistic context-free grammar (PCFG) parser.
In contrast to the NMT encoders, the RNN can
learn representations that are best suited for retain-
ing syntax; like the NMT encoders, it sees one
word at a time. The PCFG is trained with complete
syntactic information for partial sentences, and its
prediction task is an entire hierarchical structure,
rather than a single type of label. These compar-
isons can show whether there are syntactic features
that are predictable but systematically missed by
the NMT encoder representations.

4.1 Directly-Trained RNNs

RNN models We trained unidirectional four-
layer LSTM models with 500 dimensions to di-
rectly predict constituent labels (POS, parent,
grandparent, great-grandparent) when provided a
sentence stopping at a given word. These RNNs
were trained on the CoNLL-2012 development
dataset (the same dataset as the feedforward models
based on NMT encoder representations in Section
2.2). To account for variance in RNN training, we
trained 10 RNNs for each constituent label task,
and each RNN was trained until it completed 10
consecutive epochs without improvement on the
evaluation dataset.

NMT representations outperformed the RNNs.
Average accuracies for the RNN models in each
constituent label task are shown in Figure 3, com-
pared with the feedforward models trained from
NMT encoder representations. Surprisingly, the
RNN models trained directly for the constituent
label tasks performed worse than the NMT encoder
representation models for the parent, grandpar-
ent, and great-grandparent constituent tasks. The
NMT encoder representations’ improvement over
the other models increased consistently as the con-
stituent labels moved higher in the syntax tree (i.e.
the NMT encoders exhibited the greatest advantage
in the great-grandparent constituent task).

Because the RNNs had the same architecture
as the NMT encoders, it is likely that the directly-
trained RNNs were limited by the amount of train-
ing data provided (about 160,000 examples). The
NMT encoder representations would be able to rely
more heavily on patterns learned during NMT train-
ing and thus would be able to make better use of
the limited training data for the constituent label

Figure 3: Average accuracies on the constituent label
prediction tasks for all four types of model.

prediction tasks. It is also possible that the hy-
perparameters used for the NMT encoders were
not optimal for the directly-trained RNNs. That
said, the NMT encoder representations’ high per-
formance on the constituent label tasks supports
existing literature finding that NMT encoder repre-
sentations contain information useful for a variety
of natural language tasks (Eriguchi et al., 2018;
McCann et al., 2017).

The RNNs and NMT encoded similar syntax.
Next, to assess whether the directly-trained RNNs
learned different syntactic information from the
NMT encoders, we compared the RNN and the
NMT encoder representations’ performance on in-
dividual sentences. We primarily considered great-
grandparent constituent accuracies, the task for
which all models performed most above the base-
line.

For each sentence of length at least three, we
considered the mean great-grandparent constituent
label accuracy, averaging across all non-English
target languages for the NMT encoder accura-
cies. Figure 4 shows the correlation between per-
sentence accuracies from the NMT encoder rep-
resentation models and the directly-trained RNN
models. There was a high degree of correlation
between the two types of models (Pearson correla-

12

Figure 4: Mean great-grandparent constituent label ac-
curacies per sentence for the NMT encoder-based mod-
els and the directly-trained RNNs. Each dot represents
a sentence.

Figure 5: Mean great-grandparent constituent label ac-
curacies per sentence for the NMT encoder-based mod-
els and the PCFG parser.

tion r = 0.84), indicating that the directly-trained
RNNs learned similar syntactic information to the
NMT encoders.

4.2 PCFG Parser

It may be that the directly-trained RNNs and the
NMT encoders learned similar syntactic informa-
tion because they both used the same RNN ar-
chitecture. Therefore, we tested constituent label
performance when using the probabilistic context-
free grammar (PCFG) syntactic parser provided
by Stanford NLP (Klein and Manning, 2003). We
trained the PCFG on parse trees of partial sentences
stopping at each word in the CoNLL-2012 develop-
ment dataset, the same dataset used to train the
RNN-based models. While the PCFG was not
trained specifically for the constituent label pre-
diction task, its explicit syntactic architecture (en-
coding a context-free grammar) provides a useful

RNN Baseline PCFG
NMT 0.84 0.60 0.61
RNN 0.62 0.59

Baseline 0.42

Table 3: Pairwise Pearson correlations for per-sentence
great-grandparent constituent label accuracies, com-
puted between all four types of model.

contrast to the RNN-based models.

The PCFG encoded different syntax. The
PCFG’s constituent label accuracies are shown
in Figure 3, along with the RNN and NMT en-
coder representation accuracies. As expected, be-
cause the PCFG was not trained specifically for
the constituent label prediction task, the PCFG
had slightly lower accuracies than the RNN-based
models. However, the PCFG exhibited interest-
ing patterns when considering its performance on
individual sentences.

As with the other models, the PCFG’s mean
great-grandparent constituent label accuracies were
considered for each sentence of length at least three.
Figure 5 (comparing the PCFG with the NMT en-
coder representations) can then be compared to Fig-
ure 4 (comparing the directly-trained RNNs with
the NMT encoder representations). The two plots
indicate that the PCFG performed substantially dif-
ferently from the RNN-based models. Notably,
there is a set of sentences for which the PCFG ob-
tained perfect accuracy while the NMT encoders
had substantially lower accuracies (demonstrated
by the horizontal line of dots at the top of Figure
5). Both RNN-based models’ accuracies correlated
approximately the same amount with the baseline
(most-frequent tag per word) model as with the
PCFG; all correlations between models are shown
in Table 3.

Furthermore, for the worst 50 sentences for the
NMT encoder representations (the sentences found
in Section 3.2), the PCFG performed 9% better
than the NMT encoder representation models and
6% better than the directly-trained RNN models,
despite an overall 7-9% lower accuracy than both
RNN-based models. This suggests that PCFGs
can perform well on specific sentences that RNNs
perform poorly on; for instance, PCFGs may be
less reliant on explicit morphosyntactic cues. The
PCFG’s high performance on these specific sen-
tences explains results finding that explicit syntac-
tic information provides improvements to NMT

13

systems even though NMT systems already implic-
itly encode syntax (Chen et al., 2017; Chiang et al.,
2009; Li et al., 2017; Wu et al., 2017).

5 Discussion

NMT syntax is independent of target language.
We found that NMT encoders learn similar source
syntactic information regardless of target language,
consistently outperforming RNNs trained specif-
ically for the constituent label prediction task.
These results help explain the success of NMT
encoder representations in cross-task transfer learn-
ing, and they open up further questions regarding
the extent of similarity between NMT encoder rep-
resentations across target languages.

For instance, Schwenk and Douze (2017) found
that multilingual NMT encoder representations
cluster more based on semantic than syntactic sim-
ilarity, indicating that semantic information may
play a more prominent role than syntax in machine
translation. Across target languages, Poliak et al.
(2018) found inconsistencies for which target lan-
guage’s representations resulted in the best per-
formance on semantic understanding tasks. This
could suggest that semantic information in NMT
encoder representations is also similar across target
languages.

RNNs learn limited syntax. Both the NMT en-
coders and the directly-trained RNNs relied on ex-
plicit morphosyntactic cues to extract syntactic in-
formation from sentences. This result aligns with
findings that RNNs rely on syntax heuristics to
obtain high performance on tasks (McCoy et al.,
2019), performing poorly on sentences requiring
knowledge of complex syntactic structures (Linzen
et al., 2016; Marvin and Linzen, 2018). NMT
encoders specifically have been found not to en-
code fine-grained syntactic information (Shi et al.,
2016). These limitations can be partially overcome
by training an RNN model for a variety of differ-
ent tasks (Enguehard et al., 2017); alternatively,
we found that a PCFG syntactic parser encoded
significantly different syntactic information from
RNN-based models, performing well on many sen-
tences for which RNNs performed poorly.

In some ways, the RNNs’ reliance on explicit
syntactic cues is similar to sentence processing
in people. Many sentences are syntactically am-
biguous before they are completed (notably garden-
path sentences such as “The horse raced past the
barn fell”), and people generally re-evaluate upon

reading the disambiguating feature (Frazier and
Rayner, 1982; Qian et al., 2018). Thus, it may
be implausible for an online system to identify
non-explicit syntactic features given only partial
sentences. Compounding this problem, RNNs are
unable to re-evaluate past inputs and hidden states
upon reading disambiguating words. The successes
of bidirectional and Transformer models (Devlin
et al., 2019; Peters et al., 2018a; Vaswani et al.,
2017) may be due partially to their ability to com-
bine later information with representations of ear-
lier words. Indeed, contextual word representa-
tions generated by these bidirectional models have
been found to encode significant syntactic informa-
tion (Peters et al., 2018b); future work could study
whether bidirectional architectures are less reliant
on explicit morphosyntactic cues.

6 Conclusion

In this work, we found that NMT encoder repre-
sentations across target languages encode similar
source syntax, and this syntax is comparable to the
syntax learned by RNNs trained directly on syntac-
tic tasks. However, explicit syntactic architectures
may be necessary for tasks requiring fine-tuned
syntactic parses. Our results have many implica-
tions in transfer learning and multilingual sentence
representations: a better understanding of the in-
formation contained in sentence representations
provides necessary insight into the tasks these rep-
resentations can be used for.

Acknowledgments

We would like to thank Cherlon Ussery for helpful
linguistic perspectives on our results, and the Car-
leton College Cognitive Science Department for
making this work possible.

References
Yonatan Belinkov, Lluı́s Màrquez, Hassan Sajjad,

Nadir Durrani, Fahim Dalvi, and James Glass. 2017.
Evaluating layers of representation in neural ma-
chine translation on part-of-speech and semantic
tagging tasks. In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1–10,
Taipei, Taiwan. Asian Federation of Natural Lan-
guage Processing.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. 2018.
Deep RNNs encode soft hierarchical syntax. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short

14

Papers), pages 14–19, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine trans-
lation with a syntax-aware encoder and decoder.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1936–1945, Vancouver,
Canada. Association for Computational Linguistics.

David Chiang, Kevin Knight, and Wei Wang. 2009.
11,001 new features for statistical machine transla-
tion. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, pages 218–226, Boulder, Col-
orado. Association for Computational Linguistics.

Ryan Cotterell, Sebastian J. Mielke, Jason Eisner, and
Brian Roark. 2018. Are all languages equally hard
to language-model? In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 536–541, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Émile Enguehard, Yoav Goldberg, and Tal Linzen.
2017. Exploring the syntactic abilities of RNNs
with multi-task learning. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 3–14, Vancouver,
Canada. Association for Computational Linguistics.

Akiko Eriguchi, Melvin Johnson, Orhan Firat, Hideto
Kazawa, and Wolfgang Macherey. 2018. Zero-shot
cross-lingual classification using multilingual neural
machine translation. ArXiv, abs/1809.04686.

Victor Ferreira and Elizabeth Schotter. 2013. Do
verb bias effects on sentence production reflect sen-
sitivity to comprehension or production factors?
The Quarterly Journal of Experimental Psychology,
66(8):1548–1571.

Lyn Frazier and Keith Rayner. 1982. Making and cor-
recting errors during sentence comprehension: Eye
movements in the analysis of structurally ambiguous
sentences. Cognitive Psychology, 14(2):178–210.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic sub-
jects: Representations of syntactic state. In Proceed-
ings of the 2019 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 32–42, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Susan Garnsey, Neal Pearlmutter, Elizabeth Myers, and
Melanie Lotocky. 1997. The contributions of verb
bias and plausibility to the comprehension of tem-
porarily ambiguous sentences. Journal of Memory
and Language, 37(1):58–93.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430, Sapporo, Japan.
Association for Computational Linguistics.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67–72, Vancouver, Canada. Association for
Computational Linguistics.

Sneha Kudugunta, Ankur Bapna, Isaac Caswell, and
Orhan Firat. 2019. Investigating multilingual nmt
representations at scale. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1565–1575.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 688–697, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods

15

in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems 30.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Sebastian J. Mielke, Ryan Cotterell, Kyle Gorman,
Brian Roark, and Jason Eisner. 2019. What kind
of language is hard to language-model? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4975–
4989, Florence, Italy. Association for Computational
Linguistics.

Graham Neubig and Junjie Hu. 2018. Rapid adapta-
tion of neural machine translation to new languages.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
875–880, Brussels, Belgium. Association for Com-
putational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018b. Dissecting contextual
word embeddings: Architecture and representation.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1499–1509, Brussels, Belgium. Association
for Computational Linguistics.

Adam Poliak, Yonatan Belinkov, James Glass, and Ben-
jamin Van Durme. 2018. On the evaluation of se-
mantic phenomena in neural machine translation us-
ing natural language inference. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 513–523, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, pages

1–40, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Zhiying Qian, Susan Garnsey, and Kiel Christianson.
2018. A comparison of online and offline measures
of good-enough processing in garden-path sentences.
Language, Cognition and Neuroscience, 33(2):227–
254.

Holger Schwenk and Matthijs Douze. 2017. Learn-
ing joint multilingual sentence representations with
neural machine translation. In Proceedings of the
2nd Workshop on Representation Learning for NLP,
pages 157–167, Vancouver, Canada. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural MT learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1526–
1534, Austin, Texas. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Shuangzhi Wu, Ming Zhou, and Dongdong Zhang.
2017. Improved neural machine translation with
source syntax. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelli-
gence, IJCAI-17, pages 4179–4185.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The united nations parallel cor-
pus v1.0. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), pages 3530–3534, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

16

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 17–23
July 9, 2020. c©2020 Association for Computational Linguistics

Learning Probabilistic Sentence Representations from Paraphrases

Mingda Chen Kevin Gimpel
Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA

{mchen,kgimpel}@ttic.edu

Abstract
Probabilistic word embeddings have shown ef-
fectiveness in capturing notions of generality
and entailment, but there is very little work
on doing the analogous type of investigation
for sentences. In this paper we define prob-
abilistic models that produce distributions for
sentences. Our best-performing model treats
each word as a linear transformation opera-
tor applied to a multivariate Gaussian distribu-
tion. We train our models on paraphrases and
demonstrate that they naturally capture sen-
tence specificity. While our proposed model
achieves the best performance overall, we also
show that specificity is represented by simpler
architectures via the norm of the sentence vec-
tors. Qualitative analysis shows that our prob-
abilistic model captures sentential entailment
and provides ways to analyze the specificity
and preciseness of individual words.

1 Introduction

Probabilistic word embeddings have been shown
to be useful for capturing notions of generality
and entailment (Vilnis and McCallum, 2014; Athi-
waratkun and Wilson, 2017; Athiwaratkun et al.,
2018). In particular, researchers have found that
the entropy of a word roughly encodes its gener-
ality, even though there is no training signal ex-
plicitly targeting this effect. For example, hy-
pernyms tend to have larger variance than their
corresponding hyponyms (Vilnis and McCallum,
2014). However, there is very little work on doing
the analogous type of investigation for sentences.

In this paper, we define probabilistic models
that produce distributions for sentences. In partic-
ular, we choose a simple and interpretable prob-
abilistic model that treats each word as an opera-
tor that translates and scales a Gaussian random
variable representing the sentence. Our models
are able to capture sentence specificity as mea-
sured by the annotated datasets of Li and Nenkova

(2015) and Ko et al. (2019) by training solely
on noisy paraphrase pairs. While our “word-
operator” model yields the strongest performance,
we also show that specificity is represented by
simpler architectures via the norm of the sentence
vectors. Qualitative analysis shows that our mod-
els represent sentences in ways that correspond
to the entailment relationship and that individual
word parameters can be analyzed to find words
with varied and precise meanings.

2 Proposed Methods

We propose a model that uses ideas from flow-
based variational autoencoders (VAEs) (Rezende
and Mohamed, 2015; Kingma et al., 2016) by
treating each word as an “operator”. Intuitively,
we assume there is a random variable z associated
with each sentence s = {w1, w2, · · · , wn}. The
random variable initially follows a standard mul-
tivariate Gaussian distribution. Then, each word
in the sentence transforms the random variable se-
quentially, leading to a random variable that en-
codes its semantic information.

Our word linear operator model (WLO) has two
types of parameters for each word wi: a scaling
factor Ai ∈ Rk and a translation factor Bi ∈ Rk.
The word operators produce a sequence of ran-
dom variables z0, z1, · · · , zn with z0 ∼ N (0, Ik),
where Ik is a k× k identity matrix, and the opera-
tions are defined as

zi = Ai(zi−1 +Bi) (1)

The means and variances for each random variable
are computed as follows:

µi = Ai(µi−1 +Bi) (2)

Σi = AiΣi−1A>i (3)

For computational efficiency, we only consider
diagonal covariance matrices, so the equations
above can be further simplified.

17

3 Learning

Following Wieting and Gimpel (2018), all of our
models are trained with a margin-based loss on
paraphrase pairs (s1, s2):

max(0, δ − d(s1, s2) + d(s1, n1))+

max(0, δ − d(s1, s2) + d(s2, n2))

where δ is the margin and d is a similarity function
that takes a pair of sentences and outputs a scalar
denoting their similarity. The similarity function
is maximized over a subset of examples (typically,
the mini-batch) to choose negative examples n1
and n2. When doing so, we use “mega-batching”
(Wieting and Gimpel, 2018) and fix the mega-
batch size at 20. For deterministic models, d is
cosine similarity, while for probabilistic models,
we use the expected inner product of Gaussians.

3.1 Expected Inner Product of Gaussians
Let µ1, µ2 be mean vectors and Σ1, Σ2 be the
variances predicted by models for a pair of input
sentences. For the choice of d, following Vilnis
and McCallum (2014), we use the expected inner
product of Gaussian distributions:
∫

x∈Rk

N (x;µ1,Σ1)N (x;µ2,Σ2)dx

= logN (0;µ1 − µ2,Σ1 + Σ2)

= −1

2
log det (Σ1 + Σ2)−

d

2
log(2π)

− 1

2
(µ1 − µ2)>(Σ1 + Σ2)

−1(µ1 − µ2)

(4)

For diagonal matrices Σ1 and Σ2, the equation
above can be computed analytically.

3.2 Regularization
To avoid the mean or variance of the Gaussian
distributions from becoming unbounded during
training, resulting in degenerate solutions, we im-
pose prior constraints on the operators introduced
above. We force the transformed distribution after
each operator to be relatively close to N (0, Ik),
which can be thought of as our “prior” knowl-
edge of the operator. Then our training addition-
ally minimizes

λ
∑

s∈{s1,s2,n1,n2}

∑

w∈s
KL(N (µ(w),Σ(w))‖N (0, I))

where λ is a hyperparameter tuned based on the
performance on the 2017 semantic textual similar-
ity (STS; Cer et al., 2017) data. We found prior

Domain News Twitter Yelp Movie
Number of instances 900 984 845 920

Table 1: Sizes of test sets for sentence specificity.

regularization very important, as will be shown in
our results. For fair comparison, we also add L2
regularization to the baseline models.

4 Experiments

4.1 Baseline Methods

We consider two baselines that have shown strong
results on sentence similarity tasks (Wieting
and Gimpel, 2018). The first, word averaging
(WORDAVG), simply averages the word embed-
dings in the sentence. The second, long short-
term memory (LSTM; Hochreiter and Schmidhu-
ber, 1997) averaging (LSTMAVG), uses an LSTM
to encode the sentence and averages the hidden
vectors. Inspired by sentence VAEs (Bowman
et al., 2016), we consider an LSTM based proba-
bilistic baseline (LSTMGAUSSIAN) which builds
upon LSTMAVG and uses separate linear transfor-
mations on the averaged hidden states to produce
the mean and variance of a Gaussian distribution.

We also benchmark several pretrained models,
including GloVe (Pennington et al., 2014), Skip-
thought (Kiros et al., 2015), InferSent (Conneau
et al., 2017), BERT (Devlin et al., 2019), and
ELMo (Peters et al., 2018). When using GloVe,
we either sum embeddings (GloVe SUM) or aver-
age them (GloVe AVG) to produce a sentence vec-
tor. Similarly, for ELMo, we either sum the out-
puts from the last layer (ELMo SUM) or average
them (ELMo AVG). For BERT, we take the repre-
sentation for the “[CLS]” token.

4.2 Datasets

We use the preprocessed version of ParaNMT-
50M (Wieting and Gimpel, 2018) as our training
set, which consists of 5 million paraphrase pairs.

For evaluating sentence specificity, we use
human-annotated test sets from four domains, in-
cluding news, Twitter, Yelp reviews, and movie re-
views, from Li and Nenkova (2015) and Ko et al.
(2019). For the news dataset, labels are either
“general” or “specific” and there is additionally a
training set. For the other datasets, labels are real
values indicating specificity. Statistics for these
datasets are shown in Table 1.

For analysis we also use the semantic textual

18

similarity (STS) benchmark test set (Cer et al.,
2017) and the Stanford Natural Language Infer-
ence (SNLI) dataset (Bowman et al., 2015).

4.3 Specificity Prediction Setup

For predicting specificity in the news domain,
we threshold the predictions either based on the
entropy of Gaussian distributions produced from
probabilistic models or based on the norm of vec-
tors produced by deterministic models, which in-
cludes all of the pretrained models. The thresh-
old is tuned based on the training set but no other
training or tuning is done for this task with any
of our models. For prediction in other domains,
we simply compute the Spearman correlations be-
tween the entropy/norm and the labels.

Intuitively, when sentences are longer, they tend
to be more specific. So, we report baselines
(“Length”) that predict specificity solely based on
length, by thresholding the sentence length for
news (choosing the threshold using the training
set) or simply returning the length for the oth-
ers. The latter results are reported from Ko et al.
(2019). We also consider baselines that average or
sum ranks of word frequencies within a sentence
(“Word Freq. AVG” and “Word Freq. SUM”).

5 Results

5.1 Sentence Specificity

Table 2 shows results on sentence specificity tasks.
We compare to the best-performing models re-
ported by Li and Nenkova (2015) and Ko et al.
(2019). Their models are specifically designed for
predicting sentence specificity and they both use
labeled training data from the news domain.

Our averaging-based models (WORDAVG,
LSTMAVG) failed on this task, either giving the
majority class accuracy or negative correlations.
So, we also evaluate WORDSUM, which sums
word embeddings instead of averaging and shows
strong performance compared to the other models.

While the model from Li and Nenkova (2015)
performs quite well in the news domain, its per-
formance drops on other domains, indicating some
amount of overfitting. On the other hand, WORD-
SUM and WLO, which are trained on a large num-
ber of paraphrases, perform consistently across the
four domains and both outperform the supervised
models on Yelp. Additionally, our WLO model
outperforms all our other models, achieving com-
parable performance to the supervised methods.

News Twitter Yelp Movie
Majority baseline 54.6 - - -
Length 73.4 44.5 67.6 58.1
Word Freq. SUM 55.5 10.1 54.6 22.1
Word Freq. AVG 61.5 0.0 28.5 0.0

Prior work trained on labeled sentence specificity data
Li and Nenkova (2015) 81.6 55.3 63.3 57.5
Ko et al. (2019) - 67.9 75.0 70.6

Sentence embeddings from pretrained models
GloVe SUM 70.4 32.2 62.8 49.0
GloVe AVG 54.6 -49.6 -59.0 -38.2
InferSent 75.0 60.5 76.6 61.2
Skip-thought 57.7 2.9 14.1 27.2
BERT 64.5 20.8 29.5 18.1
ELMo SUM 65.4 46.2 72.7 59.3
ELMo AVG 56.2 -9.4 -0.9 -22.5

Our work
WORDAVG 54.6 -10.6 -32.3 -27.2
WORDSUM 75.8 57.9 75.4 60.0
LSTMAVG 54.6 -14.8 -41.1 -14.8
LSTMGAUSSIAN 55.5 3.2 2.2 4.1
WLO 77.4 60.5 76.6 61.9

Table 2: Sentence specificity results on test sets from
four domains (accuracy (%) for News and Spearman
correlations (%) for others). Highest numbers for the
models described in this work are underlined.

Full Length norm.
Majority baseline 54.6 50.1
WORDAVG 54.6 69.0
WORDSUM 75.8 68.6
LSTMAVG 54.6 69.6
LSTMGAUSSIAN 55.5 67.0
WLO 77.4 70.1

Table 3: Accuracy (%) for the specificity News test set,
in both the original and length normalized conditions.
Highest numbers in each column are in bold.

Among pretrained models, BERT, Skip-
thought, ELMo SUM, and GloVe SUM show slight
correlations with specificity, while InferSent
performs strongly across domains. InferSent uses
supervised training on a large manually-annotated
dataset (SNLI) while WORDSUM and WLO are
trained on automatically-generated paraphrases
and still show results comparable to InferSent.

To control for effects due to sentence length,
we design another experiment in which sentences
from News training and test are grouped by length,
and thresholds are tuned on the group of length k
and tested on the group of length k − 1, for all k,
leading to a pool of 3582 test sentences.

Table 3 shows the results. In this length-
normalized experiment, the averaging models
demonstrate much better performance and even
outperform WORDSUM, but still WLO has the best
performance.

19

Entailment Neutral Contradiction
GloVe 42.5 53.8 39.6
InferSent 78.3 57.2 55.7
Skip-thought 62.5 54.3 57.3
ELMo 78.3 58.3 63.4
BERT 65.0 55.7 56.3
WORDAVG 77.5 50.0 57.2
WORDSUM 75.0 54.7 57.7
LSTMAVG 71.7 49.5 52.4
LSTMGAUSSIAN 65.0 49.5 48.6
WLO 75.8 54.7 57.2

Table 4: Percentage of cases in which hypothesis has
larger entropy (or smaller norm for non-probabilistic
models) than premise for equal-length sentence pairs
in the SNLI test set. In this setting, GloVe and ELMo
would give the same results under either SUM or AVG.

6 Analysis

6.1 Sentence Entailment

Vilnis and McCallum (2014) explored whether
their Gaussian word entropies captured the lexi-
cal entailment relationship. Here we analyze the
extent to which our representations capture sen-
tential entailment.

We test models on the SNLI test set, assuming
that for a given premise p and hypothesis h, p is
more specific than h for entailing sentence pairs.
To avoid effects due to sentence length, we only
consider 〈p, h〉 pairs with the same length. After
this filtering, entailment/neural/contradiction cat-
egories have 120/192/208 instances respectively.
We encode each sentence and calculate the per-
centage of cases in which the hypothesis has larger
entropy (or smaller norm for non-probabilistic
models) than the premise. Under an ideal model,
this would happen with 100% of entailing pairs
while showing random results (50%) for the other
two types of pairs.

As shown in Table 4, our best paraphrase-
trained models show similar trends to InferSent,
achieving around 75% accuracy in the entailment
category and around 50% accuracy in other cat-
egories. Although ELMo can also achieve simi-
lar accuracy in the entailment category, it seems
to conflate entailment with contradiction, where
it shows the highest percentage of all models.
Other models, including BERT, GloVe, and Skip-
thought, are much closer to random (50%) for en-
tailing pairs.

6.2 Lexical Analysis

WLO associates translation and scaling parame-
ters with each word, allowing us to analyze the

Small norm Large norm
small abs. ent. small ent. small abs. ent. small ent.

, addressing staveb cenelec
/ derived jerusalem ohim

by decree trent placebo
an fundamental microwave hydrocarbons

gon beneficiaries brussels iec
as tendency synthetic paras

having detect christians allah
a reservations elephants milan

on remedy seldon madrid
for eligibility burger ±

from film-coated experimental ukraine
’d breach alison intravenous
— exceed 63 electromagnetic
his flashing prophet 131
’ objectives diego electrons

upon cue mallory northeast
under commonly ö blister

towards howling natalie http
’s vegetable hornblower renal

with bursting korea asteroid

Table 5: Examples showing top-20 lists of large-norm
or small-norm words ranked based on small absolute
entropy or small entropy in WLO.

impact of words on sentence representations. We
ranked words under several criteria based on their
translation parameter norms and single-word sen-
tence entropies. Table 5 shows the top 20 words
under each criterion.

Words with small norm and small absolute en-
tropy have little effect, both in terms of meaning
and specificity; they are mostly function words.
Words with large norm and small entropy have a
large impact on the sentence while also making it
more specific. They are organization names (cen-
elec) or technical terms found in medical or sci-
entific literature. When they appear in a sentence,
they are very likely to appear in its paraphrase.

Words with large norm and small absolute en-
tropy contribute to the sentence semantics but do
not make it more specific. Words like microwave
and synthetic appear in many contexts and have
multiple senses. Names (trent, alison) also appear
in many contexts. Words like these often appear
in a sentence’s paraphrase, but can also appear in
many other sentences in different contexts.

Words with small norm/entropy make sentences
more specific but do not lend themselves to a pre-
cise characterization. They affect sentence mean-
ing, but can be expressed in many ways. For exam-
ple, when beneficiaries appears in a sentence, its
paraphrase often has a synonym like beneficiary,
heirs, or grantees. These words may have multiple
senses, but it appears more that they correspond to

20

WORDSUM WLO
largest norm (specific) smallest norm (general) smallest entropy (specific) largest entropy (general)

this regulation shall not apply to wine grape
products, with the exception of wine vine-
gar, spirit drinks or flavoured wines.

oh, man, you’re gonna...
you’re just gonna get it,
vause*, aren’t you ?

under a light coating of dew she was a velvet
study in reflected mauve with rose overtones
against the indigo nightward* sky.

oh, man, you’re gonna... you’re just
gonna get it, vause*, aren’t you?

operating revenue community subsidies
other subsidies/revenue* total (a) operating
expenditure staff administration operating
activities total (b) operating result (c=ab)

okay, i know you don’t get re-
lationships, like, at all, but i
don’t need to screw anyone for
an “a.”

a similar influenza disease occurred in 47%
of patients who received plegridy 125 mi-
crograms every 2 weeks, and 13% of the pa-
tients were given placebo.

’authorisation’ means an instrument is-
sued in any form by the authorities by
which the right to carry on the business
of a credit institution is granted;

Table 6: Examples of most general and specific sentences for selected lengths (* = mapped to unknown symbol).

With Prior Without Prior
Acc. F1 Acc. F1

WLO 77.4 78.4 67.9 68.2

Table 7: Accuracy (%) and F1 score (%) for specificity
News test set with and without prior regularization.

STS Benchmark
WORDAVG 73.4
LSTMAVG 73.6
LSTMGAUSSIAN 74.3
WLO 73.7

Table 8: Pearson correlation (%) for STS benchmark
test set. Highest number is in bold.

concepts with many valid ways of expression.

6.3 Sentential Analysis

We subsample the ParaNMT training set and
group sentences by length. For each model and
length, we pick the sentence with either high-
est/lowest entropy or largest/smallest norm values.
Table 6 shows some examples. WORDSUM tends
to choose conversational sentences as general and
those with many rare words as specific. WLO fa-
vors literary and technical/scientific sentences as
most specific, and bureaucratic/official language
as most general.

6.4 Effect of Prior Regularization

As shown in Table 7, there is a large performance
improvement after adding prior regularization for
avoiding degenerate solutions.

6.5 Semantic Textual Similarity

Although semantic textual similarity is not our
target task, we still include the performance of
our models on the STS benchmark test set in
Table 8 to show that our models are competi-
tive with standard strong baselines. When using
probabilistic models to predict sentence similar-
ity during test time, we let v1 = concat(µ1,Σ1),
v2 = concat(µ2,Σ2), where concat is a concate-
nation operation, and predict sentence similarity
via cosine(v1, v2), since we find it performs better

than solely using the mean vectors. The two prob-
abilistic models, LSTMGAUSSIAN and WLO, are
able to outperform the baselines slightly.

7 Related Work

Our models are related to work in learning prob-
abilistic word embeddings (Vilnis and McCal-
lum, 2014; Athiwaratkun and Wilson, 2017; Athi-
waratkun et al., 2018) and text-based VAEs (Miao
et al., 2016; Bowman et al., 2016; Yang et al.,
2017; Kim et al., 2018; Xu and Durrett, 2018, in-
ter alia). The WLO is also related to flow-based
VAEs (Rezende and Mohamed, 2015; Kingma
et al., 2016), where hidden layers are viewed as
operators over the density function of latent vari-
ables.

Previous work on sentence specificity relies on
hand-crafted features or direct training on an-
notated data (Louis and Nenkova, 2011; Li and
Nenkova, 2015). Recently, Ko et al. (2019) used
domain adaptation for this problem when only the
source domain has annotations. Our work also re-
lates to learning sentence embeddings from para-
phrase pairs (Wieting et al., 2016; Wieting and
Gimpel, 2018).

8 Conclusion

We trained sentence models on paraphrase pairs
and showed that they naturally capture specificity
and entailment. Our proposed WLO model, which
treats each word as a linear transformation opera-
tor, achieves the best performance and lends itself
to analysis.

Acknowledgments

We would like to thank the anonymous reviewers,
NVIDIA for donating GPUs used in this research,
Jessy Li for clarifying the experimental setup used
in Li and Nenkova (2015), and Google for a fac-
ulty research award to K. Gimpel that partially
supported this research.

21

References
Ben Athiwaratkun and Andrew Wilson. 2017. Mul-

timodal word distributions. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1645–1656. Association for Computational Linguis-
tics.

Ben Athiwaratkun, Andrew Wilson, and Anima
Anandkumar. 2018. Probabilistic FastText for
multi-sense word embeddings. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1–11, Melbourne, Australia. Association for
Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642. Association for Computational Linguis-
tics.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating sentences from a continuous
space. In Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning,
pages 10–21. Association for Computational Lin-
guistics.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 1–14. Association for
Computational Linguistics.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680. Associ-
ation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim, Sam Wiseman, Andrew Miller, David Son-
tag, and Alexander Rush. 2018. Semi-amortized
variational autoencoders. In Proceedings of the 35th

International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Re-
search, pages 2678–2687, Stockholmsmssan, Stock-
holm Sweden. PMLR.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz,
Xi Chen, Ilya Sutskever, and Max Welling. 2016.
Improved variational inference with inverse autore-
gressive flow. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems
29, pages 4743–4751. Curran Associates, Inc.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Ur-
tasun, and Sanja Fidler. 2015. Skip-thought vec-
tors. In Proceedings of the 28th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’15, pages 3294–3302, Cambridge,
MA, USA. MIT Press.

Wei-Jen Ko, Greg Durrett, and Junyi Jessy Li. 2019.
Domain agnostic real-valued specificity prediction.
In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence, pages 6610–6617. AAAI
Press.

Junyi Jessy Li and Ani Nenkova. 2015. Fast and accu-
rate prediction of sentence specificity. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, pages 2281–2287. AAAI Press.

Annie Louis and Ani Nenkova. 2011. Automatic iden-
tification of general and specific sentences by lever-
aging discourse annotations. In Proceedings of
5th International Joint Conference on Natural Lan-
guage Processing, pages 605–613. Asian Federation
of Natural Language Processing.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neu-
ral variational inference for text processing. In Pro-
ceedings of the 33rd International Conference on In-
ternational Conference on Machine Learning - Vol-
ume 48, ICML’16, pages 1727–1736. JMLR.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Associa-
tion for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

22

Danilo Rezende and Shakir Mohamed. 2015. Varia-
tional inference with normalizing flows. In Proceed-
ings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Ma-
chine Learning Research, pages 1530–1538, Lille,
France. PMLR.

Luke Vilnis and Andrew McCallum. 2014. Word
representations via Gaussian embedding. arXiv
preprint arXiv:1412.6623.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of International
Conference on Learning Representations.

John Wieting and Kevin Gimpel. 2018. ParaNMT-
50M: Pushing the limits of paraphrastic sentence
embeddings with millions of machine translations.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 451–462. Association for Com-
putational Linguistics.

Jiacheng Xu and Greg Durrett. 2018. Spherical latent
spaces for stable variational autoencoders. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4503–
4513. Association for Computational Linguistics.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. In Proceedings of the 34th Inter-
national Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 3881–3890, International Convention
Centre, Sydney, Australia. PMLR.

A Supplementary Material

A.1 Hyperparameters
For all experiments, the dimension of word em-
beddings and word operator is 50. The dimension
of LSTM is 100. The dimension of Gaussian dis-
tribution for LSTMGAUSSIAN is 100. Mini-batch
size is 100. For LSTM, LSTMGAUSSIAN, and
WLO, we scramble training sentences with a prob-
ability of 0.4. For baseline models, the margin δ is
0.4. For other models, δ is 1. All models are ran-
domly initialized and trained with Adam (Kingma
and Ba, 2014) using learning rate of 0.001.

23

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 24–33
July 9, 2020. c©2020 Association for Computational Linguistics

Word Embeddings as Tuples of Feature Probabilities

Siddharth Bhat1, Alok Debnath2, Souvik Bannerjee2 and Manish Shrivastava2

1Center for Security, Theory & Algorithmic Research (C-STAR)
2Language Technologies Research Center (LTRC)

Kohli Center on Intelligent Systems
International Institute of Information Technology, Hyderabad

{siddharth.bhat, alok.debnath, souvik.bannerjee}@research.iiit.ac.in
m.shrivastava@iiit.ac.in

Abstract

In this paper, we provide an alternate perspec-
tive on word representations, by reinterpreting
the dimensions of the vector space of a word
embedding as a collection of features. In this
reinterpretation, every component of the word
vector is normalized against all the word vec-
tors in the vocabulary. This idea now allows
us to view each vector as an n-tuple (akin
to a fuzzy set), where n is the dimensional-
ity of the word representation and each ele-
ment represents the probability of the word
possessing a feature. Indeed, this representa-
tion enables the use fuzzy set theoretic oper-
ations, such as union, intersection and differ-
ence. Unlike previous attempts, we show that
this representation of words provides a notion
of similarity which is inherently asymmetric
and hence closer to human similarity judge-
ments. We compare the performance of this
representation with various benchmarks, and
explore some of the unique properties includ-
ing function word detection, detection of pol-
ysemous words, and some insight into the in-
terpretability provided by set theoretic opera-
tions.

1 Introduction

Word embedding is one of the most crucial facets
of Natural Language Processing (NLP) research.
Most non-contextualized word representations aim
to provide a distributional view of lexical semantics,
known popularly by the adage ”a word is known by
the company it keeps” (Firth, 1957). Popular imple-
mentations of word embeddings such as word2vec
(Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014) aim to represent words as embeddings
in a vector space. These embeddings are trained
to be oriented such that vectors with higher simi-
larities have higher dot products when normalized.
Some of the most common methods of intrinsic
evaluation of word embeddings include similarity,

analogy and compositionality. While similarity is
computed using the notion of dot product, analogy
and compositionality use vector addition.

However, distributional representations of words
over vector spaces have an inherent lack of inter-
pretablity (Goldberg and Levy, 2014). Further-
more, due to the symmetric nature of the vector
space operations for similarity and analogy, which
are far from human similarity judgements (Tver-
sky, 1977). Other word representations tried to
provide asymmetric notions of similarity in a non-
contextualized setting, including Gaussian embed-
dings (Vilnis and McCallum, 2014) and word sim-
ilarity by dependency (Gawron, 2014). However,
these models could not account for the inherent
compositionality of word embeddings (Mikolov
et al., 2013b). Moreover, while work has been done
on providing entailment for vector space models
by entirely reinterpreting word2vec as an entail-
ment based semantic model (Henderson and Popa,
2016), it requires an external notion of composi-
tionality. Finally, word2vec and GloVe, as such, are
meaning conflation deficient, meaning that a single
word with all its possible meanings is represented
by a single vector (Camacho-Collados and Pile-
hvar, 2018). Sense representation models in non-
contextualized representations such as multi-sense
skip gram, by performing joint clustering for local
word neighbourhood. However, these sense repre-
sentations are conditioned on non-disambiguated
senses in the context and require additional con-
ditioning on the intended senses (Li and Jurafsky,
2015).

In this paper, we aim to answer the question:
Can a single word representation mechanism ac-
count for lexical similarity and analogy, composi-
tionality, lexical entailment and be used to detect
and resolve polysemy? We find that by performing
column-wise normalization of word vectors trained
using the word2vec skip-gram negative sampling

24

regime, we can indeed represent all the above char-
acteristics in a single representation. We interpret a
column wise normalized word representation. We
now treat these representations as fuzzy sets and
can therefore use fuzzy set theoretic operations
such as union, intersection, difference, etc. while
also being able to succinctly use asymmetric no-
tions of similarity such as K-L divergence and cross
entropy. Finally, we show that this representation
can highlight syntactic features such as function
words, use their properties to detect polysemy, and
resolve it qualitatively using the inherent composi-
tionality of this representation.

In order to make these experiments and their
results observable in general, we have provided
the code which can be used to run these opera-
tions. The code can be found at https://github.
com/AlokDebnath/fuzzy_embeddings. The code
also has a working command line interface where
users can perform qualitative assessments on the
set theoretic operations, similarity, analogy and
compositionality which are discussed in the paper.

2 Related Work

The representation of words using logical
paradigms such as fuzzy logic, tensorial representa-
tions and other probabilistic approaches have been
attempted before. In this section, we uncover some
of these representations in detail.

Lee (1999) introduced measures of distributional
similarity to improve the probability estimation for
unseen occurrences. The measure of similarity of
distributional word clusters was based on multiple
measures including Euclidian distance, cosine dis-
tance, Jaccard’s Coefficient, and asymmetric mea-
sures like α-skew divergence.

Bergmair (2011) used a fuzzy set theoretic view
of features associated with word representations.
While these features were not adopted from the
vector space directly, it presents a unique perspec-
tive of entailment chains for reasoning tasks. Their
analysis of inference using fuzzy representations
provides interpretability in reasoning tasks.

Grefenstette (2013) presents a tenosrial calcu-
lus for word embeddings, which is based on com-
positional operators which uses vector representa-
tion of words to create a compositional distribu-
tional model of meaning. By providing a category-
theoretic framework, the model creates an inher-
ently compositional structure based on distribu-
tional word representations. However, they showed

that in this framework, quantifiers could not be
expressed.

Herbelot and Vecchi (2015) refers to a notion of
general formal semantics inferred from a distribu-
tional representation by creating relevant ontology
based on the existing distribution. This mapping is
therefore from a standard distributional model to
a set-theoretic model, where dimensions are predi-
cates and weights are generalised quantifiers.

Emerson and Copestake (2016, 2017) developed
functional distributional semantics, which is a prob-
abilistic framework based on model theory. The
framework relies on differentiating and learning
entities and predicates and their relations, on which
Bayesian inference is performed. This representa-
tion is inherently compositional, context dependent
representation.

3 Background: Fuzzy Sets and Fuzzy
Logic

In this section, we provide a basic background of
fuzzy sets including some fuzzy set operations,
reinterpreting sets as tuples in a universe of finite
elements and showing some set operations. We
also cover the computation of fuzzy entropy as a
Bernoulli random variable.

A fuzzy set is defined as a set with probabilistic
set membership. Therefore, a fuzzy set is denoted
as A = {(x, µA(x)), x ∈ Ω}, where x is an ele-
ment of set A with a probability µA(x) such that
0 ≤ µA ≤ 1, and Ω is the universal set.

If our universe Ω is finite and of cardinality n,
our notion of probabilistic set membership is con-
strained to a maximum n values. Therefore, each
fuzzy set A can be represented as an n-tuple, with
each member of the tupleA[i] being the probability
of the ith member of Ω. We can rewrite a fuzzy
set as an n-tuple A′ = (µA′(x),∀x ∈ Ω), such
that |A′| = |Ω|. In this representation, A[i] is the
probability of the ith member of the tuple A. We
define some common set operations in terms of this
representation as follows.

25

(A ∩B)[i] ≡ A[i]×B[i] (set intersection)
(A ∪B)[i] ≡ A[i] +B[i]−A[i]×B[i] (set union)
(A tB)[i] ≡ max(1,min(0, A[i] +B[i])) (disjoint union)
(¬A)[i] ≡ 1−A[i] (complement)
(A \B)[i] ≡ A[i]−min(A[i], B[i]) (set difference)
(A ⊆ B) ≡ ∀x ∈ Ω : µA(x) ≤ µB(x) (set inclusion)

|A| ≡
∑

i∈Ω

µA(i) (cardinality)

The notion of entropy in fuzzy sets is an extrapo-
lation of Shannon entropy from a single variable on
the entire set. Formally, the fuzzy entropy of a set
S is a measure of the uncertainty of the elements
belonging to the set. The possibility of a member
x belonging to the set S is a random variable XS

i

which is truewith probability (pSi) and false with
probability (1− pSi). Therefore, XS

i is a Bernoulli
random variable. In order to compute the entropy
of a fuzzy set, we sum the entropy values of each
XS

i :

H(A) ≡
∑

i

H(XA
i)

≡
∑

i

−pAi ln pAi − (1− pAi) ln(1− pAi)

≡
∑

i

−A[i] lnA[i]− (1−A[i]) ln(1−A[i])

This formulation will be useful in section 4.4
where we discuss two asymmetric measures of sim-
ilarity, cross-entropy and K-L divergence, which
can be seen as a natural extension of this formula-
tion of fuzzy entropy.

4 Representation and Operations

In this section, we use the mathematical formula-
tion above to reinterpret word embeddings. We
first show how these word representations are cre-
ated, then detail the interpretation of each of the set
operations with some examples. We also look into
some measures of similarity and their formulation
in this framework. All examples in this section
have been taken using the Google News Negative
300 vectors1. We used these gold standard vectors

1https://code.google.com/archive/p/
word2vec/

4.1 Constructing the Tuple of Feature
Probabilities

We start by converting the skip-gram negative sam-
ple word vectors into a tuple of feature probabili-
ties. In order to construct a tuple of features rep-
resentation in Rn, we consider that the projection
of a vector ~v onto a dimension i is a function of
its probability of possessing the feature associated
with that dimension. We compute the conversion
from a word vector to a tuple of features by first
exponentiating the projection of each vector along
each direction, then averaging it over that feature
for the entire vocabulary size, i.e. column-wise.

vexp[i] ≡ exp~v[i]

v̂[i] ≡ vexp[i]∑
w∈VOCAB expwexp[i]

This normalization then produces a tuple of prob-
abilities associated with each feature (correspond-
ing to the dimensions of Rn).

In line with our discussion from 3, this tuple of
probabilities is akin to our representation of a fuzzy
set. Let us consider the word v, and its correspond-
ing n-dimensional word vector ~v. The projection
of ~v on a dimension i normalized (as shown above)
to be interpreted as if this dimension i were a prop-
erty, what is probability that v would possess that
property?

In word2vec, words are distributed in a vector
space of a particular dimensionality. Our represen-
tation attempts to provide some insight into how
the arrangement of vectors provides insight into the
properties they share. We do so by considering a
function of the projection of a word vector onto a
dimension and interpreting as a probability. This
allows us an avenue to explore the relation between
words in relation to the properties they share. It
also allows us access to the entire arsenal of set
operations, which are described below in section
4.2.

4.2 Operations on Feature Probabilities
Now that word vectors can be represented as tuples
of feature probabilities, we can apply fuzzy set the-
oretic operations in order to ascertain the veracity
of the implementation. We show qualitative exam-
ples of the set operations in this subsection, and the
information they capture. Throughout this subsec-
tion, we follow the following notation: For any two
words w1, w2 ∈ VOCAB, ŵ1 and ŵ2 represents

26

R̂ ~R V̂ ~V R̂ ∪ V̂
risen cashew wavelengths yellowish flower
capita risen ultraviolet whitish red
peaked soared purple aquamarine stripes
declined acuff infrared roans flowers
increased rafters yellowish bluish green
rises equalled pigment greenish garlands

Table 1: An example of feature union. Rose is repre-
sented byR and Violet by V . We see here that while
the word rose and violet have different meanings and
senses, the unionR∪V captures the sense of the flower
as well as of colours, which are the senses common to
these two words. We list words closest to the given
word in the table. Closeness measured by cosine simi-
larity for word2vec and cross-entropy-similarity for our
vectors.

those words using our representation, while ~w1 and
~w2 are the word2vec vectors of those words.

Feature Union, Intersection and Difference In
section 3, we showed the formulation of fuzzy set
operations, assuming a finite universe of elements.
As we saw in section 4.1, considering each dimen-
sion as a feature allows us to reinterpret word vec-
tors as tuples of feature probabilities. Therefore,
we can use the fuzzy set theoretic operations on
this reinterpretation of fuzzy sets. For convenience,
these operations have been called feature union,
intersection and difference.

Intuitively, the feature intersection of words ŵ1

and ŵ2 should give us that word ŵ1∩2 which has
the features common between the two words; an
example of which is given in table 1. Similarly,
the feature union ŵ1∪2 ' ŵ1 ∪ ŵ2 which has the
properties of both the words, normalized for those
properties which are common between the two,
and feature difference ŵ1\2 ' ŵ1 \ ŵ2 is that word
which is similar to w1 without the features of w2.
Examples of feature intersection and feature differ-
ence are shown in table 2 and 3 respectively.

While feature union does not seem to have a
word2vec analogue, we consider that feature inter-
section is analogous to vector addition, and feature
difference as analogous to vector difference.

Feature Inclusion Feature inclusion is based on
the subset relation of fuzzy sets. We aim to capture
feature inclusion by determining if there exist two
words w1 and w2 such that all the feature probabil-
ities of ŵ1 are less than that of ŵ2, then ŵ2 ⊆ ŵ1.
We find that feature inclusion is closely linked to
hyponymy, which we will show in 5.3.

Ĉ P̂ Ĉ ∩ P̂
hardware vested cpu
graphics purchasing hardware
multitasking capita powerpc
console exercise machine
firewire parity multitasking
mainframe veto microcode

~C ~P ~C + ~P
bioses centralize expandability
scummvm veto writable
hardware decembrist cpcs
imovie exercised reconfigure
writable redistribution backplane
console devolving oem

Table 2: An example of feature intersection with the
possible word2vec analogue (vector addition). The
word computer is represented by C and power by
P . Note that power is also a decent example of poly-
semy, and we see that in the context of computers, the
connotations of hardware and the CPU are the most ac-
cessible. We list words closest to the given word in
the table. Closeness measured by cosine similarity for
word2vec and cross-entropy-similarity for our vectors.

4.3 Interpreting Entropy

For a word represented using a tuple of feature
probabilities, the notion of entropy is strongly tied
to the notion of certainty (Xuecheng, 1992), i.e.
with what certainty does this word possess or not
possess this set of features? Formally, the fuzzy
entropy of a set S is a measure of the uncertainty
of elements belonging to the set. The possibility
a member xi belonging to S is a random variable
XS

i , which is true with probability pSi , false
with probability (1− pSi). Thus, XS

i is a Bernoulli
random variable. So, to measure the fuzzy entropy
of a set, we add up the entropy values of each of
the XS

i (MacKay and Mac Kay, 2003).
Intuitively, words with the highest entropy are

those which have features which are equally likely
to belong to them and to their complement, i.e.
∀i ∈ Ω, A[i] ' 1 − A[i]. So words with high
fuzzy entropy can occur only in two scenarios: (1)
The words occur with very low frequency so their
random initialization remained, or (2) The words
occur around so many different word groups that
their corresponding fuzzy sets have some probabil-
ity of possessing most of the features.

Therefore, our representation of words as tuples
of features can be used to isolate function words
better than the more commonly considered notion
of simply using frequency, as it identifies the in-
formation theoretic distribution of features based
on the context the function word occurs in. Table

27

F̂ B̂ F̂ \ B̂
french isles communaut
english colonial aise
france subcontinent langue
german cinema monet
spanish boer dictionnaire
british canadians gascon

~F ~B ~F − ~B
french scottish ranjit
english american privatised
france thatcherism tardis
german netherlands molloy
spanish hillier isaacs
british cukcs raj

Table 3: An example of feature difference, along
with a possible word2vec analogue (vector difference).
French is represented by F and British by B. We
see here that set difference capture french words from
the dataset, while there does not seem to be any such
correlation in the vector difference. We list words clos-
est to the given word in the table. Closeness measured
by cosine similarity for word2vec and cross-entropy-
similarity for our vectors.

4 provides the top 15 function words by entropy,
and the correspodingly ranked words by frequency.
We see that frequency is clearly not a good enough
measure to identify function words.

4.4 Similarity Measures

One of the most important notions in presenting a
distributional word representation is its ability to
capture similarity (Van der Plas and Tiedemann,
2006). Since we use and modify vector based word
representations, we aim to preserve the ”distribu-
tion” of the vector embeddings, while providing a
more robust interpretation of similarity measures.
With respect to similarity, we make two strong
claims:

1. Representing words as a tuple of feature prob-
abilities lends us an inherent notion of similar-
ity. Feature difference provides this notion, as
it estimates the difference between two words
along each feature probability.

2. Our representation allows for an easy adoption
of known similarity measures such as K-L
divergence and cross-entropy.

Note that feature difference (based on fuzzy set
difference), K-L divergence and cross-entropy are
all asymmetric measures of similarity. As Ne-
matzadeh et al. (2017) points out, human similarity
judgements are inherently asymmetric in nature.

We would like to point out that while most meth-
ods of introducing asymmetric similarity measures
in word2vec account for both the focus and context
vector Asr et al. (2018) and provide the asymme-
try by querying on this combination of focus and
context representations of each word. Our repre-
sentation, on the other hand, uses only the focus
representations (which are a part of the word rep-
resentations used for downstream task as well as
any other intrinsic evaluation), and still provides an
innately asymmetric notion of similarity.

K-L Divergence From a fuzzy set perspective,
we measure similarity as an overlap of features.
For this purpose, we exploit the notion of fuzzy
information theory by comparing how close the
probability distributions of the similar words are
using a standard measure, Kullback-Leibler (K-
L) divergence. K-L divergence is an asymmetric
measure of similarity.

The K-L divergence of a distribution P from an-
other distribution Q is defined in terms of loss of
compression. Given data d which follows distribu-
tion P , the extra bits need to store it under the false
assumption that the data d follows distribution Q
is the K-L divergence between the distributions P
and Q. In the fuzzy case, we can compute the KL
divergence as:

D(S || T) ≡ D
(
XS

i

∣∣∣∣
∣∣∣∣ X

T
i

)
=
∑

i

pSi log
(
pSi /p

T
i

)

We see in table 5 some qualitative examples of
how K-L divergence shows the relation between
two words (or phrases when composed using fea-
ture intersection as in the case of north korea).
We exemplify Nematzadeh et al. (2017)’s human
annotator judgement of the distance between China
and North Korea, where human annotators consid-
ered “North Korea” to be very similar to “China,”
while the reverse relationship was rated as signif-
icantly less strong (“China” is not very similar to
”North Korea”).

Cross Entropy We also calculate the cross en-
tropy between two words, as it can be used to de-
termine the entropy associated with the similarity
between two words. Ideally, by determining the
”spread” of the similarity of features between two
words, we can determine the features that allow two
words to be similar, allowing a more interpretable
notion of feature-wise relation.

28

and the in one which to however two for eight
this of of in the zero to is a for
as and only a also nine it as but s

Table 4: On the left: Top 15 words with highest entropy with frequency ≥ 100 (note that all of them are function
words). On the right: Top 15 words with the highest frequency. The non-function words have been emphasized for
comparison.

Example 1 D(ganges || delta) 6.3105
D(delta || ganges) 6.3040

Example 2 D(north ∩ korea || china) 1.02923
D(china || north ∩ korea) 10.60665

Table 5: Examples of KL-divergence as an asymmetric
measure of similarity. Lower is closer. We see here that
the evaluation of North Korea as a concept being closer
to China than vice versa can be observed by the use of
K-L Divergence on column-wise normalization.

The cross-entropy of two distributions P and Q
is a sum of the entropy of P and the K-L divergence
between P and Q. In this sense, in captures both
the uncertainty in P , as well as the distance from P
to Q, to give us a general sense of the information
theoretic difference between the concepts of P and
Q. We use a generalized version of cross-entropy
to fuzzy sets (Li, 2015), which is:

H(S, T) ≡
∑

i

H(XS
i) +D(XS

i || XT
i)

Feature representations which on comparison
provide high cross entropy imply a more distributed
feature space. Therefore, provided the right words
to compute cross entropy, it could be possible to
extract various features common (or associated)
with a large group of words, lending some insight
into how a single surface form (and its representa-
tion) can capture the distribution associated with
different senses. Here, we use cross-entropy as
a measure of polysemy, and isolate polysemous
words based on context. We provide an example of
capturing polysemy using composition by feature
intersection in table 6.

We can see that the words which are most similar
to noble are a combination of words from many
senses, which provides some perspective into its
distribution, . Indeed, it has an entropy value of
6.27652.

4.5 Constructing Analogy
Finally, we construct the notion of analogy in our
representation of a word as a tuple of features.
Word analogy is usually represented as a problem

2For reference, the word the has an entropy of 6.2934.

N̂ M̂ Ĝ N̂ ∩ M̂ N̂ ∩ Ĝ
nobility metal bad fusible good
isotope fusible manners unreactive dharma
fujwara ductility happiness metalloids morals
feudal with evil ductility virtue
clan alnico excellent heavy righteous

~N ~M ~G ~N + ~M ~N + ~G
noblest trivalent bad fusible gracious
auctoritas carbides natured metals virtuous
abies metallic humoured sulfides believeth
eightfold corrodes selfless finntroll savages
vojt alloying gracious rhodium hedonist

Table 6: Polysemy of the word noble, in the context
of the words good and metal. noble is represented
by N , metal by M and good by G. We also provide
the word2vec analogues of the same.

where given a pairing (a : b), and a prior x, we are
asked to compute an unknown word y? such that
a : b :: x : y?. In the vector space model, analogy
is computed based on vector distances. We find that
this training mechanism does not have a consistent
interpretation beyond evaluation. This is because
normalization of vectors performed only during
inference, not during training. Thus, computing
analogy in terms of vector distances provides little
insight into the distribution of vectors or to the no-
tion of the length of the word vectors, which seems
to be essential to analogy computation using vector
operations

In using a fuzzy set theoretic representation, vec-
tor projections are inherently normalized, making
them feature dense. This allows us to compute
analogies much better in lower dimension spaces.
We consider analogy to be an operation involving
union and set difference. Word analogy is com-
puted as follows:

a : b :: x : y?

y? = b− a+ x =⇒ y? = (b+ x)− a
y = (b t x) \ a (Set-theoretic interpretation)

Notice that this form of word analogy can be ”de-
rived” from the vector formula by re-arrangement.
We use non-disjoint set union so that the com-
mon features are not eliminated, but the values

29

Word 1 Word 2 Word 3 word2vec Our representation
bacteria tuberculosis virus polio hiv

cold freezing hot evaporates boiling
ds nintendo dreamcast playstation sega

pool billiards karate taekwondo judo

Table 7: Examples of analogy compared to the analogy
in word2vec. We see here that the comparisons con-
structed by feature representations are similar to those
given by the standard word vectors.

are clipped at (0, 1] so that the fuzzy representa-
tion is consistent. Analogical reasoning is based
on the common features between the word repre-
sentations, and conflates multiple types of relations
such as synonymy, hypernymy and causal relations
(Chen et al., 2017). Using fuzzy set theoretic rep-
resentations, we can also provide a context for the
analogy, effectively reconstructing analogous rea-
soning to account for the type of relation from a
lexical semantic perspective.

Some examples of word analogy based are pre-
sented in table 7.

5 Experiments and Results

In this section, we present our experiments and
their results in various domains including similar-
ity, analogy, function word detection, polysemy
detection, lexical entailment and compositionality.
All the experiments have been conducted on estab-
lished datasets.

5.1 Similarity and Analogy

Similarity and analogy are the most popular intrin-
sic evaluation mechanisms for word representations
(Mikolov et al., 2013a). Therefore, to evaluate our
representations, the first tasks we show are similar-
ity and analogy. For similarity computations, we
use the SimLex corpus (Hill et al., 2015) for train-
ing and testing at different dimensions For word
analogy, we use the MSR Word Relatedness Test
(Mikolov et al., 2013c). We compare it to the vector
representation of words for different dimensions.

5.1.1 Similarity
Our scores our compared to the word2vec scores
of similarity using the Spearman rank correlation
coefficient (Spearman, 1987), which is a ratio of the
covariances and standard deviations of the inputs
being compared.

As shown in table 8, using our representation,
similarity is slightly better represented according to
the SimLex corpus. We show similarity on both the
asymmetric measures of similarity for our repre-

Dims. word2vec Our Representation
K-L Divergence Cross-Entropy

20 0.2478 0.2690 0.2744
50 0.2916 0.2966 0.2981

100 0.2960 0.3124 0.3206
200 0.3259 0.3253 0.3298

Table 8: Similarity scores on the SimLex-999 dataset
(Hill et al., 2015), for various dimension sizes (Dims.).
The scores are provided according to the Spearman Cor-
relation to incorporate higher precision.

Category word2vec Our representation
50 100 50 100

Capital Common Countries 21.94 37.55 39.13 47.23
Capital World 13.02 20.10 27.30 26.54
Currency 12.24 18.60 25.27 24.90
City-State 10.38 16.70 23.24 23.51
Family 10.61 17.34 23.67 23.88

Adjective-Adverb
Syntactic 4.74 3.23 7.26 3.83
Semantic 10.61 17.34 23.67 23.88
Overall 9.92 15.68 21.73 21.52

Opposite
Syntactic 4.06 3.66 7.61 4.92
Semantic 10.61 17.34 23.67 23.88
Overall 9.36 14.73 20.60 20.26

Comparative
Syntactic 8.86 12.63 16.88 15.39
Semantic 10.61 17.34 23.67 23.88
Overall 10.10 15.96 21.67 21.39

Superlative
Syntactic 7.59 11.30 14.32 13.36
Semantic 10.61 17.34 23.67 23.88
Overall 9.54 15.20 20.35 20.15

Present-Participle
Syntactic 7.51 10.96 14.31 13.14
Semantic 10.61 17.34 23.67 23.88
Overall 9.34 14.73 19.84 19.49

Nationality
Syntactic 12.51 19.07 21.64 21.96
Semantic 10.61 17.34 23.67 23.88
Overall 11.51 18.16 22.71 22.97

Past Tense
Syntactic 11.65 17.09 20.43 19.76
Semantic 10.61 17.34 23.67 23.88
Overall 11.16 17.21 21.96 27.72

Plural
Syntactic 11.76 17.23 20.53 19.89
Semantic 10.61 17.34 23.67 23.88
Overall 11.26 17.28 21.90 21.64

Plural Verbs
Syntactic 11.36 16.60 19.88 19.46
Semantic 10.61 17.34 23.67 23.88
Overall 11.05 16.91 21.46 21.30

Table 9: Comparison of Analogies between word2vec
and our representation for 50 and 100 dimensions
(Dims.). For the first five, only overall accuracy is
shown as overall accuracy is the same as semantic ac-
curacy (as there is no syntactic accuracy measure). For
all the others, we present, syntactic, semantic and over-
all accuracy as well. We see here that we outperform
word2vec on every single metric.

sentation, K-L divergence as well as cross-entropy.
We see that cross-entropy performs better than K-L
Divergence. While the similarity scores are gen-
erally higher, we see a reduction in the degree of
similarity beyond 100 dimension vectors (features).

5.1.2 Analogy
For analogy, we see that our model outperforms
word2vec at both 50 and 100 dimensions. We
see that at lower dimension sizes, our normalized
feature representation captures significantly more
syntactic and semantic information than its vector
counterpart. We conjecture that this can primarily
be attributed to the fact that constructing feature
probabilities provides more information about the

30

top n words word2vec Our Representation
15 10 15
30 21 30
50 39 47

Table 10: Function word detection using entropy (in
our representation) and by frequency in word2vec. We
see that we consistently detect more function words
than word2vec, based on the 176 function word list
released by Nation (2016). The metric is number of
words, i.e. the number of words chosen by frequency
for word2vec and entropy for our representation

common (and distinct) ”concepts” which are shared
between two words.

Since feature representations are inherently
fuzzy sets, lower dimension sizes provide a more
reliable probability distribution, which becomes
more and more sparse as the dimensionality of the
vectors increases (i.e. number of features rise).
Therefore, we notice that the increase in feature
probabilities is a lot more for 50 dimensions than
it is for 100.

5.2 Function Word Detection

As mentioned in section 4.3, we use entropy as a
measure of detecting function words for the stan-
dard GoogleNews-300 negative sampling dataset3.
In order to quantitatively evaluate the detection of
function words, we choose the top n words in our
representation ordered by entropy with a frequency
≥ 100, and compare it to the top n words ordered
by frequency from word2vec; n being 15, 30 and
50. We compare the number of function words
in both in table 10. The list of function words is
derived from Nation (2016).

5.3 Compositionality

Finally, we evaluate the compositionality of word
embeddings. Mikolov et al. (2013b) claims that
word embeddings in vector spaces possess additive
compositionality, i.e. by vector addition, seman-
tic phrases such as compounds can be well repre-
sented. We claim that our representation in fact
captures the semantics of phrases by performing a
literal combination of the features of the head and
modifier word, therefore providing a more robust
representation of phrases.

We use the English nominal compound phrases
from Ramisch et al. (2016). An initial set of experi-
ments on nominal compounds using word2vec have
been done before (Cordeiro et al., 2016), where it

3https://code.google.com/archive/p/word2vec/

Dims. Metric word2vec Our Representation

50 Spearman 0.3946 0.4117
Pearson 0.4058 0.4081

100 Spearman 0.4646 0.4912
Pearson 0.4457 0.4803

200 Spearman 0.4479 0.4549
Pearson 0.4163 0.4091

Table 11: Results for compositionality of word embed-
dings for nominal compounds for various dimensions
(Dims.). We see that almost across the board, we per-
form better, however, for the Pearson correlation met-
ric, at 200 dimensions, we find that word2vec has a
better representation of rank by frequency for nominal
compounds.

was shown to be a fairly difficult task for modern
non-contextual word embeddings. In order to anal-
yse nominal compounds, we adjust our similarity
metric to account for asymmetry in the similarity
between the head-word and the modifier, and vice
versa. We report performance on two metrics, the
Spearman correlation (Spearman, 1987) and Pear-
son correlation (Pearson, 1920).

The results are shown in table 11. The difference
in scores for the Pearson and Spearman rank cor-
relation show that word2vec at higher dimensions
better represents the rank of words (by frequency),
but at lower dimensions, the feature probability
representation has a better analysis of both rank
by frequency, and its correlation with similarity of
words with a nominal compound. Despite this, we
show a higher Spearman correlation coefficient at
200 dimesions as well, as we capture non-linear
relations.

5.4 Dimensionality Analysis and Feature
Representations

In this subsection, we provide some interpretation
of the results above, and examine the effect of scal-
ing dimensions to the feature representation. As
seen here, the evaluation has been done on smaller
dimension sizes of 50 and 100, and we see that
our representation can be used for a slightly larger
range of tasks from the perspective of intrinsic eval-
uations. However, the results of quantitative anal-
ogy for higher dimensions have been observed to
be lower for fuzzy representations rather than the
word2vec negative-sampling word vectors.

We see that the representation we propose does
not scale well as dimensions increase. This is be-
cause our representation relies on the distribution
of probability mass per feature (dimension) across
all the words. Therefore, increasing the dimension-

31

ality of the word vectors used makes the represen-
tation that much more sparse.

6 Conclusion

In this paper, we presented a reinterpretation of
distributional semantics. We performed a column-
wise normalization on word vectors, such that each
value in this normalized representation represented
the probability of the word possessing a feature that
corresponded to each dimension. This provides us
a representation of each word as a tuple of feature
probabilities. We find that this representation can
be seen as a fuzzy set, with each probability being
the function of the projection of the original word
vector on a dimension.

Considering word vectors as fuzzy sets allows
us access to set operations such as union, inter-
section and difference. In our modification, these
operations provide the product, disjoint sum and
difference of the word representations, feature wise.
Using qualitative examples, we show that our rep-
resentation naturally captures an asymmetric no-
tion of similarity using feature difference, from
which known asymmetric measures can be easily
constructed, such as Cross Entropy and K-L Diver-
gence.

We qualitatively show how our model accounts
for polysemy, while showing quantitative proofs
of our representation’s performance at lower di-
mensions in similarity, analogy, compositionality
and function word detection. We hypothesize that
lower dimensions are more suited for our represen-
tation as sparsity increases with higher dimensions,
so the significance of feature probabilities reduces.
This sparsity causes a diffusion of the probabilities
across multiple features.

Through this work, we aim to provide some
insights into interpreting word representations by
showing one possible perspective and explanation
of the lengths and projections of word embeddings
in the vector space. These feature representations
can be adapted for basic neural models, allowing
the use of feature based representations at lower
dimensions for downstream tasks.

Acknowledgements

We would like to thank the anonymous reviewers
for their time and comments which have helped
make this paper and its contribution better.

References
Fatemeh Torabi Asr, Robert Zinkov, and Michael Jones.

2018. Querying word embeddings for similarity and
relatedness. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 675–
684.

Richard Bergmair. 2011. Monte Carlo Semantics: Ro-
bust inference and logical pattern processing with
Natural Language text. Ph.D. thesis, University of
Cambridge.

Jose Camacho-Collados and Mohammad Taher Pile-
hvar. 2018. From word to sense embeddings: A sur-
vey on vector representations of meaning. Journal
of Artificial Intelligence Research, 63:743–788.

Dawn Chen, Joshua C Peterson, and Thomas L Grif-
fiths. 2017. Evaluating vector-space models of anal-
ogy. arXiv preprint arXiv:1705.04416.

Silvio Cordeiro, Carlos Ramisch, Marco Idiart, and
Aline Villavicencio. 2016. Predicting the composi-
tionality of nominal compounds: Giving word em-
beddings a hard time. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1986–
1997, Berlin, Germany. Association for Computa-
tional Linguistics.

Guy Emerson and Ann Copestake. 2016. Functional
distributional semantics. In Proceedings of the
1st Workshop on Representation Learning for NLP,
pages 40–52.

Guy Emerson and Ann Copestake. 2017. Seman-
tic composition via probabilistic model theory. In
IWCS 2017-12th International Conference on Com-
putational Semantics-Long papers.

John R Firth. 1957. A synopsis of linguistic theory,
1930-1955. Studies in linguistic analysis.

Jean Mark Gawron. 2014. Improving sparse word sim-
ilarity models with asymmetric measures. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 296–301.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Edward Grefenstette. 2013. Towards a formal distri-
butional semantics: Simulating logical calculi with
tensors. arXiv preprint arXiv:1304.5823.

James Henderson and Diana Nicoleta Popa. 2016. A
vector space for distributional semantics for entail-
ment. arXiv preprint arXiv:1607.03780.

32

Aurélie Herbelot and Eva Maria Vecchi. 2015. Build-
ing a shared world: Mapping distributional to model-
theoretic semantic spaces. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 22–32.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Lillian Lee. 1999. Measures of distributional similarity.
In Proceedings of the 37th Annual Meeting of the As-
sociation for Computational Linguistics, pages 25–
32.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
arXiv preprint arXiv:1506.01070.

Xiang Li. 2015. Fuzzy cross-entropy. Journal of Un-
certainty Analysis and Applications, 3(1):2.

David JC MacKay and David JC Mac Kay. 2003. In-
formation theory, inference and learning algorithms.
Cambridge university press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
conference of the north american chapter of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 746–751.

Ian Stephen Paul Nation. 2016. Making and using
word lists for language learning and testing. John
Benjamins Publishing Company.

Aida Nematzadeh, Stephan C Meylan, and Thomas L
Griffiths. 2017. Evaluating vector-space models of
word representation, or, the unreasonable effective-
ness of counting words near other words. In CogSci.

Karl Pearson. 1920. Notes on the history of correlation.
Biometrika, 13(1):25–45.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Lonneke Van der Plas and Jörg Tiedemann. 2006. Find-
ing synonyms using automatic word alignment and

measures of distributional similarity. In Proceed-
ings of the COLING/ACL on Main conference poster
sessions, pages 866–873. Association for Computa-
tional Linguistics.

Carlos Ramisch, Silvio Cordeiro, Leonardo Zilio,
Marco Idiart, and Aline Villavicencio. 2016. How
naked is the naked truth? a multilingual lexicon of
nominal compound compositionality. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 156–161, Berlin, Germany. Association
for Computational Linguistics.

Charles Spearman. 1987. The proof and measurement
of association between two things. The American
journal of psychology, 100(3/4):441–471.

Amos Tversky. 1977. Features of similarity. Psycho-
logical review, 84(4):327.

Luke Vilnis and Andrew McCallum. 2014. Word rep-
resentations via gaussian embedding. arXiv preprint
arXiv:1412.6623.

Liu Xuecheng. 1992. Entropy, distance measure and
similarity measure of fuzzy sets and their relations.
Fuzzy sets and systems, 52(3):305–318.

33

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 34–38
July 9, 2020. c©2020 Association for Computational Linguistics

Compositionality and Capacity in Emergent Languages
Abhinav Gupta∗

MILA
abhinavg@nyu.edu

Cinjon Resnick∗
New York University
cinjon@nyu.edu

Jakob Foerster
Facebook AI Research

jnf@fb.com

Andrew M. Dai
Google AI

adai@google.com

Kyunghyun Cho
New York University

Facebook AI Research
kyunghyun.cho@nyu.edu

Abstract

Recent works have discussed the extent to
which emergent languages can exhibit prop-
erties of natural languages particularly learn-
ing compositionality. In this paper, we investi-
gate the learning biases that affect the efficacy
and compositionality in multi-agent communi-
cation in addition to the communicative band-
width. Our foremost contribution is to explore
how the capacity of a neural network impacts
its ability to learn a compositional language.
We additionally introduce a set of evaluation
metrics with which we analyze the learned lan-
guages. Our hypothesis is that there should be
a specific range of model capacity and channel
bandwidth that induces compositional struc-
ture in the resulting language and consequently
encourages systematic generalization. While
we empirically see evidence for the bottom of
this range, we curiously do not find evidence
for the top part of the range and believe that
this is an open question for the community.

1 Introduction

Compositional language learning in the context
of multi agent emergent communication has been
extensively studied (Foerster et al., 2016; Lazari-
dou et al., 2017; Baroni, 2020). These works have
found that while most emergent languages do not
tend to be compositional, they can be guided to-
wards this attribute through artificial task-specific
constraints (Harding Graesser et al., 2019; Lee
et al., 2018; Gupta* et al., 2020).

In this paper, we focus on how a neural network,
specifically a generative one, can learn a compo-
sitional language. Moreover, we ask how this can
occur without task-specific constraints. To accom-
plish this, we first define what is a language and
what we mean by compositionality. In tandem, we
introduce precision and recall, two metrics that
help us measure how well a generative model at

∗These two authors contributed equally.

large has learned a grammar from a finite set of
training instances. We then use a variational au-
toencoder with a discrete sequence bottleneck to
investigate how well the model learns a compo-
sitional language, in addition to what affects that
learning. This allows us to derive residual entropy,
a third metric that reliably measures composition-
ality in our particular environment. We use this
metric to cross-validate precision and recall.

Our paper is most similar to Kottur et al. (2017),
which showed that compositional language arose
only when certain constraints on the agents are sat-
isfied. While the constraints they examined were
either making their models memoryless or having
a minimal vocabulary in the language, we hypoth-
esized about the importance for agents to have
small capacity relative to the number of concepts
to which they are exposed. Each of Verhoef et al.
(2016); Kirby et al. (2015); Zaslavsky et al. (2018)
examine the trade-off between expression and com-
pression in both emergent and natural languages,
in addition to how that trade-off affects the learners.
We differ in that we target a specific aspect of the
agent (capacity) and ask how that aspect biases the
learning.

2 Compositional Language and Learning

We consider the problem of learning an underlying
language L? from a finite set of training strings
randomly drawn from it: D = {s|s ∼ G?} where
G? is the minimal length generator associated with
L?. We assume |D| � |L?| and our goal is to
use D to learn a language L that approximates L?

as well as possible. We know that there exists an
equivalent generator G for L, and so our problem
becomes estimating a generator from this finite set
rather than reconstructing an entire set of strings
belonging to the original language L∗. We cast
the problem of estimating a generator G as density
modeling, in which case the goal is to estimate a
distribution p(s). Sampling from p(s) is equivalent

34

Figure 1: The grid above shows five shapes and five
colors. Agents with a non-compositional language can
use this shared map to communicate "Red Circle" with
only dlog2 52e = 5 bits. If they instead used a composi-
tional language, it would require dlog2 5e = 3 bits for
each concept for a total of 6 bits to convey the string.
On the other hand, the agent needs 25 memory slots to
store the concepts in the former case but only 10 slots
in the compositional case. This trade-off exemplifies
the motivation for our investigation because it suggests
that a key driver of compositionality in language is the
capacity of an agent relative to the total number of ob-
jects in its environment.

to generating a string from the generator G.

Evaluation metrics When the language was
learned perfectly, any string sampled from the
learned distribution p(s) must belong to L?. Also,
any string in L? must be assigned a non-zero prob-
ability under p(s). Otherwise, the set of strings
generated from this generator, implicitly defined
via p(s), is not identical to the original language
L?. This observation leads to two metrics for eval-
uating the quality of the estimated language with
the distribution p(s), precision and recall:

Precision(L?, p) =
1

|L?|
∑

s∈L
I(s ∈ L?) (1)

Recall(L?, p) =
∑

s∈L?

log p(s) (2)

where I(x) is the indicator function. These metrics
are designed to be fit for any compositional struc-
ture rather than one-off evaluation approaches.

Our setup We simplify and assume that each of
the characters in the string s ∈ L? correspond to
underlying concepts. While the inputs are ordered
according to the sequential concepts, our model
encodes them using a bag of words (BoW) repre-
sentation.

The speaker fθ is parameterized using a recur-
rent policy which receives the sequence of concate-
nated one-hot input tokens of s and converts each of

them to an embedding. It then runs an LSTM non-
autoregressively for l timesteps taking the flattened
representation of the input embeddings as its input
and linearly projecting each result to a probability
distribution over {0, 1}. This results in a sequen-
tial Bernoulli distribution over l latent variables:
fθ(z|s) =

∏l
t=1 p(zt|s; θ). From this distribution,

we can sample a latent string z = (z1, . . . , zl).
The listener gφ receives z and uses a BoW rep-

resentation to encode them into its own embed-
ding space. Taking the flattened representation of
these embeddings as input, we run an LSTM for
|N | time steps, each time outputting a probability
distribution over the full alphabet Σ: gφ(s|z) =∏|N |
j=1 p(sj |z;φ).
To train the whole system end-to-end

(Sukhbaatar et al., 2016; Mordatch and Abbeel,
2018) via backpropogation, we apply a continuous
approximation to zt that depends on a learned tem-
perature parameter τ . We use the ‘straight-through‘
version of Gumbel-Softmax (Jang et al., 2017;
Maddison et al., 2017) to convert the continuous
distribution to a discrete distribution for each zt.
The final sequence of one hot vectors encoding z
is our message, which is passed to the listener gφ.

The prior pλ encodes the message z using a BoW
representation. It gives the probability of z accord-
ing to the prior (binary) distribution for each zt and
is defined as: pλ(z) =

∏l
t=1 p(zt|λ).

This can be used both to compute the prior proba-
bility of a latent string and also to efficiently sample
from pλ using ancestral sampling. Penalizing the
KL divergence between the speaker’s distribution
and the prior distribution encourages the emergent
protocol to use latent strings that are as diverse as
possible.

Hypotheses on compositionality Under this
framework for language learning, we can make
the following observations. If the length of the
latent sequence l < log2 |L?|, it is impossible for
the model to avoid the failure case because there
will be |L?| − 2l strings in L? that cannot be gener-
ated from the trained model. Consequently, recall
cannot be maximized. However, this may be dif-
ficult to check using the sample-based estimate as
the chance of sampling s ∈ L?\

∫
gφ(s|z)pλ(z)dz

decreases proportionally to the size of L?. This is
especially true when the gap |L?| − 2l is narrow.

When l ≥ log2 |L?|, there are three cases. The
first is when there are not enough parameters θ to
learn the underlying compositional grammar, in

35

(a) Precision (b) Recall (c) Entropy

Figure 2: Histograms showing precision, recall (defined in § 2), and entropy (defined in § 3) over the test set. We
show results for bits 19 to 25 and parameter range 72k to 1534k (details in § 3). Each bit/parameter combination
is trained for 10 seeds over 200k steps.

which case L? cannot be learned. The second case
is when the number of parameters |θ| is greater
than that required to store all the training strings,
i.e., |θ| = O(l|D|). Here, it is highly likely for the
model to overfit as it can map each training string
with a unique latent string without having to learn
any of L?’s compositional structure. Lastly, when
the number of parameters lies in between these two
poles, we hypothesize that the model will capture
the underlying compositional structure and exhibit
systematic generalization (Bahdanau et al., 2019).

3 Experiments

Models and Learning The task is to communi-
cate 6 concepts, each of which have 10 possible
values with a total dataset size of 106. We train the
proposed VAE We gradually decrease the number
of LSTM units from the base model by a factor α ∈
(0, 1]. This is how we control the number of param-
eters (|θ| and |φ|). We obtain seven models from
each of these by varying the length of the latent se-
quence l from {19, 20, 21, 22, 23, 24, 25}. These
were chosen because we both wanted to show a
range of bits and because we need at least 20 bits
to cover the 106 strings in L∗ (dlog2 106e = 20).

Evaluation: Residual Entropy Our setup al-
lows us to design a metric by which we can check
the compositionality of the learned language L by
examining how the underlying concepts are de-
scribed by a string. Let p be a sequence of par-
titions of {1, 2, . . . , l}. We define the degree of
compositionality as the ratio between the variabil-

ity of each concept Ci and the variability explained
by a latent subsequence z[pi] indexed by an asso-
ciated partition pi. More formally, the degree of
compositionality given the partition sequence p is
defined as a residual entropy

re(p, L, L?) =
1

|N |

|N |∑

i=1

HL(Ci|z[pi])/HL?(Ci)

where there are |N | concepts by the definition of
our language. When each term inside the sum-
mation is close to zero, it implies that a subse-
quence z[pi] explains most of the variability of
the specific concept Ci, and we consider this sit-
uation compositional. The residual entropy of a
trained model is then the smallest re(p) over all
possible sequences of partitions P and spans from
0 (compositional) to 1 (non-compositional) where
re(L,L?) = minp∈P re(p, L, L?).

3.1 Results
Fig. 3 shows the main findings of our research. In
plot (a), we see the parameter counts at the thresh-
old. Below these values, the model cannot solve
the task but above these, it can solve it. Further, ob-
serve the curve delineated by the lower left corner
of the shift from unsuccessful to successful models.
This inverse relationship between bits and parame-
ters shows that the more parameters in the model,
the fewer bits it needs to solve the task. Note how-
ever that it could only solve the task with fewer
bits if it was forming a non-compositional code,
suggesting that higher parameter models are able
to do so while lower parameter ones cannot.

36

Figure 3: Main results showing best and worst performances of the proposed metrics over 10 seeds. See Section
3.1 for detailed analysis. Panels (a) and (f) show the accuracy of the training data, (b) and (d) show entropy, (e)
and (g) show recall over the test data, and (c) plots the max difference in accuracy between training and test.

Observe further that all of our models above the
minimum threshold (72,400) have the capacity to
learn a compositional code. This is shown by the
perfect training accuracy achieved by all of those
models in plot (a) for 24 bits and by the perfect
compositionality (zero entropy) in plot (b) for 24
bits. Together with the above, this validates that
learning compositional codes requires less capac-
ity than learning non-compositional codes. Plot
(c) confirms our hypothesis that large models can
memorize the entire dataset. The 24 bit model with
971,400 parameters achieves a train accuracy of 1.0
and a validation accuracy of 0.0. Cross-validating
this with plots (d) and (g), we find that a member of
the same parameter class is non-compositional and
that there is one that achieves unusually low recall.
We verified that these are all the same seed, which
shows that the agents in this model are memorizing
the dataset.

Plots (b) and (e) show that our compositionality
metrics pass two sanity checks - high recall and per-
fect entropy can only be achieved with a channel
that is sufficiently large (i.e. 24 bits) to allow for a
compositional latent representation. Plot (f) shows
that while the capacity does not affect the ability to
learn a compositional language across the model
range, it does change the learnability. Here we find
that smaller models can fail to solve the task for
any bandwidth, which coincides with literature sug-
gesting a link between overparameterization and
learnability (Li and Liang, 2018; Du et al., 2019).
Finally, as expected, we find that no model learns
to solve the task with < 20 bits, validating that the
minimum required number of bits for learning a
language of size |L| is dlog(|L|)e. We also see that
no model learns to solve it for 20 bits, which is
likely due to optimization difficulties.

We first confirm the effectiveness of training by
observing that almost all the models achieve per-
fect precision (Fig. 2 (a)), implying that L ⊆ L?,

where L is the language learned by the model. This
occurs even with our learning which encouraging
the model to capture all training strings rather than
to focus on only a few training strings. A natural
follow-up question is how large is L?\L. We mea-
sure this with recall in Fig. 2 (b), which shows a
clear phase transition according to the model ca-
pacity when l ≥ 22. This agrees with what we saw
in Fig. 3 and is equivalent to saying |L?\L| � 0
at a value that is close to our predicted boundary
of l = dlog2 106e = 20. We attribute this gap to
the difficulty in learning a perfectly-parameterized
neural network.

These results clearly confirm the first part of our
hypothesis - the latent sequence length must be at
least as large as log |L?|. They also confirm that
there is a lowerbound on the number of parameters
over which this model can successfully learn the
underlying language. We have not been able to ver-
ify the upper bound in our experiments, which may
require either a more (computationally) extensive
set of experiments with even more parameters or
a better theoretical understanding of the inherent
biases behind learning with this architecture, such
as from recent work on overparameterized models
(Belkin et al., 2019; Nakkiran et al., 2020).

4 Conclusion

This paper opens the door for a vast amount of
follow-up research. All our models were suffi-
ciently large to represent the compositional struc-
ture of the language when given sufficient band-
width. Furthermore, while large models did overfit,
this was an exception rather than the rule. We hy-
pothesize that this is due to the large number of ex-
amples in our language, which forces the model to
generalize, but note that there are likely additional
biases at play that warrant further investigation.

37

Acknowledgements

We would like to thank Marco Baroni and Angeliki
Lazaridou for their comments on an earlier ver-
sion of the paper. We would also like to thank the
anonymous reviewers for giving insightful feed-
back in turn enhancing this work, particularly re-
viewer two for their thoroughness. Special thanks
to Adam Roberts, Doug Eck, Mohammad Norouzi,
and Jesse Engel.

References
Dzmitry Bahdanau, Shikhar Murty, Michael

Noukhovitch, Thien Huu Nguyen, Harm de Vries,
and Aaron Courville. 2019. Systematic generaliza-
tion: What is required and can it be learned? In
International Conference on Learning Representa-
tions.

Marco Baroni. 2020. Linguistic generalization and
compositionality in modern artificial neural net-
works. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences, 375:20190307.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik
Mandal. 2019. Reconciling modern machine-
learning practice and the classical bias–variance
trade-off. Proceedings of the National Academy of
Sciences, 116(32):15849–15854.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti
Singh. 2019. Gradient descent provably optimizes
over-parameterized neural networks. In Interna-
tional Conference on Learning Representations.

Jakob Foerster, Ioannis Alexandros Assael, Nando
de Freitas, and Shimon Whiteson. 2016. Learning to
communicate with deep multi-agent reinforcement
learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 29, pages 2137–
2145. Curran Associates, Inc.

Abhinav Gupta*, Agnieszka Słowik*, William Hamil-
ton, Mateja Jamnik, Sean Holden, and Christopher
Pal. 2020. Analyzing structural prios in multi-agent
communication. Adaptive and Learning Agents
Workshop (ALA) @ AAMAS.

Laura Harding Graesser, Kyunghyun Cho, and Douwe
Kiela. 2019. Emergent linguistic phenomena in
multi-agent communication games. In EMNLP-
IJCNLP, pages 3691–3701, Hong Kong, China. As-
sociation for Computational Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In

International Conference on Learning Representa-
tions.

Simon Kirby, Monica Tamariz, Hannah Cornish, and
Kenny Smith. 2015. Compression and communica-
tion in the cultural evolution of linguistic structure.
Cognition, 141:87–102.

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Ba-
tra. 2017. Natural language does not emerge ‘natu-
rally’ in multi-agent dialog. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2962–2967. Associa-
tion for Computational Linguistics.

Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. 2017. Multi-Agent Cooperation and
the Emergence of (Natural) Language. In Interna-
tional Conference on Learning Representations.

Jason Lee, Kyunghyun Cho, Jason Weston, and Douwe
Kiela. 2018. Emergent translation in multi-agent
communication. In International Conference on
Learning Representations.

Yuanzhi Li and Yingyu Liang. 2018. Learning over-
parameterized neural networks via stochastic gradi-
ent descent on structured data. In Advances in Neu-
ral Information Processing Systems 31, pages 8157–
8166. Curran Associates, Inc.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous relax-
ation of discrete random variables. In International
Conference on Learning Representations.

Igor Mordatch and Pieter Abbeel. 2018. Emergence
of grounded compositional language in multi-agent
populations. In AAAI Conference on Artificial Intel-
ligence.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. 2020. Deep
double descent: Where bigger models and more data
hurt. In International Conference on Learning Rep-
resentations.

Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus.
2016. Learning multiagent communication with
backpropagation. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, NeurIPS,
pages 2244–2252. Curran Associates, Inc.

Tessa Verhoef, Simon Kirby, and Bart de Boer. 2016.
Iconicity and the emergence of combinatorial struc-
ture in language. Cognitive Science, 40(8):1969–
1994.

Noga Zaslavsky, Charles Kemp, Terry Regier, and Naf-
tali Tishby. 2018. Efficient compression in color
naming and its evolution. Proceedings of the Na-
tional Academy of Sciences, 115(31):7937–7942.

38

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 39–44
July 9, 2020. c©2020 Association for Computational Linguistics

Learning Geometric Word Meta-Embeddings

Pratik Jawanpuria1, N T V Satya Dev2, Anoop Kunchukuttan1, Bamdev Mishra1

1Microsoft, India 2Vayve Technologies, India
1{pratik.jawanpuria,ankunchu,bamdevm}@microsoft.com

2tvsatyadev@gmail.com

Abstract

We propose a geometric framework for learn-
ing meta-embeddings of words from differ-
ent embedding sources. Our framework trans-
forms the embeddings into a common latent
space, where, for example, simple averaging
or concatenation of different embeddings (of
a given word) is more amenable. The pro-
posed latent space arises from two particular
geometric transformations - source embedding
specific orthogonal rotations and a common
Mahalanobis metric scaling. Empirical results
on several word similarity and word analogy
benchmarks illustrate the efficacy of the pro-
posed framework.

1 Introduction

Word embeddings have become an integral part of
modern NLP. They capture semantic and syntactic
similarities and are typically used as features in
training NLP models for diverse tasks like named
entity tagging, sentiment analysis, and classifica-
tion, to name a few. Word embeddings are learned
in an unsupervised manner from large text corpora
and a number of pre-trained embeddings are read-
ily available. The quality of the word embeddings,
however, depends on various factors like the size
and genre of training corpora as well as the training
method used. This has led to ensemble approaches
for creating meta-embeddings from different origi-
nal embeddings (Yin and Shutze, 2016; Coates and
Bollegala, 2018; Bao and Bollegala, 2018; O’Neill
and Bollegala, 2020). Meta-embeddings are ap-
pealing because they can improve quality of embed-
dings on account of noise cancellation and diversity
of data sources and algorithms.

Various approaches have been proposed to learn
meta-embeddings and can be broadly classified
into two categories: (a) simple linear methods like
averaging or concatenation, or a low-dimensional
projection via singular value projection (Yin and

Shutze, 2016; Coates and Bollegala, 2018) and
(b) non-linear methods that aim to learn meta-
embeddings as shared representation using auto-
encoding or transformation between common rep-
resentation and each embedding set (Muromägi
et al., 2017; Bollegala et al., 2018; Bao and Bolle-
gala, 2018; O’Neill and Bollegala, 2020).

In this work, we focus on simple linear methods
such as averaging and concatenation for computing
meta-embeddings, which are very easy to imple-
ment and have shown highly competitive perfor-
mance (Yin and Shutze, 2016; Coates and Bolle-
gala, 2018). Due to the nature of the underlying
embedding generation algorithms (Mikolov et al.,
2013; Pennington et al., 2014), correspondences be-
tween dimensions, e.g., of two embeddings x ∈ Rd

and z ∈ Rd of the same word, are usually not
known. Hence, averaging may be detrimental in
cases where the dimensions are negatively corre-
lated. Consider the scenario where z := −x. Here,
simple averaging of x and z would result in the zero
vector. Similarly, when z is a (dimension-wise) per-
mutation of x, simple averaging would result in a
sub-optimal meta-embedding vector compared to
averaging of aligned embeddings. Therefore, we
propose to align the embeddings (of a given word)
as an important first step towards generating meta-
embeddings.

To this end, we develop a geometric framework
for learning meta-embeddings, by aligning differ-
ent embeddings in a common latent space, where
the dimensions of different embeddings (of a given
word) are in coherence. Mathematically, we per-
form different orthogonal transformations of the
source embeddings to learn a latent space along
with a Mahalanobis metric that scales different fea-
tures appropriately. The meta-embeddings are, sub-
sequently, learned in the latent space, e.g., using
averaging or concatenation. Empirical results on
the word similarity and the word analogy tasks

39

show that the proposed geometrically aligned meta-
embeddings outperform strong baselines such as
the plain averaging and the plain concatenation
models.

2 Proposed Geometric Modeling

Consider two (monolingual) embeddings xi ∈ Rd

and zi ∈ Rd of a given word i in a d-dimensional
space. As discussed earlier, embeddings gener-
ated from different algorithms (Turian et al., 2010;
Mikolov et al., 2013; Pennington et al., 2014;
Dhillon et al., 2015; Bojanowski et al., 2017) may
express different characteristics (of the same word).
Hence, the goal of learning a meta-embedding wi

(corresponding to word i) is to generate a represen-
tation that inherits the properties of the different
source embeddings (e.g., xi and zi).

Our framework imposes orthogonal transfor-
mations on the given source embeddings to en-
able alignment. To allow a more effective model
for comparing similarity between different embed-
dings of a given word, we additionally induce this
latent space with the Mahalanobis metric. The
Mahalanobis similarity generalizes the cosine simi-
larity measure, which is commonly used for eval-
uating the relatedness between word embeddings.
Unlike cosine similarity, the Mahalanobis metric
does not assume uncorrelated feature and it incor-
porates the feature correlation information from
the training data (Jawanpuria et al., 2019). The
combination of orthogonal transformation and Ma-
halanobis metric learning allows to capture any
affine relationship that may exist between word
embeddings. Mathematically, this relates to the sin-
gular value decomposition of a matrix (Bonnabel
and Sepulchre, 2009; Mishra et al., 2014).

Overall, we formulate the problem of learning
geometric transformations – the orthogonal rota-
tions and the metric scaling – via a binary clas-
sification problem (discussed later). The meta-
embeddings are subsequently computed using these
transformations. The following sections formal-
ize the proposed latent space and meta-embedding
models.

2.1 Learning the Latent Space

In this section, we learn the latent space using geo-
metric transformations.

Let U ∈Md and V ∈Md be orthogonal trans-
formations for embeddings xi and zi, respectively,
for all words i = 1, . . . , n. HereMd represents

the set of d× d orthogonal matrices. The aligned
embeddings in the latent space corresponding to xi
and zi can then be expressed as Uxi and Vzi, re-
spectively. We next induce the Mahalanobis metric
B in this (aligned) latent space, where B is a d× d
symmetric positive-definite matrix. In this latent
space, the similarity between the two embeddings
xi and zi can be obtained by the following expres-
sion of their dot product: (Uxi)

>B(Vzi). This
expression may also be interpreted as the standard
dot product (cosine similarity) between B

1
2Uxi

and B
1
2Vzi, where B

1
2 denotes the matrix square

root of the symmetric positive definite matrix B.
The orthogonal transformations as well as the

Mahalanobis metric are learned via the following
binary classification problem: pairs of word embed-
dings {xi, zi} of the same word i belong to the pos-
itive class while pairs {xi, zj} belong to the nega-
tive class (for i 6= j). We consider the similarity be-
tween the two embeddings in the latent space as the
decision function of the proposed binary classifica-
tion problem. Let X = [x1, . . . , xn] ∈ Rd×n and
Z = [z1, . . . , zn] ∈ Rd×n be the word embedding
matrices for n words, where the columns corre-
spond to different words. In addition, let Y denote
the label matrix, where Yii = 1 for i = 1, . . . , n
and Yij = 0 for i 6= j. The proposed optimization
problem employs the simple to optimize square
loss function:

min
U,V∈Md,

B�0

∥∥∥X>U>BVZ−Y
∥∥∥
2
+ C ‖B‖2 , (1)

where ‖ · ‖ is the Frobenius norm (which gener-
alizes the 2-norm to matrices) and C > 0 is the
regularization parameter.

2.2 Averaging and Concatenation in Latent
Space

Meta-embeddings constructed by averaging or
concatenating the given word embeddings have
been shown to obtain highly competitive perfor-
mance (Yin and Shutze, 2016; Coates and Bolle-
gala, 2018). Hence, we propose to learn meta-
embeddings as averaging or concatenation in the
learned latent space.

Geometry-Aware Averaging
The meta-embedding wi of a word i is gener-
ated as an average of the (aligned) word em-
beddings in the latent space. The latent space
representation of xi, as a function of orthogo-
nal transformation U and metric B, is B

1
2Uxi

40

(Jawanpuria et al., 2019). Hence, we obtain
wi = average(B

1
2Uxi,B

1
2Vzi) = (B

1
2Uxi +

B
1
2Vzi)/2.
It should be noted that the proposed geometry-

aware averaging approach generalizes the plain
averaging method proposed in (Coates and Bolle-
gala, 2018), which is now a particular case in our
framework by choosing U, V, and B as identity
matrices.

Geometry-Aware Concatenation
We next propose to concatenate the aligned em-
beddings in the learned latent space. For a given
word i, with xi and zi as different source embed-
dings, the meta-embeddings wi learned by the
proposed geometry-aware concatenation model
is wi = concatenation(B

1
2Uxi,B

1
2Vzi) =

[(B
1
2Uxi)

>, (B
1
2Vzi)

>]>. The plain concatena-
tion method studied in (Yin and Shutze, 2016) is a
special case of the proposed geometry-aware con-
catenation (by setting U, V, and B as identity
matrices).

2.3 Optimization

The proposed optimization problem (1) employs
square loss function and `2-norm regularization,
both of which are well-studied in the literature. The
search space is the Cartesian product of the set of
d-dimensional symmetric positive definite matrices
and the set of d-dimensional orthogonal matrices,
both of which are smooth spaces. Such sets have
well-known Riemannian manifold structure (Lee,
2003) that allows to propose computationally effi-
cient iterative optimization algorithms. A manifold
may be viewed as a generalization of the notion
of surface to higher dimensions. We employ the
popular Riemannian optimization framework (Ab-
sil et al., 2008) to solve (1). Recently, Jawanpuria
et al. (2019) have studied a similar optimization
problem in the context of learning cross-lingual
word embeddings.

Our implementation is done using the Pymanopt
toolbox (Townsend et al., 2016), which is a publicly
available Python toolbox for Riemannian optimiza-
tion algorithms. In particular, we use the conjugate
gradient algorithm of Pymanopt. For this, we just
need to supply the objective function of (1). This
can be done efficiently as the numerical cost of
computing the objective function is O(nd2). The
overall computational cost of our implementation
scales linearly with the number of words in the

vocabulary sets. Our code is available at https:
//github.com/SatyadevNtv/geo-meta-emb.

3 Experiments

In this section, we evaluate the performance of the
proposed meta-embedding models.

3.1 Evaluation Tasks and Datasets

We consider the following standard evaluation
tasks (Yin and Shutze, 2016; Coates and Bollegala,
2018):
• Word similarity: in this task, we compare the

human-annotated similarity scores between
pairs of words with the corresponding cosine
similarity computed via the constructed meta-
embeddings. We report results on the follow-
ing benchmark datasets: RG (Rubenstein and
Goodenough, 1965), MC (Miller and Charles,
1991), WS (Finkelstein et al., 2001), MTurk
(Halawi et al., 2012), RW (Luong et al., 2013),
and SL (Hill et al., 2015). Following pre-
vious works (Yin and Shutze, 2016; Coates
and Bollegala, 2018; O’Neill and Bollegala,
2020), we report the Spearman correlation
score (higher is better) between the cosine
similarity (computed via meta-embeddings)
and the human scores.
• Word analogy: in this task, the aim is to an-

swer questions which have the form “A is to
B as C is to ?” (Mikolov et al., 2013). After
generating the meta-embeddings a, b, and c
(corresponding to terms A, B, and C, respec-
tively), the answer is chosen to be the term
whose meta-embedding has the maximum co-
sine similarity with (b−a+c) (Mikolov et al.,
2013). The benchmark datasets include MSR
(Gao et al., 2014), GL (Mikolov et al., 2013),
and SemEval (Jurgens et al., 2012). Follow-
ing previous works (Yin and Shutze, 2016;
Coates and Bollegala, 2018; O’Neill and Bol-
legala, 2020), we report the percentage of cor-
rect answers for MSR and GL datasets, and
the Spearman correlation score for SemEval.
In both cases, a higher score implies better
performance.

We learn the meta-embeddings from the follow-
ing publicly available 300-dimensional pre-trained
word embeddings for English.
• CBOW (Mikolov et al., 2013): has 929 023

word embeddings trained on Google News.
• GloVe (Pennington et al., 2014): has

41

Model RG MC WS MTurk RW SL Avg.(WS) MSR GL SemEvaL Avg.(WA)

CBOW 76.1 80.0 77.2 68.4 53.4 44.2 66.5 71.7 55.4 20.4 49.2
GloVe 82.9 84.0 79.6 70.0 48.7 45.3 68.4 69.3 75.2 18.6 54.4

CONC 81.1 84.6 81.4 71.9 54.6 46.0 69.9 76.6 69.9 20.1 55.5
AVG 81.5 83.7 79.4 72.1 52.9 46.2 69.3 73.7 66.9 19.7 53.4
Geo-CONC 86.0 85.0 81.2 70.5 55.6 48.2 71.1 78.1 73.3 19.9 57.1
Geo-AVG 85.8 83.5 81.2 69.1 55.7 48.2 70.6 77.3 72.3 19.5 56.3

Table 1: Generalization performance of the meta-embedding algorithms on the word similarity and the word
analogy tasks with GloVe and CBOW source embeddings. The columns ‘Avg.(WS)’ and ‘Avg.(WA)’ correspond
to the average performance on the word similarity and the word analogy tasks, respectively.

Model RG MC WS MTurk RW SL Avg.(WS) MSR GL SemEvaL Avg.(WA)

GloVe 82.9 84.0 79.6 70.0 48.7 45.3 68.4 69.3 75.2 18.6 54.4
fastText 83.8 82.5 83.5 73.3 58.0 46.4 71.2 78.7 71.0 22.5 57.4

CONC 83.8 82.5 83.4 73.3 57.9 46.4 71.2 79.8 71.7 22.5 58.0
AVG 83.4 82.1 83.5 73.3 58.0 46.5 71.1 79.7 71.7 22.4 57.9
Geo-CONC 83.7 84.0 82.6 74.6 55.1 48.4 71.4 80.4 79.3 21.5 60.4
Geo-AVG 83.6 82.0 82.7 74.3 57.0 48.4 71.3 79.1 71.1 23.1 57.8

Table 2: Generalization performance of the meta-embedding algorithms on the word similarity and the word
analogy tasks with GloVe and fastText source embeddings. The columns ‘Avg.(WS)’ and ‘Avg.(WA)’ correspond
to the average performance on the word similarity and the word analogy tasks, respectively.

1 917 494 word embeddings trained on 42B
tokens of web data from the common crawl.
• fastText (Bojanowski et al., 2017): has
2 000 000 word embeddings trained on com-
mon crawl.

The meta-embeddings are learned on the common
set of words from different pairs of the source em-
beddings. The number of common words between
various source embeddings pairs are as follows:
154 077 (GloVe ∩ CBOW), 552 168 (GloVe ∩ fast-
Text), and 641 885 (CBOW ∩ fastText).

3.2 Results and Discussion

The performance of our geometry-aware averag-
ing and concatenation models, henceforth termed
as Geo-AVG and Geo-CONC, respectively, are re-
ported in Tables 1-3. Each table corresponds to a
pair of source embeddings (from CBOW, GloVe,
and fastText) and the meta-embeddings generated
from the source embeddings. We report the perfor-
mance of the following:
• the proposed models Geo-AVG and Geo-

CONC
• the meta-embeddings models AVG (Coates

and Bollegala, 2018) and CONC (Yin and

Shutze, 2016), which perform plain averag-
ing and concatenation, respectively
• the source embeddings, which serve as a

benchmark the meta-embeddings algorithms
should ideally surpass in order to justify their
usage

We observe that the proposed geometry-aware
models (Geo-AVG and Geo-CONC) outperform
the individual source embeddings in most datasets.
Among the source embeddings, fastText performs
better than CBOW and GloVe. Interestingly, we ob-
serve that the performance of the meta-embeddings
generated by the proposed Geo-CONC with CBOW
and GloVe (results in Table 1) is at par with the fast-
Text embeddings (results in Table 2).

The proposed models also easily surpass the
AVG and CONC models in both the word simi-
larity and the word analogy tasks. In all the three
tables, the proposed models obtain the best overall
performance in both the tasks. This shows that the
alignment of word embedding spaces with orthogo-
nal rotations and the Mahalanobis metric improves
the overall quality of the meta-embeddings.

42

Model RG MC WS MTurk RW SL Avg.(WS) MSR GL SemEvaL Avg.(WA)

CBOW 76.1 80.0 77.2 68.4 53.4 44.2 66.5 71.7 55.4 20.4 49.2
fastText 83.8 82.5 83.5 73.3 58.0 46.4 71.2 78.7 71.0 22.5 57.4

CONC 83.8 82.5 83.5 73.6 59.9 46.4 71.6 79.9 75.8 22.5 59.4
AVG 83.7 82.5 83.4 73.7 59.8 46.4 71.6 79.9 75.8 22.5 59.4
Geo-CONC 85.3 84.3 82.9 73.6 59.7 47.4 72.2 80.1 76.9 22.1 59.7
Geo-AVG 85.5 84.6 82.9 73.6 59.7 47.4 72.3 79.9 76.9 22.0 59.6

Table 3: Generalization performance of the meta-embedding algorithms on the word similarity and the word
analogy tasks with CBOW and fastText source embeddings. The columns ‘Avg.(WS)’ and ‘Avg.(WA)’ correspond
to the average performance on the word similarity and the word analogy tasks, respectively.

4 Conclusion

We propose a geometric framework for learning
meta-embeddings of words from various sources
of word embeddings. Our framework aligns the
embeddings in a common latent space. The im-
portance of learning the latent space is shown in
several benchmark datasets, where the proposed al-
gorithms (Geo-AVG and Geo-CONC) outperforms
the plain averaging and the plain concatenation
models.

Extending the proposed geometric framework
to non-linear word meta-embedding approaches
and for generating sentence meta-embeddings are
promising directions of future research.

References
P.-A. Absil, R. Mahony, and R. Sepulchre. 2008. Op-

timization Algorithms on Matrix Manifolds. Prince-
ton University Press, Princeton, NJ.

C. Bao and D. Bollegala. 2018. Learning word meta-
embeddings by autoencoding. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 1650–1661.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov.
2017. Enriching word vectors with subword
information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–
146. https://fasttext.cc/docs/en/
english-vectors.html.

D. Bollegala, K. Hayashi, and K. Kawarabayashi. 2018.
Think globally, embed locally—locally linear meta-
embedding of words. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence
(IJCAI).

S. Bonnabel and R. Sepulchre. 2009. Riemannian met-
ric and geometric mean for positive semidefinite ma-
trices of fixed rank. SIAM Journal on Matrix Analy-
sis and Applications, 31(3):1055–1070.

J. N. Coates and D. Bollegala. 2018. Frustratingly easy
meta-embedding – computing meta-embeddings by
averaging source word embeddings. In Proceedings
of NAACL-HLT 2018, pages 194–198.

P. S. Dhillon, D. P. Foster, and L. H. Ungar. 2015.
Eigenwords: Spectral word embeddings. Journal of
Machine Learning Research, 16:3035–3078.

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. 2001. Placing
search in context: The concept revisited. In Proceed-
ings of the 10th international conference on World
Wide Web. ACM, pages 406–414.

B. Gao, J. Bian, and T.-Y. Liu. 2014. Wor-
drep: A benchmark for research on learning word
representation. Technical report, arXiv preprint
arXiv:1407.1640.

G. Halawi, G. Dror, E. Gabrilovich, and Y. Koren. 2012.
Large-scale learning of word relatedness with con-
straint. In Proceedings of the 18th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 1406–1414.

F. Hill, R. Reichart, and A. Korhonen. 2015. Simlex-
999: Evaluating semantic models with (genuine)
similarity estimation. Computational Linguistics,
pages 665–695.

P. Jawanpuria, A. Balgovind, A. Kunchukuttan, and
B. Mishra. 2019. Learning multilingual word em-
beddings in latent metric space: A geometric ap-
proach. Transactions of the Association for Com-
putational Linguistics, 7:107–120.

D. A. Jurgens, P. D. Turney, S. M. Mohammad, and
K. J. Holyoak. 2012. Semeval-2012 task 2: Measur-
ing degrees of relational similarity. In Proceedings
of the First Joint Conference on Lexical and Com-
putational Semantics-Volume 1: Proceedings of the
main conference and the shared task, and Volume 2:
Proceedings of the Sixth International Workshop on
Semantic Evaluation, pages 356–364.

J. M. Lee. 2003. Introduction to smooth manifolds, sec-
ond edition, volume 218 of Graduate Texts in Math-
ematics. Springer-Verlag, New York.

43

T. Luong, R. Socher, and C. D. Manning. 2013. Bet-
ter word representations with recursive neural net-
works for morphology. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 104–113.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems (NeurIPS),
pages 3111–3119.

G. A. Miller and W. G. Charles. 1991. Contextual cor-
relates of semantic similarity. Language and cong-
nitive processes, pages 1–28.

B. Mishra, G. Meyer, S. Bonnabel, and R. Sepulchre.
2014. Fixed-rank matrix factorizations and Rieman-
nian low-rank optimization. Computational Statis-
tics, 29(3):591–621.

A. Muromägi, K. Sirts, and S. Laur. 2017. Linear en-
sembles of word embedding models. In Proceedings
of the 21st Nordic Conference on Computational Lin-
guistics, pages 96–104.

J. O’Neill and D. Bollegala. 2020. Meta-embedding
as auxiliary task regularization. In Proceedings of
the European Conference on Artificial Intelligence
(ECAI).

J. Pennington, R. Socher, and C. D. Manning. 2014.
Glove: Global vectors for word representation.
Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP),
14:1532–1543.

H. Rubenstein and J. B. Goodenough. 1965. Contex-
tual correlates of synonymy. Communications of
ACM, pages 627–633.

J. Townsend, N. Koep, and S. Weichwald. 2016. Py-
manopt: A python toolbox for optimization on mani-
folds using automatic differentiation. Journal of Ma-
chine Learning Research, 17(137):1–5.

J. Turian, L. Ratinov, and B. Bengio. 2010. Word rep-
resentations: a simple and general method for semi-
supervised learning. In Proceedings of the Annual
Meeting of the Association of Computational Lin-
guistics (ACL), pages 384–394.

W. Yin and H. Shutze. 2016. Learning word meta-
embeddings. In Proceedings of the 54th Annual
Meeting of the Association of Computational Lin-
guistics (ACL), pages 1351–1360.

44

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 45–54
July 9, 2020. c©2020 Association for Computational Linguistics

Improving Bilingual Lexicon Induction with Unsupervised
Post-Processing of Monolingual Word Vector Spaces

Ivan Vulić♦ Anna Korhonen♦ Goran Glavaš♣
♦ Language Technology Lab, TAL, University of Cambridge
♣ Data and Web Science Group, University of Mannheim

{iv250,alk23}@cam.ac.uk goran@informatik.uni-mannheim.de

Abstract

Work on projection-based induction of cross-
lingual word embedding spaces (CLWEs) pre-
dominantly focuses on the improvement of
the projection (i.e., mapping) mechanisms. In
this work, in contrast, we show that a simple
method for post-processing monolingual em-
bedding spaces facilitates learning of the cross-
lingual alignment and, in turn, substantially
improves bilingual lexicon induction (BLI).
The post-processing method we examine is
grounded in the generalisation of first- and
second-order monolingual similarities to the
nth-order similarity. By post-processing mono-
lingual spaces before the cross-lingual align-
ment, the method can be coupled with any
projection-based method for inducing CLWE
spaces. We demonstrate the effectiveness
of this simple monolingual post-processing
across a set of 15 typologically diverse lan-
guages (i.e., 15×14 BLI setups), and in combi-
nation with two different projection methods.

1 Introduction

Cross-lingual word embeddings (CLWEs) are a
mainstay of modern cross-lingual NLP (Ruder
et al., 2019b). CLWE models induce a shared
cross-lingual vector space in which words with
similar meanings obtain similar vectors regardless
of their language. Their usefulness has been at-
tested in tasks such as bilingual lexicon induction
(BLI) (Gouws et al., 2015; Heyman et al., 2017),
information retrieval (Litschko et al., 2018), ma-
chine translation (Artetxe et al., 2018b; Lample
et al., 2018), document classification (Klementiev
et al., 2012), and many others (Ruder et al., 2019b).

Importantly, CLWEs are one of the central mech-
anisms for facilitating transfer of language tech-
nologies for low-resource languages, which often
lack sufficient bilingual signal for obvious trans-
fer via machine translation. Lack of language re-

sources is the main reason for popularity of the so-
called projection-based CLWE methods (Mikolov
et al., 2013a; Artetxe et al., 2016, 2018a). These
models align two independently trained monolin-
gual word vector spaces post-hoc, using limited
bilingual supervision in the form of several hundred
to several thousand word translation pairs (Mikolov
et al., 2013a; Vulić and Korhonen, 2016; Joulin
et al., 2018; Ruder et al., 2018). Some models even
align the monolingual spaces using only identical
strings (Smith et al., 2017; Søgaard et al., 2018) or
numerals (Artetxe et al., 2017). The most recent
work focused on fully unsupervised CLWE induc-
tion: they extract seed translation lexicons relying
on topological similarities between monolingual
spaces (Conneau et al., 2018; Artetxe et al., 2018a;
Hoshen and Wolf, 2018; Alaux et al., 2019).

In this work, we do not focus on projection it-
self: rather, we investigate a transformation of input
monolingual word vector spaces that facilitates the
projection and leads to higher quality CLWEs. Re-
gardless of the actual projection method, the qual-
ity of the input monolingual spaces has a profound
impact on the induced shared cross-lingual space,
and, in turn, on the quality of induced bilingual
lexicons. We demonstrate that simple unsupervised
post-processing of monolingual embedding spaces
leads to substantial BLI performance gains across
a large number of language pairs. Our work is
inspired by observations that monolingual “embed-
dings capture more information than what is imme-
diately obvious” (Artetxe et al., 2018c). In other
words, the information surfaced in the pretrained
monolingual vector spaces may not be optimal for
an application such as word-level translation (BLI).

We rely on a monolingual post-processing
method of Artetxe et al. (2018c): a linear trans-
formation controlled by a single parameter that
adjusts the similarity order of the input embedding
spaces. We demonstrate that applying this trans-

45

formation on both monolingual spaces before any
standard projection-based CLWE framework yields
consistent BLI gains for a wide array of languages.
We run a large-scale BLI evaluation with 15 typo-
logically diverse languages (i.e., 15×14 = 210 BLI
setups) and show that this simple monolingual post-
processing yields gains in 183/210 setups over the
current state-of-the-art BLI models which combine
self-learning (Artetxe et al., 2018a) with (weak)
word-level supervision (Vulić et al., 2019). We
further show that this monolingual post-processing
yields improvements on other BLI datasets (Glavaš
et al., 2019), for different projection-based CLWE
models, and also for BLI with 210 similar (major
European) languages (Dubossarsky et al., 2020),
indicating the importance and robustness of mono-
lingual post-processing for BLI.

2 Methodology

Projection-Based CLWEs: Preliminaries.
Projection-based CLWE models learn a linear
projection between two independently trained
monolingual spaces – X (source language Ls)
and Z (target language Lt) – using a word
translation dictionary D to guide the alignment.
XD ⊂ X and ZD ⊂ Z denote the row-aligned
subsets of X and Z containing vectors of aligned
words from D. XD and ZD are used to learn
orthogonal projections Wx and Wz defining the
bilingual space: Y = XWx ∪ ZWz . While
(weakly) supervised methods start from a readily
available dictionary D, fully unsupervised models
automatically induce the seed dictionary D (i.e.,
from monolingual data).1

Furthermore, it has been empirically validated
(Artetxe et al., 2017; Vulić et al., 2019) that ap-
plying an iterative self-learning procedure leads
to consistent BLI improvements, especially for
distant languages and in low-data regimes. In a
nutshell, at each self-learning iteration k, a dic-
tionary D(k) is first used to learn the joint space
Y (k) = XW

(k)
x ∪ ZW

(k)
z . The mutual cross-

lingual nearest neighbours in Y (k) are then used to
extract the new dictionary D(k+1). Relying on mu-
tual nearest neighbours partially removes the noise,
leading to better performance. For more technical

1Recent empirical studies (Glavaš et al., 2019; Vulić et al.,
2019) show that, under fair evaluation, (weakly) supervised
methods always outperform their unsupervised counterparts.
We thus base all our experiments in §4 on the weakly super-
vised setup; nonetheless, we observe substantial relative gains
for the fully unsupervised setup as well.

details on self-learning, we refer the reader to prior
work (Ruder et al., 2019a; Vulić et al., 2019).

Motivation. Most existing CLWE models ignore
the properties of the initial monolingual spaces X
and Z (i.e., they are taken “as-is”) and focus on im-
proving the projection. However, monolingual post-
processing of X and Z prior to learning the projec-
tions may facilitate the projection and be beneficial
for iterative setups such as self-learning. This intu-
ition is already confirmed by a number of monolin-
gual transformations, e.g., `2-normalisation, mean
centering, or whitening/dewhitening, that are “by
default” performed by toolkits such as MUSE (Con-
neau et al., 2018) and VecMap (Artetxe et al.,
2018b; Zhang et al., 2019). In this work, however,
we investigate a transformation to the monolingual
spaces which is applied before they undergo the se-
ries of standard normalisation and centering steps.

Further, we investigate a line of research that
leverages unsupervised post-processing of mono-
lingual word vectors (Mu et al., 2018; Wang et al.,
2018; Raunak et al., 2019; Tang et al., 2019) to
emphasise semantic properties over syntactic as-
pects, typically with small gains reported on intrin-
sic word similarity (e.g., SimLex-999 (Hill et al.,
2015)). In this work, we empirically validate that
these unsupervised post-processing techniques can
also be effective in cross-lingual scenarios for low-
resource BLI, even when coupled with the current
state-of-the-art CLWE frameworks that rely on “all
the bells and whistles”, such as self-learning and
additional vector space preprocessing.

Unsupervised Monolingual Post-processing.
We now outline the simple post-processing
method of Artetxe et al. (2018c) used in this work,
and then extend it to the bilingual setup. The
core idea is to generalise the notion of first-and
second-order similarity (Schütze, 1998)2 to
nth-order similarity. Let us define the (standard,
first-order) similarity matrix of the source language
space X as M1(X) = XXT (similar for
Z). The second-order similarity can then be
defined as M2(X) = XXTXXT , where it
holds M2(X) = M1(M1(X)); the nth-order
similarity is then Mn(X) = (XXT)n. The
embeddings of words wi and wj are given by the
rows i and j of each Mn matrix.

We are then looking for a general linear trans-
formation that adjusts the similarity order of input

2With second-order similarity, the similarity of two words
is captured in terms of how similar they are to other words.

46

Language Family Type ISO 639-1

Bulgarian IE: Slavic fusional BG
Catalan IE: Romance fusional CA
Esperanto – (constructed) agglutinative EO
Estonian Uralic agglutinative ET
Basque – (isolate) agglutinative EU
Finnish Uralic agglutinative FI
Hebrew Afro-Asiatic introflexive HE
Hungarian Uralic agglutinative HU
Indonesian Austronesian isolating ID
Georgian Kartvelian agglutinative KA
Korean Koreanic agglutinative KO
Lithuanian IE: Baltic fusional LT
Bokmål IE: Germanic fusional NO
Thai Kra-Dai isolating TH
Turkish Turkic agglutinative TR

Table 1: Languages used in the main BLI experi-
ments (Vulić et al., 2019), along with family (IE=Indo-
European), morphological type, and ISO 639-1 code.

matrices X and Z. As proven by Artetxe et al.
(2018c), the nth-order similarity transformation
can be obtained as Mn(X) = M1(XR(n−1)/2),
with Rα = Q∆α, where Q and ∆ are the ma-
trices obtained via eigendecomposition of XTX
(XTX = Q∆QT): ∆ is a diagonal matrix con-
taining eigenvalues of XTX; Q is an orthogonal
matrix with eigenvectors of XTX as columns.3

Finally, we apply the above post-processing on
both monolingual vector spaces X and Z. This re-
sults in adjusted vector spaces X′

αs
= XRαs and

Z′
αt

= ZRαt . Transformed spaces X′
αs

and Z′
αt

then replace the original spaces X and Z as input
to any standard projection-based CLWE method.

3 Experimental Setup

We evaluate the impact of unsupervised monolin-
gual post-processing described in §2 on BLI, focus-
ing on pairs of typologically diverse languages.4

Mean reciprocal rank (MRR) is used as the main
evaluation metric, reported as MRR×100%.5

Training and Test Data. We exploit the train-
ing and test dictionaries compiled from PanLex
(Kamholz et al., 2014) by Vulić et al. (2019): the
data encompasses 15 diverse languages listed in
Table 1 and a total of 210 distinct Ls → Lt BLI

3Although the post-processing motivation stems from the
desire to adjust discrete similarity orders, note that α is in
fact a continuous parameter which can be carefully fine-tuned
(negative values are also allowed). The code is available at:
https://github.com/artetxem/uncovec.

4The focus of this work is on the standard BLI task; how-
ever, it has recently shown (Glavaš et al., 2019) that some
downstream tasks strongly correlate with BLI.

5Our findings also hold for Precision@M, for M ∈ {1, 5}

setups.6 In addition, we evaluate on 15 European
languages (i.e., 210 pairs) from Dubossarsky et al.
(2020).7, and on diverse language pairs from the
BLI evaluation suite of Glavaš et al. (2019). Train-
ing and test dictionaries in all setups contain 5K
and 2K word translation pairs, respectively. We
create smaller training dictionaries (e.g., spanning
1K training translation pairs) by taking the most
frequent pairs from the 5K dictionaries.

Monolingual Embeddings. We use the 300-dim
vectors of Grave et al. (2018) for all languages,
pretrained on Common Crawl and Wikipedia with
fastText (Bojanowski et al., 2017).8 All vocabular-
ies are trimmed to the 200K most frequent words.

Projection-Based Framework. We base the in-
duction of projection-based CLWEs on the well-
known VecMap framework (Artetxe et al., 2018b);9

it shows very competitive and robust BLI perfor-
mance, especially for distant pairs, according to
the recent comparative studies (Glavaš et al., 2019;
Vulić et al., 2019; Doval et al., 2019). We analyse
the impact of unsupervised monolingual postpro-
cessing from §2 by (1) feeding the original vectors
X and Y to VecMap (BASELINE), and then by
(2) feeding their post-processed variants X′

αs
and

Y ′
αt

(POSTPROC). We experiment with projection
model variants without and with self-learning, and
with different initial dictionary sizes (5K and 1K).

Note that the POSTPROC variant requires
tuning of two hyper-parameters: αs and αt.
Due to a lack of development sets for BLI
experiments, we tune the two α-parameters
on a single language pair (BG–CA) via cross-
validation; we grid-search over the following val-
ues: [−0.5,−0.25,−0.15, 0, 0.15, 0.25, 0.5]. We
then keep them fixed to the following values: αs =
−0.25, αt = 0.15 in all subsequent experiments.

4 Results and Discussion

Main BLI results averaged over each source lan-
guage (Ls) are provided in Table 2, while addi-
tional results per language pair are available in

6github.com/cambridgeltl/panlex-bli. For
a detailed procedure on how the lexicons were obtained from
PanLex, we refer the reader to the work of Vulić et al. (2019).

7The languages are English, German, Dutch, Swedish,
Danish, Italian, Portuguese, Spanish, French, Romanian, Croa-
tian, Polish, Russian, Czech, Bulgarian.

8Experiments with other monolingual vectors such as the
original fastText and skip-gram (Mikolov et al., 2013b) trained
on Wikipedia show the same trends in the final results.

9https://github.com/artetxem/vecmap

47

BG-* CA-* EO-* ET-* EU-* FI-* HE-* HU-*

BASELINE (supervised, 5k) 34.3 33.5 30.4 30.1 22.8 32.4 28.7 35.4
BASELINE (self-learning, 5k) 36.1 35.6 33.6 31.6 24.4 34.8 29.4 37.4
POSTPROC (self-learning, 5k) 37.6 36.9 34.8 33.5 25.7 37.4 31.2 39.5
BASELINE (supervised, 1k) 14.6 12.9 9.8 11.7 6.5 11.7 9.6 14.3
BASELINE (self-learning, 1k) 34.1 32.7 30.2 29.3 21.2 32.9 26.8 35.4
POSTPROC (self-learning, 1k) 35.3 34.0 30.6 31.1 21.3 35.3 27.9 37.5
Improves for... (5k) 13/14 12/14 13/14 13/14 10/14 14/14 11/14 14/14
Improves for... (1k) 13/14 13/14 9/14 13/14 7/14 14/14 11/14 14/14

ID-* KA-* KO-* LT-* NO-* TH-* TR-* Avg

BASELINE (supervised, 5k) 26.1 25.0 23.9 30.2 33.2 15.4 28.3 28.6
BASELINE (self-learning, 5k) 27.2 26.3 25.1 31.0 35.6 14.8 29.9 30.2
POSTPROC (self-learning, 5k) 28.1 28.2 26.6 33.3 37.3 15.6 32.3 31.9
BASELINE (supervised, 1k) 8.9 7.9 6.1 11.1 12.7 4.4 9.1 10.1
BASELINE (self-learning, 1k) 24.3 23.7 20.3 28.4 33.7 10.3 27.4 27.4
POSTPROC (self-learning, 1k) 25.1 25.0 21.3 30.4 35.1 11.1 29.8 28.7
Improves for... (5k) 11/14 13/14 12/14 11/14 14/14 8/14 14/14 183/210
Improves for... (1k) 11/14 12/14 13/14 13/14 13/14 11/14 14/14 181/210

Table 2: BLI results (MRR×100%) for main models in comparison. We report the results with the supervised
BASELINE model based on the VecMap framework (Artetxe et al., 2018b), without any self-learning (i.e., super-
vised only), and with the most robust self-learning setup according to the comparative analysis of Vulić et al. (2019).
The scores are averaged over experimental setups where each of the 15 languages is used as the source language Ls

(e.g., BG-* averages scores over 14 setups in which Bulgarian (BG) is the source language). 5k and 1k denote seed
dictionary sizes. The Avg column shows averaged MRR scores for each model over all 15×14=210 BLI setups and
we also report the number of BLI setups in which the POSTPROC method improves over both BASELINE models.

RCSLS VecMap

BASELINE POSTPROC BASELINE POSTPROC
Pair (SUP) (SUP) (SUP+SL) (SUP+SL)

DE–HR 17.2 21.2 40.9 42.5
DE–TR 21.4 23.6 38.5 39.1
FI–FR 37.8 40.3 47.5 48.9
FI–HR 18.9 23.5 38.1 39.9
HR–IT 30.2 31.4 47.8 49.1
TR–FI 23.6 26.1 37.5 39.0

Table 3: BLI scores on 6 distant language pairs from
the evaluation sets of Glavaš et al. (2019). Supervised
models without (SUP) and with self-learning (SUP+SL).

the supplemental material. We also observe per-
formance gains with a “pure” supervised model
variant (i.e., without self-learning), but for clarity,
we focus our analysis on the more powerful base-
line, with self-learning. We note improvements in
183/210 (seed dictionary size 5K) and 181/210 BLI
setups (size: 1K) over the projection-based base-
lines that held previous peak scores using the same
data (Vulić et al., 2019). This validates our intuition
that monolingual vectors store more information
which needs to be “uncovered” via monolingual
post-processing. The effect of monolingual post-
processing pertains after applying other perturba-
tions such as `2-norm or mean centering. For some
languages – e.g., FI, TR, NO – we achieve gains in

all BLI setups with those languages as sources.
What is more, we have not carefully fine-tuned

αs and αt: we note that even higher scores can be
achieved by finer-grained fine-tuning in the future.
For instance, setting (αs, αt) = (−0.5, 0.25) in-
stead of (−0.25, 0.15) for TR–BG increases BLI
score from 37.8 to 39.5; the previous peak score
with BASELINE was 35.1. The baseline mapping is
simply obtained by setting (αs, αt) = (0, 0), and
we note that the tuned post-processing validated in
our work should be considered as a tunable option
for any projection-based CLWE method.

We further probe the robustness of unsupervised
post-processing by running experiments on addi-
tional BLI evaluation set of Glavaš et al. (2019)
and with another mapping model: RCSLS (Joulin
et al., 2018). While we again observe gains across
a range of different model variants and with differ-
ent seed dictionary sizes, we summarise a selection
of results in Table 3. Finally, small but consistent
improvements extend also to a set of 15 European
languages from Dubossarsky et al. (2020) (see Fot-
note 6): POSTPROC yields gains on average for all
15/15 source languages, and across 173/210 setups
(5K seed dictionary); the global average improves
from 43.9 (the strongest BASELINE) to 44.7. In
summary, these results further underline the useful-
ness of the monolingual post-processing method.

48

5 Conclusion and Future Work

We have demonstrated a simple and effective
method for improving bilingual lexicon induction
(BLI) with projection-based cross-lingual word em-
beddings. The method is based on standalone un-
supervised post-processing of initial monolingual
word embeddings before mapping, and as such ap-
plicable to any projection-based CLWE method.
We have verified the importance and robustness of
this monolingual post-processing with a wide range
of (dis)similar language pairs as well as in different
BLI setups and with different CLWE methods.

In future work, we will test other unsupervised
post-processors, and also probe similar methods
that inject external lexical knowledge into mono-
lingual word vectors towards improved BLI. We
also plan to probe if similar gains still hold with
recently proposed more sophisticated self-learning
methods (Karan et al., 2020), non-linear mapping-
based CLWE methods (Glavaš and Vulić, 2020;
Mohiuddin and Joty, 2020). Another idea is to also
apply a similar principle to contextualised word
representations in cross-lingual settings (Schuster
et al., 2019; Liu et al., 2019).

Acknowledgments

This work is supported by the ERC Consolidator
Grant LEXICAL (no 648909) awarded to Anna
Korhonen. Goran Glavaš is supported by the
Eliteprogramm of the Baden-Württemberg Stiftung
(AGREE grant). We thank the reviewers for their
insightful suggestions.

References
Jean Alaux, Edouard Grave, Marco Cuturi, and Ar-

mand Joulin. 2019. Unsupervised hyperalignment
for multilingual word embeddings. In Proceedings
of ICLR.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016.
Learning principled bilingual mappings of word em-
beddings while preserving monolingual invariance.
In Proceedings of EMNLP, pages 2289–2294.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of ACL, pages
451–462.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018a. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of ACL, pages 789–798.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018b. Unsupervised neural ma-
chine translation. In Proceedings of ICLR.

Mikel Artetxe, Gorka Labaka, Iñigo Lopez-Gazpio,
and Eneko Agirre. 2018c. Uncovering divergent
linguistic information in word embeddings with
lessons for intrinsic and extrinsic evaluation. In Pro-
ceedings of CoNLL, pages 282–291.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the ACL,
5:135–146.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Proceed-
ings of ICLR.

Yerai Doval, Jose Camacho-Collados, Luis Espinosa-
Anke, and Steven Schockaert. 2019. On the
robustness of unsupervised and semi-supervised
cross-lingual word embedding learning. CoRR,
abs/1908.07742.

Haim Dubossarsky, Ivan Vulić, Roi Reichart, and Anna
Korhonen. 2020. Lost in embedding space: Explain-
ing cross-lingual task performance with eigenvalue
divergence. CoRR, abs/2001.11136.

Goran Glavaš, Robert Litschko, Sebastian Ruder, and
Ivan Vulić. 2019. How to (properly) evaluate cross-
lingual word embeddings: On strong baselines, com-
parative analyses, and some misconceptions. In Pro-
ceedings of ACL, pages 710–721.

Goran Glavaš and Ivan Vulić. 2020. Non-linear
instance-based cross-lingual mapping for non-
isomorphic embedding spaces. In Proceedings of
ACL.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. BilBOWA: Fast bilingual distributed repre-
sentations without word alignments. In Proceedings
of ICML, pages 748–756.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
LREC, pages 3483–3487.

Geert Heyman, Ivan Vulić, and Marie-Francine Moens.
2017. Bilingual lexicon induction by learning to
combine word-level and character-level representa-
tions. In Proceedings of EACL, pages 1085–1095.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Yedid Hoshen and Lior Wolf. 2018. Non-adversarial
unsupervised word translation. In Proceedings of
EMNLP, pages 469–478.

49

Armand Joulin, Piotr Bojanowski, Tomas Mikolov,
Hervé Jégou, and Edouard Grave. 2018. Loss in
translation: Learning bilingual word mapping with a
retrieval criterion. In Proceedings of EMNLP, pages
2979–2984.

David Kamholz, Jonathan Pool, and Susan M. Colow-
ick. 2014. Panlex: Building a resource for panlin-
gual lexical translation. In Proceedings of LREC,
pages 3145–3150.

Mladen Karan, Ivan Vulić, Anna Korhonen, and Goran
Glavaš. 2020. Classification-based self-learning for
weakly supervised bilingual lexicon induction. In
Proceedings of ACL.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai.
2012. Inducing crosslingual distributed representa-
tions of words. In Proceedings of COLING, pages
1459–1474.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of EMNLP, pages 5039–
5049.

Robert Litschko, Goran Glavaš, Simone Paolo
Ponzetto, and Ivan Vulić. 2018. Unsupervised cross-
lingual information retrieval using monolingual data
only. In Proceedings of SIGIR, pages 1253–1256.

Qianchu Liu, Diana McCarthy, Ivan Vulić, and Anna
Korhonen. 2019. Investigating cross-lingual align-
ment methods for contextualized embeddings with
token-level evaluation. In Proceedings of CoNLL,
pages 33–43.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013a.
Exploiting similarities among languages for ma-
chine translation. CoRR, abs/1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S
Corrado, and Jeffrey Dean. 2013b. Distributed Rep-
resentations of Words and Phrases and their Com-
positionality. In Proceedings of NIPS, pages 3111–
3119.

Bari Saiful M. Mohiuddin, Tasnim and Shafiq Joty.
2020. Lnmap: Departures from isomorphic as-
sumption in bilingual lexicon induction through
non-linear mapping in latent space. CoRR,
abs/1309.4168.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2018.
All-but-the-top: Simple and effective postprocessing
for word representations. In Proceedings of ICLR.

Vikas Raunak, Vivek Gupta, and Florian Metze. 2019.
Effective dimensionality reduction for word embed-
dings. In Proceedings of the 4th Workshop on Rep-
resentation Learning for NLP, pages 235–243.

Sebastian Ruder, Ryan Cotterell, Yova Kementched-
jhieva, and Anders Søgaard. 2018. A discriminative
latent-variable model for bilingual lexicon induction.
In Proceedings of EMNLP, pages 458–468.

Sebastian Ruder, Anders Søgaard, and Ivan Vulić.
2019a. Unsupervised cross-lingual representation
learning. In Proceedings of ACL: Tutorial Abstracts,
pages 31–38.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
2019b. A survey of cross-lingual word embedding
models. Journal of Artificial Intelligence Research,
65:569–631.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-lingual alignment of con-
textual word embeddings, with applications to zero-
shot dependency parsing. In Proceedings of NAACL-
HLT, pages 1599–1613.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational Linguistics, 24(1):97–123.

Samuel L. Smith, David H.P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. In Proceedings of ICLR.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić.
2018. On the limitations of unsupervised bilingual
dictionary induction. In Proceedings of ACL, pages
778–788.

Shuai Tang, Mahta Mousavi, and Virginia R. de Sa.
2019. An empirical study on post-processing meth-
ods for word embeddings. CoRR, abs/1905.10971.

Ivan Vulić, Goran Glavaš, Roi Reichart, and Anna Ko-
rhonen. 2019. Do we really need fully unsuper-
vised cross-lingual embeddings? In Proceedings of
EMNLP, pages 4406–4417.

Ivan Vulić and Anna Korhonen. 2016. On the role of
seed lexicons in learning bilingual word embeddings.
In Proceedings of ACL, pages 247–257.

Bin Wang, Fenxiao Chen, Angela Wang, and C.-C. Jay
Kuo. 2018. Post-processing of word representations
via variance normalization and dynamic embedding.
CoRR, abs/1808.06305.

Mozhi Zhang, Keyulu Xu, Ken-ichi Kawarabayashi,
Stefanie Jegelka, and Jordan Boyd-Graber. 2019.
Are girls neko or shōjo? Cross-lingual alignment of
non-isomorphic embeddings with iterative normal-
ization. In Proceedings of ACL, pages 3180–3189.

50

A Supplemental Material

We report main BLI results for all 15× 14 = 210
language pairs based on PanLex training and test
data in the supplemental material, grouped by
the source language, and for two dictionary sizes:
|D| = 1, 000 and |D| = 5, 000 (while similar rel-
ative performance is also observed with other dic-
tionary sizes, e.g., |D| = 500). The results are
provided in Table 4–Table 18, and they are the ba-
sis of the results reported in the main paper. The
language codes are available in Table 1 (in the main
paper). As mentioned in the main paper, all results
are obtained with the two α-hyperparameters fixed
to the following values: αS = −0.25, αT = 0.15,
without any further fine-tuning. A more careful
language pair-specific fine-tuning results in even
higher performance for many language pairs.

In all tables, BASELINE refers to the best-
performing weakly supervised projection-based
approach without and with self-learning, as re-
ported in a recent comparative study of Vulić et al.
(2019); 5k and 1k denote the seed dictionary D
size. The scores in bold indicate improvements
over the BASELINE methods. All results are re-
ported as MRR scores: the MRR score of .xyz
should be read as xy.z% (e.g., the score of .432
can be read as 43.2%).

(The actual tables with the full results in all BLI
setups start on the next page.)

51

Bulgarian: BG-

-CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .432 .327 .407 .250 .357 .361 .460 .283 .364 .205 .405 .398 .169 .349
BASELINE (self-learning, 5k) .456 .370 .405 .296 .374 .368 .475 .325 .367 .215 .407 .446 .179 .374
POSTPROC (self-learning, 5k) .473 .419 .420 .302 .386 .392 .489 .330 .371 .211 .419 .462 .203 .379
BASELINE (supervised, 1k) .229 .147 .211 .070 .129 .112 .254 .116 .157 .054 .230 .163 .044 .133
BASELINE (self-learning, 1k) .444 .357 .388 .279 .361 .345 .467 .314 .333 .186 .369 .441 .128 .357
POSTPROC (self-learning, 1k) .458 .408 .398 .286 .377 .376 .478 .321 .329 .188 .375 .458 .133 .362

Table 4: All BLI scores (MRR) with Bulgarian (BG) as the source language.

Catalan: CA-

-BG -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .396 .395 .356 .338 .329 .336 .431 .286 .309 .217 .366 .396 .196 .337
BASELINE (self-learning, 5k) .414 .456 .352 .391 .356 .357 .449 .322 .302 .245 .343 .433 .218 .348
POSTPROC (self-learning, 5k) .434 .510 .359 .409 .359 .373 .454 .326 .322 .242 .347 .448 .234 .351
BASELINE (supervised, 1k) .212 .167 .165 .116 .110 .103 .210 .126 .101 .046 .144 .138 .035 .133
BASELINE (self-learning, 1k) .395 .446 .300 .370 .319 .335 .435 .320 .253 .202 .295 .424 .142 .334
POSTPROC (self-learning, 1k) .413 .508 .309 .393 .321 .351 .439 .326 .274 .204 .306 .438 .146 .332

Table 5: All BLI scores (MRR) with Catalan (CA) as the source language.

Esperanto: EO-

-BG -CA -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .367 .491 .334 .294 .329 .258 .400 .267 .281 .171 .343 .337 .107 .285
BASELINE (self-learning, 5k) .410 .533 .342 .354 .363 .288 .426 .315 .296 .184 .384 .390 .117 .299
POSTPROC (self-learning, 5k) .428 .546 .353 .369 .372 .299 .432 .342 .311 .186 .404 .405 .124 .292
BASELINE (supervised, 1k) .152 .221 .136 .083 .080 .044 .145 .099 .078 .024 .120 .083 .017 .087
BASELINE (self-learning, 1k) .385 .521 .314 .315 .328 .241 .411 .298 .255 .111 .358 .376 .056 .259
POSTPROC (self-learning, 1k) .404 .535 .318 .317 .316 .235 .404 .316 .271 .092 .368 .389 .061 .251

Table 6: All BLI scores (MRR) with Esperanto (EO) as the source language.

Estonian: ET-

-BG -CA -EO -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .393 .333 .271 .238 .430 .287 .432 .212 .258 .191 .360 .328 .168 .307
BASELINE (self-learning, 5k) .404 .357 .307 .238 .443 .301 .459 .223 .251 .185 .358 .383 .178 .331
POSTPROC (self-learning, 5k) .433 .401 .352 .239 .447 .320 .471 .253 .253 .192 .380 .407 .205 .334
BASELINE (supervised, 1k) .200 .121 .116 .099 .200 .069 .188 .065 .095 .052 .179 .112 .041 .102
BASELINE (self-learning, 1k) .381 .346 .297 .208 .437 .277 .449 .204 .215 .148 .337 .377 .108 .313
POSTPROC (self-learning, 1k) .415 .392 .337 .200 .446 .289 .461 .227 .224 .150 .356 .408 .108 .319

Table 7: All BLI scores (MRR) with Estonian (ET) as the source language.

Basque: EU-

-BG -CA -EO -ET -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .292 .391 .245 .250 .233 .211 .259 .183 .197 .109 .242 .240 .095 .240
BASELINE (self-learning, 5k) .310 .441 .277 .248 .270 .206 .283 .225 .189 .106 .237 .287 .094 .248
POSTPROC (self-learning, 5k) .332 .453 .324 .255 .276 .207 .302 .238 .188 .108 .229 .309 .119 .254
BASELINE (supervised, 1k) .120 .142 .077 .088 .048 .037 .077 .049 .059 .021 .071 .053 .018 .055
BASELINE (self-learning, 1k) .276 .428 .253 .213 .247 .166 .266 .213 .147 .060 .169 .261 .056 .212
POSTPROC (self-learning, 1k) .294 .440 .292 .209 .232 .144 .263 .214 .136 .069 .157 .272 .059 .201

Table 8: All BLI scores (MRR) with Basque (EU) as the source language.

52

Finnish: FI-

-BG -CA -EO -ET -EU -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .379 .377 .284 .409 .220 .323 .456 .263 .275 .222 .390 .419 .171 .346
BASELINE (self-learning, 5k) .397 .404 .320 .424 .271 .351 .474 .298 .289 .243 .405 .460 .168 .365
POSTPROC (self-learning, 5k) .423 .430 .386 .456 .302 .386 .477 .311 .329 .258 .434 .481 .196 .370
BASELINE (supervised, 1k) .174 .142 .077 .167 .054 .071 .226 .098 .084 .052 .158 .161 .028 .149
BASELINE (self-learning, 1k) .381 .396 .304 .416 .235 .331 .463 .300 .270 .211 .389 .455 .107 .353
POSTPROC (self-learning, 1k) .409 .413 .372 .447 .259 .369 .466 .307 .303 .228 .424 .477 .112 .360

Table 9: All BLI scores (MRR) with Finnish (FI) as the source language.

Hebrew: HE-

-BG -CA -EO -ET -EU -FI -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .397 .376 .248 .288 .225 .329 .375 .239 .213 .204 .309 .316 .173 .328
BASELINE (self-learning, 5k) .378 .384 .278 .278 .211 .320 .393 .266 .217 .218 .301 .349 .192 .337
POSTPROC (self-learning, 5k) .401 .418 .307 .298 .212 .333 .402 .293 .213 .219 .308 .379 .238 .342
BASELINE (supervised, 1k) .180 .148 .087 .106 .065 .077 .135 .076 .067 .054 .105 .086 .042 .111
BASELINE (self-learning, 1k) .360 .371 .252 .250 .182 .293 .383 .251 .188 .187 .254 .343 .114 .321
POSTPROC (self-learning, 1k) .381 .401 .280 .255 .174 .311 .388 .274 .174 .184 .255 .366 .131 .326

Table 10: All BLI scores (MRR) with Hebrew (HE) as the source language.

Hungarian: HU-

-BG -CA -EO -ET -EU -FI -HE -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .431 .443 .344 .423 .282 .397 .349 .338 .326 .259 .411 .406 .173 .372
BASELINE (self-learning, 5k) .438 .477 .392 .433 .305 .407 .376 .374 .332 .285 .419 .441 .176 .380
POSTPROC (self-learning, 5k) .466 .495 .453 .457 .310 .418 .405 .403 .353 .293 .436 .457 .194 .387
BASELINE (supervised, 1k) .241 .221 .125 .196 .094 .168 .098 .147 .112 .063 .183 .149 .026 .184
BASELINE (self-learning, 1k) .427 .467 .369 .413 .274 .400 .356 .377 .306 .268 .381 .423 .113 .374
POSTPROC (self-learning, 1k) .458 .484 .431 .443 .276 .410 .385 .406 .331 .270 .401 .447 .126 .377

Table 11: All BLI scores (MRR) with Hungarian (HU) as the source language.

Indonesian: ID-

-BG -CA -EO -ET -EU -FI -HE -HU -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .281 .300 .247 .281 .173 .233 .290 .349 .222 .193 .260 .294 .218 .316
BASELINE (self-learning, 5k) .287 .323 .274 .266 .220 .269 .295 .345 .200 .197 .242 .320 .241 .326
POSTPROC (self-learning, 5k) .307 .333 .303 .273 .225 .270 .298 .360 .205 .203 .242 .335 .256 .328
BASELINE (supervised, 1k) .121 .114 .092 .115 .038 .053 .093 .129 .063 .062 .086 .081 .052 .152
BASELINE (self-learning, 1k) .258 .316 .254 .213 .187 .250 .264 .337 .140 .175 .152 .309 .226 .319
POSTPROC (self-learning, 1k) .280 .327 .282 .221 .197 .252 .271 .346 .131 .184 .149 .325 .225 .322

Table 12: All BLI scores (MRR) with Indonesian (ID) as the source language.

Georgian: KA-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .372 .297 .243 .282 .217 .292 .245 .308 .169 .154 .327 .214 .127 .257
BASELINE (self-learning, 5k) .376 .320 .265 .293 .216 .318 .251 .326 .172 .143 .340 .253 .139 .275
POSTPROC (self-learning, 5k) .412 .355 .307 .300 .218 .331 .270 .343 .200 .154 .342 .281 .153 .280
BASELINE (supervised, 1k) .153 .088 .083 .112 .068 .065 .046 .103 .048 .036 .138 .048 .025 .091
BASELINE (self-learning, 1k) .352 .305 .248 .271 .172 .306 .213 .308 .155 .103 .317 .238 .077 .255
POSTPROC (self-learning, 1k) .378 .341 .283 .279 .174 .308 .233 .323 .177 .098 .321 .260 .078 .249

Table 13: All BLI scores (MRR) with Georgian (KA) as the source language.

53

Korean: KO-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -LT -NO -TH -TR

BASELINE (supervised, 5k) .190 .183 .083 .145 .102 .206 .166 .238 .142 .112 .156 .150 .076 .213
BASELINE (self-learning, 5k) .289 .283 .176 .242 .170 .273 .257 .326 .210 .178 .241 .256 .174 .278
POSTPROC (self-learning, 5k) .324 .330 .217 .247 .153 .310 .281 .367 .264 .180 .239 .313 .199 .301
BASELINE (supervised, 1k) .093 .078 .045 .059 .045 .066 .048 .096 .060 .039 .053 .047 .038 .085
BASELINE (self-learning, 1k) .245 .253 .110 .191 .108 .266 .232 .343 .206 .122 .150 .244 .089 .279
POSTPROC (self-learning, 1k) .268 .274 .134 .193 .106 .271 .239 .348 .236 .117 .152 .264 .102 .284

Table 14: All BLI scores (MRR) with Korean (KO) as the source language.

Lithuanian: LT-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -NO -TH -TR

BASELINE (supervised, 5k) .462 .353 .317 .394 .236 .368 .299 .395 .184 .284 .168 .304 .162 .296
BASELINE (self-learning, 5k) .437 .363 .348 .383 .222 .385 .316 .413 .191 .304 .160 .336 .168 .319
POSTPROC (self-learning, 5k) .470 .408 .406 .400 .233 .394 .338 .426 .220 .300 .160 .372 .205 .326
BASELINE (supervised, 1k) .256 .138 .102 .190 .085 .143 .073 .159 .058 .097 .040 .081 .030 .097
BASELINE (self-learning, 1k) .408 .345 .332 .361 .181 .380 .286 .399 .168 .288 .109 .322 .094 .302
POSTPROC (self-learning, 1k) .438 .387 .388 .382 .191 .390 .306 .412 .195 .282 .117 .355 .109 .305

Table 15: All BLI scores (MRR) with Lithuanian (LT) as the source language.

Norwegian: NO-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -TH -TR

BASELINE (supervised, 5k) .394 .424 .323 .389 .261 .396 .319 .441 .306 .291 .220 .366 .188 .325
BASELINE (self-learning, 5k) .422 .457 .377 .395 .328 .419 .353 .452 .340 .298 .250 .351 .197 .341
POSTPROC (self-learning, 5k) .441 .474 .425 .411 .345 .424 .381 .455 .354 .315 .257 .367 .227 .346
BASELINE (supervised, 1k) .203 .198 .128 .172 .075 .153 .078 .206 .132 .088 .057 .132 .032 .123
BASELINE (self-learning, 1k) .411 .444 .374 .371 .300 .412 .336 .443 .339 .268 .228 .315 .140 .332
POSTPROC (self-learning, 1k) .433 .466 .419 .389 .313 .417 .366 .445 .352 .279 .236 .332 .136 .336

Table 16: All BLI scores (MRR) with Norwegian (NO) as the source language.

Thai: TH-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TR

BASELINE (supervised, 5k) .210 .134 .087 .186 .094 .173 .173 .178 .141 .116 .112 .214 .162 .177
BASELINE (self-learning, 5k) .174 .123 .073 .164 .093 .167 .203 .160 .170 .126 .097 .215 .147 .160
POSTPROC (self-learning, 5k) .176 .145 .068 .168 .098 .178 .176 .188 .203 .136 .118 .218 .143 .170
BASELINE (supervised, 1k) .049 .027 .021 .070 .029 .032 .057 .044 .044 .034 .040 .084 .029 .052
BASELINE (self-learning, 1k) .108 .084 .036 .128 .057 .094 .152 .111 .168 .073 .065 .145 .098 .121
POSTPROC (self-learning, 1k) .112 .104 .049 .120 .049 .104 .150 .127 .192 .079 .078 .151 .107 .125

Table 17: All BLI scores (MRR) with Thai (TH) as the source language.

Turkish: TR-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH

BASELINE (supervised, 5k) .344 .360 .215 .307 .230 .294 .319 .378 .336 .205 .196 .295 .311 .170
BASELINE (self-learning, 5k) .351 .376 .238 .309 .244 .322 .323 .397 .370 .229 .214 .280 .346 .183
POSTPROC (self-learning, 5k) .378 .405 .291 .328 .252 .338 .361 .413 .395 .261 .226 .298 .369 .210
BASELINE (supervised, 1k) .150 .133 .052 .112 .062 .093 .076 .167 .131 .053 .050 .099 .073 .028
BASELINE (self-learning, 1k) .327 .364 .204 .274 .209 .310 .301 .398 .363 .201 .194 .215 .344 .137
POSTPROC (self-learning, 1k) .361 .394 .259 .289 .217 .326 .336 .411 .390 .245 .200 .234 .368 .142

Table 18: All BLI scores (MRR) with Turkish (TR) as the source language.

54

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 55–60
July 9, 2020. c©2020 Association for Computational Linguistics

Adversarial Training for Commonsense Inference

Lis Pereira1, Xiaodong Liu2, Fei Cheng3, Masayuki Asahara4, Ichiro Kobayashi1

1 Ochanomizu University 2 Microsoft Research 3 Kyoto University
4 The National Institute for Japanese Language and Linguistics (NINJAL)

kanashiro.pereira@ocha.ac.jp, xiaodl@microsoft.com, feicheng@i.kyoto-u.ac.jp
masayu-a@ninjal.ac.jp, koba@is.ocha.ac.jp

Abstract

We propose an AdversariaL training algorithm
for commonsense InferenCE (ALICE). We ap-
ply small perturbations to word embeddings
and minimize the resultant adversarial risk to
regularize the model. We exploit a novel com-
bination of two different approaches to esti-
mate these perturbations: 1) using the true la-
bel and 2) using the model prediction. Without
relying on any human-crafted features, knowl-
edge bases or additional datasets other than
the target datasets, our model boosts the fine-
tuning performance of RoBERTa, achieving
competitive results on multiple reading com-
prehension datasets that require commonsense
inference.

1 Introduction

Commonsense knowledge is often necessary for
natural language understanding. As shown in Table
1, we can understand that the writer needs help
to get dressed and seems upset with this situation,
indicating that he or she is probably not a child.
Thus, we can infer that a possible reason that the
writer needs to be dressed by other people is that
he or she may have a physical disability (Huang
et al., 2019). Although a simple task for humans,
it is still challenging for computers to understand
and reason about commonsense.

Commonsense inference in natural language pro-
cessing (NLP) is generally evaluated via machine
reading comprehension task, in the format of se-
lecting plausible responses with respect to natural
language queries. Recent approaches are based on
the use of pre-trained Transformer-based language
models such as BERT (Devlin et al., 2019). Some
approaches rely solely on these models by adopting
either a single or multi-stage fine-tuning approach
(by fine-tuning using additional datasets in a step-
wise manner) (Li and Xie, 2019; Sharma and Roy-
chowdhury, 2019; Liu and Yu, 2019; Huang et al.,

Paragraph: It’s a very humbling experience
when you need someone to dress you every
morning, tie your shoes, and put your hair
up. Every menial task takes an unprecedented
amount of effort. It made me appreciate Dan
even more. But anyway I shan’t dwell on this
(I’m not dying after all) and not let it detract
from my lovely 5 days with my friends visiting
from Jersey.

Question: What’s a possible reason the writer
needed someone to dress him every morning?

Option1: The writer doesn’t like putting effort
into these tasks.
Option2: The writer has a physical disability.
Option3: The writer is bad at doing his own hair.
Option4: None of the above choices.

Table 1: Example from the CosmosQA dataset (Huang
et al., 2019). The task is to identify the correct answer
option. The correct answer is in bold.

2019; Zhou et al., 2019), while others further en-
hance their word representations with knowledge
bases such as ConceptNet (Jain and Singh, 2019;
Da, 2019; Wang et al., 2020). However, due to the
often limited data from the downstream tasks and
the extremely high complexity of the pre-trained
model, aggressive fine-tuning can easily make the
adapted model overfit the data of the target task,
making it unable to generalize well on unseen data
(Jiang et al., 2019). Moreover, some researchers
have shown that such pre-trained models are vul-
nerable to adversarial attacks (Jin et al., 2020).

Inspired by the recent success of adversarial
training in NLP (Zhu et al., 2020; Jiang et al.,
2019), our AdversariaL training algorithm for com-
monsense InferenCE (ALICE) focuses on improv-
ing the generalization of pre-trained language mod-

55

els on downstream tasks by enhancing their robust-
ness in the embedding space. More specifically,
during the fine-tuning stage of Transformer-based
models, e.g. RoBERTa (Liu et al., 2019b), random
perturbations are added to the embedding layer
to regularize the model by updating the param-
eters on these adversarial embeddings. ALICE
exploits a novel way of combining two different
approaches to estimate these perturbations: 1) us-
ing the true label and 2) using the model predic-
tion. Experiments show that we were able to boost
the performance of RoBERTa on multiple reading
comprehension datasets that require commonsense
inference, achieving competitive results with state-
of-the-art approaches.

2 ALICE

Given a dataset D of N training examples, D =
{(x1, y1), (x2, y2), ..., (xN , yN)}, the objective of
supervised learning is to learn a function f(x; θ)
that minimizes the empirical risk, which is defined
by minθ E(x,y)∼D[l(f(x; θ), y)]. Here, the func-
tion f(x; θ) maps input sentences x to an output
space y, and θ are learnable parameters. While this
objective is effective to train a neural network, it
usually suffers from overfitting and poor general-
ization to unseen cases (Goodfellow et al., 2015;
Madry et al., 2018). To alleviate these issues, one
can use adversarial training, which has been pri-
marily explored in computer vision (Goodfellow
et al., 2015; Madry et al., 2018). The idea is to per-
turb the data distribution in the embedding space
by performing adversarial attacks. Specifically, its
objective is defined by:

min
θ
E(x,y)∼D[max

δ
l(f(x+ δ; θ), y)], (1)

where δ is the perturbation added to the embed-
dings. One challenge of adversarial training is how
to estimate this perturbation δ, which is to solve
the inner maximization, maxδ l(f(x+ δ; θ), y). A
feasible solution is to approximate it by a fixed
number of steps of a gradient-based optimization
approach (Madry et al., 2018).

Based on recent successful cases that applied ad-
versarial training to NLP (Jiang et al., 2019; Miyato
et al., 2018), the approaches to estimate δ can be di-
vided into two categories: adversarial training that
uses the label y (Zhu et al., 2020) and adversarial
training that uses the model prediction f(x; θ), i.e.
a ”virtual” label (Miyato et al., 2018; Jiang et al.,
2019). We hypothesize that these two categories

complement each other: the first one is to improve
the robustness of our target label, by avoiding an in-
crease in the error of the unperturbed inputs, while
the second term enforces the smoothness of the
model, encouraging the output of the model not to
change much, when injecting a small perturbation
to the input. Thus, ALICE proposes a novel algo-
rithm by combining these two approaches, which
is defined by:

min
θ
E(x,y)∼D[max

δ1
l(f(x+ δ1; θ), y)+

αmax
δ2

l(f(x+ δ2; θ), f(x; θ))],
(2)

where δ1 and δ2 are two perturbations, bounded by
a general lp norm ball, estimated by a fixedK steps
of the gradient-based optimization approach. In our
experiments, we set p =∞. It has been shown that
a larger K can lead to a better estimation of δ (Qin
et al., 2019; Madry et al., 2018). However, this
can be expensive, especially in large models, e.g.
BERT and RoBERTa. Thus, K is set to 1 for a
better trade-off between speed and performance.
Note that α is a hyperparameter balancing these
two loss terms. In our experiments, we set α to 1.

3 Experiments
3.1 Datasets and Evaluation Metrics
We evaluate ALICE on three reading comprehen-
sion benchmarks that require commonsense infer-
ence:
CosmosQA (Huang et al., 2019): a large-scale
dataset that focuses on people’s everyday narra-
tives, asking questions about the likely causes or
effects of events that require reasoning beyond the
exact text spans in the context. It has 35,888 ques-
tions on 21,886 distinct contexts taken from blogs
of personal narratives. Each question has four an-
swer candidates, one of which is correct. 93.8%
of the dataset requires contextual commonsense
reasoning.
MCScript2.0 (Ostermann et al., 2019b): a dataset
focused on short narrations on different everyday
activities (e.g. baking a cake, taking a bus, etc.). It
has 19,821 questions on 3,487 texts. Each question
has two answer candidates, one of which is correct.
Roughly half of the questions require inferences
over commonsense knowledge.
MC-TACO (Zhou et al., 2019): a dataset that en-
tirely focuses on a specific reasoning capablity:
temporal commonsense. It considers five temporal
properties, (1) duration (how long an event takes),
(2) temporal ordering (typical order of events), (3)

56

Dataset #Train #Dev #Test #Label Task Metrics
CosmosQA 25,262 2,985 6,963 4 Relevance Ranking Accuracy
MCScript2.0 14,191 2,020 3,610 2 Relevance Ranking Accuracy
MCTACO - 3,783 9,442 2 Pairwise Text Classification Exact Match (EM)/F1

Table 2: Summary of the three datasets: CosmosQA, MCScript2.0 and MCTACO.

typical time (when an event occurs), (4) frequency
(how often an event occurs), and (5) stationarity
(whether a state is maintained for a very long time
or indefinitely). It contains 13k tuples, each con-
sisting of a sentence, a question, and a candidate
answer, that should be judged as plausible or not.
The sentences are taken from different sources such
as news, Wikipedia and textbooks.

The summary of the datasets is in Table 2. For
the MCTACO dataset, no training set is available.
Following (Zhou et al., 2019), we use the dev set
for fine-tuning the model. We perform 5-fold cross-
validation for fine-tuning the parameters.

We evaluate CosmosQA and MCScript2.0 in
terms of accuracy. Following (Ostermann et al.,
2019a), we also report for the MCScript2.0 ac-
curacy on the commonsense based questions and
accuracy on the questions that are not common-
sense based. For the MCTACO, we report the exact
match (EM) and F1 scores, following (Zhou et al.,
2019). EM measures how many questions a system
correctly labeled all candidate answers, while F1
measures the average overlap between one’s predic-
tions and the ground truth. Our implementation for
pairwise text classification and relevance ranking
tasks are based on the MT-DNN framework1 (Liu
et al., 2019a, 2020).

3.2 Implementation Details

The RoBERTaLARGE model (Liu et al., 2019b) was
used as the text encoder. We used ADAM (Kingma
and Ba, 2015) as our optimizer with a learning rate
in the range ∈ {1× 10−5, 2× 10−5, 3× 10−5, 5×
10−5, 5 × 10−5} and a batch size ∈ {16, 32, 64}.
The maximum number of epochs was set to 10. A
linear learning rate decay schedule with warm-up
over 0.1 was used, unless stated otherwise. We also
set the dropout rate of all the task specific layers
as 0.1, except 0.3 for MCTACO. To avoid gradient
exploding, we clipped the gradient norm within 1.
All the texts were tokenized using wordpieces and
were chopped to spans no longer than 512 tokens.

3.3 Baselines

We compare ALICE to a list of state-of-the-art mod-
els, as shown in Table 3. BERT + unit normaliza-
tion (Zhou et al., 2019) is the BERT base model.
The authors further add unit normalization to tem-
poral expressions in candidate answers and fine-
tune on the MC-TACO dataset. RoBERTaLARGE
is our re-implementation of the large RoBERTa
model by (Liu et al., 2019b). PSH-SJTU (Li and
Xie, 2019) is based on multi-stage fine-tuning XL-
NET (Yang et al., 2019) on RACE (Lai et al., 2017),
SWAG (Zellers et al., 2018) and MC-Script2.0
datasets. K-ADAPTER (Wang et al., 2020) fur-
ther enhances RoBERTa word representations with
multiple knowledge sources, such as factual knowl-
edge obtained through Wikipedia and Wikidata and
linguistic knowledge obtained through dependency
parsing web texts. SMART (Jiang et al., 2019) is
an adversarial training model for fine-tuning pre-
trained language models through regularization.
SMART uses the model prediction, f(x; θ), for
estimating the perturbation δ. This model recently
obtained state-of-the-art results on a bunch of NLP
tasks on the GLUE benchmark (Wang et al., 2018).
We also compare ALICE with a baseline that uses
only the label y for estimating the perturbation δ
(called model ADV hereafter) (Madry et al., 2018).

3.4 Results

The results are summarized in Table 3. Overall,
we observed that adversarial methods, i.e. ADV,
SMART and ALICE, were able to achieve competi-
tive results over the baselines, without using any ad-
ditional knowledge source, and without using any
additional dataset other than the target task datasets.
These results suggest that adversarial training lead
to a more robust model and help generalize better
on unseen data.

ALICE consistently oupterformed SMART
(which overall outperformed ADV) across all three
datasets on both dev and test sets, indicating that
adversarial training that uses the label y and ad-
versarial training that uses the model prediction

1https://github.com/namisan/mt-dnn

57

CosmosQA MCScript2.0 MCTACO
Model Acc Acc Acccs Accood EM F1

Development Set Results
RoBERTaLARGE (Liu et al., 2019b) 80.60 90.0 87.7 92.1 44.12 64.85
ADV 81.14 92.1 89.8 94.3 52.70 78.12
SMART (Jiang et al., 2019) 82.00 93.6 91.8 95.2 53.79 78.31
ALICE 83.60 93.8 91.7 95.7 58.02 78.64

Test Set Results
Human Performance 94.00 97.0 - - 75.80 87.10
BERT + unit normalization (Zhou et al., 2019) - - - - 42.70 69.90
T5-3B fine-tuned + number normalization* - - - - 59.08 79.46
PSH-SJTU (Li and Xie, 2019) - 90.6 90.3 91.5 - -
K-ADAPTER (Wang et al., 2020) 81.83 - - - - -
GB-KSI(v2)* 83.97 - - - - -
RoBERTaLARGE (Liu et al., 2019b) - 88.8 87.0 90.7 51.05 76.85
ADV - 91.1 90.3 92.0 54.27 77.23
SMART (Jiang et al., 2019) 81.90 91.8 90.5 93.4 54.80 78.03
ALICE 84.57 92.5 91.6 93.5 56.45 79.50

Table 3: Development and test results of CosmosQA, MCScript 2.0 and MCTACO. The best results are in bold.
Note that RoBERTaLARGE, SMART and ALICE models use RoBERTaLARGE as the text encoder, and for a fair
comparison, all these results are produced by ourselves. On the test results, note that CosmosQA and MCTACO
are scored by using the official evaluation server (https://leaderboard.allenai.org/). * denotes unpublished work and
scores were obtained from the evaluation server on April 16, 2020. Acccs denotes the accuracy on commonsense
based questions and Accood denotes the accuracy on questions that are not commonsense based, i.e. out-of-domain
questions.

f(x; θ) are complementary, leading to better re-
sults. For example, on the CosmosQA dataset, we
obtained a dev-set accuracy of 83.6% with AL-
ICE, a 1.6% and 3.0% absolute gains over SMART
and RoBERTaLARGE, respectively. On the blind
test-set, ALICE outperforms by a large margin
K-ADAPTER, a model that enhances RoBERTa
word representations with multiple knowledge
sources. Our submission to the CosmosQA leader-
board achieved a test-set accuracy of 84.57%,
ranking first place among all submissions (as of
April 16, 2020). On the MCScript2.0 dataset,
ALICE obtained a dev-set accuracy of 93.8%
in total, a 0.2% and 3.8% absolute gains over
SMART and RoBERTaLARGE, respectively. On
the commonsense based questions, ALICE under-
performed SMART by 0.1% and outperformed
RoBERTaLARGE by 4.0%. On the out-of-domain
questions, ALICE obtained 0.5% and 3.6% abso-
lute gains over SMART and RoBERTaLARGE, re-
spectively. On the MCScript2.0 test-set, ALICE
outperformed all baselines (on all types of ques-
tions), including SMART, indicating that it can
generalize better to unseen cases. Moreover, AL-
ICE outperformed PSH-SJTU, which is based on

XLNET, and used additional datasets other than
MCScript2.0, while ALICE does not use any ad-
ditional dataset. On the MCTACO dataset, AL-
ICE obtained on the dev-set 56.20% EM score,
a 2.41% and 12.8% absolute gains over SMART
and RoBERTaLARGE, respectively, and 79.06% F1
score, a 0.75% and 14.21% absolute gains over
SMART and RoBERTaLARGE, respectively. On the
test-set, ALICE outperformed SMART obtaining
absolute gains of 1.65% and 1.47% on EM and F1
scores, respectively. Compared to the T5-3B fine-
tuned + number normalization model, which uses
T5, a much larger model (with 3B parameters) than
RoBERTa (300M parameters), ALICE obtained
competitive results, outperforming by 0.04 on F1
score and obtaining 2.63% lower score on EM. Re-
garding the training time, ALICE takes on average
4X more time to train compared to standard fine-
tuning.

4 Conclusion
We proposed ALICE, a simple and efficient ad-
versarial training algorithm for fine-tuning large
scale pre-trained language models. Our experi-
ments demonstrated that it achieves competitive

58

results on multiple machine reading comprehen-
sion datasets, without relying on any additional re-
source other than the target task dataset. Although
in this paper we focused on the machine reading
comprehension task, ALICE can be generalized to
solve other downstream tasks as well, and we will
explore this direction as future work.

Acknowledgments

We thank the reviewers for their helpful feedback.
This work has been supported by the project
KAKENHI ID: 18H05521.

References
Jeff Da. 2019. Jeff da at coin-shared task. In Proceed-

ings of the First Workshop on Commonsense Infer-
ence in Natural Language Processing, pages 85–92.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Proceedings of NAACL-HLT 2019, pages 4171–
4186.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. ICLR 2015.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos qa: Machine reading
comprehension with contextual commonsense rea-
soning. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing, pages 2391–2401.

Yash Jain and Chinmay Singh. 2019. Karna at coin
shared task 1: Bidirectional encoder representations
from transformers with relational knowledge for ma-
chine comprehension with common sense. In Pro-
ceedings of the First Workshop on Commonsense In-
ference in Natural Language Processing, pages 75–
79.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-
trained natural language models through princi-
pled regularized optimization. arXiv preprint
arXiv:1911.03437.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is bert really robust? natural lan-
guage attack on text classification and entailment.
AAAI 2020.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. ICLR (Poster)
2015.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 785–794.

Zhexi Zhang Wei Zhu Zheng Li Yuan Ni Peng Gao
Junchi Yan Li, Xiepeng and Guotong Xie. 2019. Pin-
gan smart health and sjtu at coin-shared task: utiliz-
ing pre-trained language models and common-sense
knowledge in machine reading tasks. In In Proceed-
ings of the First Workshop on Commonsense Infer-
ence in Natural Language Processing, pages 93–98,
Hong Kong.

Chunhua Liu and Dong Yu. 2019. Blcu-nlp at coin-
shared task1: Stagewise fine-tuning bert for com-
monsense inference in everyday narrations. In Pro-
ceedings of the First Workshop on Commonsense In-
ference in Natural Language Processing, pages 99–
103.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019a. Multi-task deep neural networks
for natural language understanding. Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4487–4496.

Xiaodong Liu, Yu Wang, Jianshu Ji, Hao Cheng,
Xueyun Zhu, Emmanuel Awa, Pengcheng He,
Weizhu Chen, Hoifung Poon, Guihong Cao, and
Jianfeng Gao. 2020. The microsoft toolkit of multi-
task deep neural networks for natural language un-
derstanding. arXiv preprint arXiv:2002.07972.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018.
Towards deep learning models resistant to adversar-
ial attacks. ICLR 2018.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-
supervised learning. IEEE transactions on pat-
tern analysis and machine intelligence, 41(8):1979–
1993.

Simon Ostermann, Michael Roth, and Manfred Pinkal.
2019a. Mcscript2. 0: A machine comprehension
corpus focused on script events and participants.
Proceedings of the Eighth Joint Conference on Lex-
ical and Computational Semantics (*SEM 2019),
pages 103–117.

Simon Ostermann, Sheng Zhang, Michael Roth, and
Peter Clark. 2019b. Commonsense inference in nat-
ural language processing (coin)-shared task report.
In Proceedings of the First Workshop on Common-
sense Inference in Natural Language Processing,
pages 66–74.

59

Chongli Qin, James Martens, Sven Gowal, Dilip Kr-
ishnan, Alhussein Fawzi, Soham De, Robert Stan-
forth, Pushmeet Kohli, et al. 2019. Adversarial
robustness through local linearization. 33rd Con-
ference on Neural Information Processing Systems
(NeurIPS 2019).

Prakhar Sharma and Sumegh Roychowdhury. 2019. Iit-
kgp at coin 2019: Using pre-trained language mod-
els for modeling machine comprehension. In Pro-
ceedings of the First Workshop on Commonsense In-
ference in Natural Language Processing, pages 80–
84.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353–355.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Cuihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020. K-adapter: Infusing knowl-
edge into pre-trained models with adapters. arXiv
preprint arXiv:2002.01808.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754–5764.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin
Choi. 2018. Swag: A large-scale adversarial dataset
for grounded commonsense inference. Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 93–104.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan
Roth. 2019. ”going on a vacation” takes longer than”
going for a walk”: A study of temporal common-
sense understanding. Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3363–3369.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Thomas
Goldstein, and Jingjing Liu. 2020. Freelb: En-
hanced adversarial training for language understand-
ing. ICLR 2020.

60

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 61–71
July 9, 2020. c©2020 Association for Computational Linguistics

Evaluating Natural Alpha Embeddings on Intrinsic and Extrinsic Tasks

Riccardo Volpi
Machine Learning and Optimization,

Romanian Institute of
Science and Technology (RIST),

Cluj-Napoca, Romania
volpi@rist.ro

Luigi Malagò
Machine Learning and Optimization,

Romanian Institute of
Science and Technology (RIST),

Cluj-Napoca, Romania
malago@rist.ro

Abstract

Skip-Gram is a simple, but effective, model to
learn a word embedding mapping by estimat-
ing a conditional probability distribution for
each word of the dictionary. In the context
of Information Geometry, these distributions
form a Riemannian statistical manifold, where
word embeddings are interpreted as vectors in
the tangent bundle of the manifold. In this pa-
per we show how the choice of the geometry
on the manifold allows impacts on the perfor-
mances both on intrinsic and extrinsic tasks, in
function of a deformation parameter alpha.

1 Introduction

Word embeddings are compact representations for
the words of a dictionary. Rumelhart et al. (1986)
first introduced the idea of using the internal repre-
sentation of a neural network to construct a word
embedding. Bengio et al. (2003) employ a neu-
ral network to predict the probability of the next
word given the previous ones. Mikolov et al. (2010)
proposed the use of a recurrency language model
based on RNN, to learn the vector representations.
More recently, this approach has been exploited
further, with great success by means of bidirec-
tional LSTM (Peters et al., 2018) and transform-
ers (Radford et al., 2018; Devlin et al., 2018; Yang
et al., 2019). In this paper we focus on Skip-
Gram (SG), a well-known model for the condi-
tional probability of the context of a given central
word, which it has been shown to work well at effi-
ciently capturing syntactic and semantic informa-
tion. SG is at the basis of many popular word em-
beddings algorithms, such as Word2Vec (Mikolov
et al., 2013a,b), the contpdfinfoinuous bag of
words (Mikolov et al., 2013a,b), and models based
on weighted matrix factorization of the global co-
occurrences as GloVe (Pennington et al., 2014),
cf. Levy and Goldberg (2014). These methods are

deeply related, Levy and Goldberg showed how
Word2Vec SG with negative sampling is effectively
performing a matrix factorization of the Shifted
Positive PMI (Levy and Goldberg, 2014).

It has been noted (Mikolov et al., 2013c) how,
once the embedding space has been learned, syn-
tactic and semantic analogies between words trans-
late in linear relations between the respective word
vectors. There have been numerous works investi-
gating the reason of the correspondence between
linear properties and word relations. Pennington et
al. gave a very intuitive explanation in their paper
on GloVe (Pennington et al., 2014). More recently
Arora et al. (Arora et al., 2016) tried to study this
property by introducing a hidden Markov model,
under some regularity assumptions on the distribu-
tion of the word embedding vectors, cf. (Mu et al.,
2017). Word embeddings are also often used as in-
put for another computational model, to solve more
complex inference tasks. The evaluation of the
quality of a word embedding, which ideally should
encode syntactic and semantic information, is not
easy to be determined and different approaches
have been proposed in the literature. This evalu-
ation can be in terms of performance on intrinsic
tasks like word similarity (Bullinaria and Levy,
2007, 2012; Pennington et al., 2014; Levy et al.,
2015), or by solving word analogies (Mikolov et al.,
2013c,a), however several authors (Tsvetkov et al.,
2015; Schnabel et al., 2015) has showed a low de-
gree of correlation between the quality of an em-
bedding for word similarities and analogies on one
side, and on downstream (extrinsic) tasks, for in-
stance on classification or prediction, to which the
embedding is given in input.

Several works have highlighted the effectiveness
of post-processing techniques (Bullinaria and Levy,
2007, 2012), such as PCA (Raunak, 2017; Mu et al.,
2017), focusing on the fact that certain dominant
components are not carriers of semantic nor syn-

61

tactic information and thus act like noise for de-
terminate tasks of interest. A different approach
which still acts on the learned vectors after training
has been recently proposed by Volpi and Malagò
(2019). The authors present a geometrical frame-
work in which word embeddings are represented
as vectors in the tangent space of a probability sim-
plex. A family of word embeddings called natural
alpha embeddings is introduced, where α is a de-
formation parameter for the geometry of the proba-
bility simplex, known in Information Geometry in
the context of α-connections (Amari and Nagaoka,
2000; Amari, 2016). Noticeably, alpha word em-
beddings include the classical word embeddings
as a special case. In this paper we provide an ex-
perimental evaluation of natural alpha embeddings
over different tasks, both intrinsic and extrinsic, in-
cluding word similarities and analogies, as well as
downstream tasks, such as document classification
and sentiment analysis, in order to study the impact
of the geometry on performances.

2 Conditional Models and the
Embeddings Structure

The Skip-Gram conditional model (Mikolov et al.,
2013b; Pennington et al., 2014) allows the unsu-
pervised training of a set of word-embeddings, by
predicting the conditional probability of any word
χ to be in the context of a central word w

p(χ|w) = pw(χ) =
exp(uTwvχ)

Zw
(1)

with Zw =
∑

χ′∈D exp(uTwvχ′) partition function.
The conditional model represents an exponential
family in the simplex, parameterized by two matri-
cesU and V of size n×d, where n is the cardinality
of the dictionary D , and d is the size of the embed-
dings. We will refer to the rows of a matrix V as
vχ or V χ, and to its columns as Vk. It is common
practice in the literature of word embedding to con-
sider uw or alternatively uw + vw as embedding
vectors for w (Bullinaria and Levy, 2012; Mikolov
et al., 2013a,b; Pennington et al., 2014; Raunak,
2017). In the remaining part of this section we
briefly review the natural alpha embeddings and
limit embeddings, based on Information Geome-
try framework. We refer the reader to Volpi and
Malagò (2019) for more details and mathematical
derivations.

2.1 Alpha Embeddings

After training, the matrices U and V are fixed. For
each w, the conditional model pw(χ) is an expo-
nential family E in the n− 1 dimensional simplex,
where n is the size of the dictionary. This models
the probability of a word χ in the context, when w
is the central word. The sufficient statistics of this
model are determined by the columns of V , while
each row uw of U can be seen as an assignment for
the natural parameters, i.e., each row identifies a
probability distribution.

According to the language of Information Ge-
ometry, a statistical model can be modelled as a
Riemannian manifold endowed with the Fisher
information matrix and with a family of α-
connections (Amari, 1985; Shun-Ichi and Hiroshi,
2000; Amari, 2016). The alpha embeddings are
defined up to the choice of a reference distribution
p0. The natural alpha embedding of a given wordw
is defined as the projection of the logarithmic map
Logαp0 w onto the tangent space of the submodel
Tp0E . The main intuition is that a word embed-
ding for w corresponds to the vector in the tangent
space which allows to reach the distribution of the
context of w from p0. Deforming the simplex con-
tinuously with a family of isometries depending
from a parameter alpha, and by considering a fam-
ily of α-logarithmic maps, depending on the choice
of the α-connection, a family of natural alpha em-
beddings Wα

p0(w) can be defined as a function of
the deformation parameter α

Wα
p0(w) = Πα

0

(
Logαp0 pw

)

= I(p0)
−1∑

χ

lαp0 w(χ) ∆V (p0)
χ (2)

where ∆V (p0) = V − Ep0 [V] is the matrix of
centered sufficient statistics in p0 and

lαp0 w(χ) =





p0(χ)(ln pw(χ)− ln p0(χ)) α = 1

p0(χ)
2

1−α

((
pw(χ)
p0(χ)

) 1−α
2 − 1

)
α 6= 1

.

(3)

The Fisher metric is simply computed as the metric
for an exponential family (Amari and Nagaoka,
2000)

I(p0) = Ep0
[
∆V (p0)

T∆V (p0)
]
, (4)

and it does not depend on alpha since the family
of alpha divergences induces the same Fisher infor-
mation metric for any value of alpha.

62

The notion of alpha embeddings can be used
both for downstream tasks and also to evaluate
similarities and analogies in the tangent space of
the manifold (Volpi and Malagò, 2019). Given two
words a and b, a measure of similarity is defined
by

simα
p0(a, b) =

〈Wα
p0(a),Wα

p0(b)〉I(p0)
||Wα

p0(a)||I(p0)||Wα
p0(b)||I(p0)

,

(5)
while analogies of the form a : b = c : d
can be solved by minimizing an analogy measure
κ
(α)
p0 (pa, pb, pc, pd) defined as
∥∥Wα

p0(b)−Wα
p0(a)−Wα

p0(d) +Wα
p0(c)

∥∥
I(p0)

.

(6)
It is possible to show that for α = 1 and choosing
p0 equal to the uniform distribution, the embed-
dings of Eq. (2) reduce to the standard vectors uw.
Furthermore, by substituting the Fisher Informa-
tion matrix I(p0) with the identity1, Eqs. (5) and
(6) reduce to the standard formulas used in the lit-
erature for similarities and analogies.

The embedding vectors u+ v have been shown
to provide better results (Pennington et al., 2014)
than simply u. In the context of natural alpha em-
beddings, the vectors u+ v can be interpreted as a
recentering of the natural parameters u of the expo-
nential family. This corresponds to a reweighting
of the probabilities in Eq. (1)

p(+)(χ|w) = Nw exp(vwvχ)p(χ|w) (7)

based on a change of reference measure propor-
tional to exp(vwvχ), i.e., by weighting more those
words χ in the context whose outer vectors are
aligned to the outer vector of the central word w.

2.2 Limit Embeddings
The behavior of the alpha embeddings for α pro-
gressively approaching minus infinity turns out to
be particularly interesting. In this case, lαp0 w(χ) is
progressively more and more peaked on

χ∗w = arg max
χ

pw(χ)

p0(χ)
, (8)

and presents a growing norm, see Eq. (3). By nor-
malizing these alpha embeddings to preserve the
direction of the tangent vector, a simple formula

1Proposition 3 in Volpi and Malagò (2019) provides condi-
tions under which Fisher Information matrix is isotropic, i.e.,
proportional to the identity.

can be obtained depending only on the χ∗w row
of the matrix of sufficient statistics ∆V (p0). The
normalized limit embeddings then simplify to

LWα
p0(w) = lim

α→−∞
Wα

0 (w)

= I(p0)
−1∆V (p0)

χ∗w ,
(9)

leading to simple geometrical methods in the limit.
Let us notice that the same row ∆V a can be associ-
ated to multiple words, thus limit embeddings are
also naturally inducing a clustering in the embed-
ding space.

3 Experiments

We considered two corpora: English Wikipedia
dump October 2017 (enwiki), with 1.5B words,
and its augmented version composed by Guten-
berg (Gutenberg), English Wikipedia and Book-
Corpus (Zhu et al., 2015; BookCorpus; Kobayashi)
(geb), with 1.8B words. For each corpus we trained
a set of GloVe word embeddings (Pennington et al.,
2014) with vector sizes of 300 and 50, window size
of 10, until convergence for a maximum of 1,000
epochs (more details in Appendix A).

The embeddings in Eq. (2) will be denoted with
‘E’ in figures and tables, while the limit embeddings
in Eq. (9) will be denoted with ‘LE’. Embeddings
have been normalized either with the Fisher Infor-
mation matrix (F) or with the Identity (I). Similarly
after normalization, the scalar products can be com-
puted with the respective metric (on the tasks that
requires scalar product calculation). In this study,
normalization and scalar product are always us-
ing the same metric. For the reference distribution
needed for the computation of the alpha embed-
dings we have chosen the uniform distribution (0),
the unigram distribution of the model (u) - obtained
by marginalization of the joint distribution learned
by the model, or the unigram distribution estimated
from the corpus data (ud). Embeddings are denoted
by ‘U’, if in the computation of Eqs. (2) and (9),
the formula used for pw is Eq. (1), while they will
be denoted by ‘U+V’ if Eq. (7) is used instead.

We evaluated the alpha embeddings on intrin-
sic (similarities, analogies, concept categorization)
and extrinsic (document classification, sentiment
analysis) tasks.

3.1 Intrinsic Tasks
In Fig. 1 we report results for similarities and
analogies with embedding size 300. For simi-
larities we use: ws353 (Finkelstein et al., 2001),

63

Table 1: Spearman correlations for similarities tasks. WG5 inside the enwiki and geb section are the wikigiga5
pretrained vectors on 6B words (Pennington et al., 2014) tested for comparison on the dictionary of the smaller
corpora enwiki and geb. Lastly, U and U+V are the standard methods with the word embeddings vectors. PM
are the accuracies reported by Pennington et al. (2014) on enwiki, BDK is the best setup across tasks (varying
hyperparameters) reported by Baroni et al. (2014) and LGD are the best methods in cross-validation with fixed
window size of 10 and 5 (for varying hyperparameters) reported by Levy et al. (2015).

method ws353 mc rg scws ws353sim ws353rel men mturk287 rw simlex999 all

en
w

ik
i LE-U+V-ud-F 75.5 83.4 81.5 63.5 77.8 69.2 75.6 60.1 55.6 41.6 62.6

WG5-U+V 65.1 73.8 77.6 62.2 71.3 60.7 77.2 65.7 51.5 41.0 61.3
U 60.2 69.3 69.8 58.3 67.1 56.4 69.2 67.2 47.1 31.4 53.6

U+V 63.8 74.5 75.2 58.7 69.5 60.9 71.6 67.3 45.5 32.2 55.1

ge
b

LE-U+V-ud-F 77.0 81.2 83.5 65.0 80.3 68.7 79.6 62.4 59.3 46.9 65.2
WG5-U+V 65.1 73.8 77.9 61.8 71.3 60.7 77.2 65.7 53.2 40.6 60.4

U 61.3 73.0 76.3 58.7 68.6 54.0 68.7 68.1 48.9 30.6 51.9
U+V 64.9 77.4 79.9 59.1 71.5 58.8 71.4 68.1 48.5 32.5 53.7

PM 6B 65.8 72.7 77.8 53.9 - - - - 38.1 - -
BDK 73 - 83 - 78 68 80 - - - -

LGD win5 - - - - 74.5 61.7 74.6 63.1 41.6 38.9 -
LGD win10 - - - - 74.6 64.3 75.4 61.6 26.6 37.5 -

Figure 1: Word similarities (top) and word analogies
(bottom) for different values of α.

mc (Miller and Charles, 1991), rg (Rubenstein and
Goodenough, 1965), scws (Huang et al., 2012),
men (Bruni et al., 2014), mturk287 (Radinsky et al.,
2011), rw (Luong et al., 2013) and simlex999 (Hill
et al., 2015). For analogies we use the Google
analogy dataset (Mikolov et al., 2013a). The limit
embeddings (colored dotted lines) achieve good
performances on both tasks, above the competitor
methods from the literature U and U+V centered
and normalized by column, as described in Pen-
nington et al. (2014). Comparison with baseline
methods from literature on word similarity is pre-
sented in Tables 1, we compare with the limit em-
beddings since they usually seem to be the best
performing on the similarity task, see Fig. 1 top
row. The limit embedding methods reported in
the table outperform Wiki Giga 5 pretrained vec-
tors (Pennington et al., 2014) (6B words corpus)

and other comparable baselines from the literature
with similar window size. In Table 2 we report

Table 2: Analogy tasks for the different methods on
enwiki and geb. The best alpha is selected with a 3-
fold cross validation (α between -10 and 10), unless
the limit embedding is the best performing. PM are
the accuracies reported by Pennington et al. (2014) on
enwiki, BDK is the best setup across tasks (varying hy-
perparameters) reported by Baroni et al. (2014).

method sem syn tot

en
w

ik
i E-U+V-0-I 84.5± 0.4 67.33± 0.6 74.4± 0.1

WG5-U+V 79.4 67.5 72.6
U 77.8 62.1 68.9

U+V 80.9 63.4 70.9

ge
b

E-U+V-0-I 83.8± 0.4 72.2± 0.4 76.7± 0.3
WG5-U+V 78.7 65.2 70.7

U 75.7 66.8 70.4
U+V 80.0 68.5 73.2

PM 1.6B 80.8 61.5 70.3
PM 6B 77.4 67.0 71.7
BDK 80.0 68.5 73.2

best performances on analogy task on alpha embed-
dings, where alpha is selected with cross-validation
(Table 3). For enwiki syn, the limit embedding
has been found to work better instead. The errors
reported are obtained averaging the performances
on test of the top three alpha selected based on best
performances on validation. The errors obtained
are relatively small which indicates that tuning al-
pha is easy also on tasks with small amount of data
in cross-validation. The best tuned alpha on the
geb dataset completely outperform the baselines.

The last intrinsic tasks considered are cluster
purity for concept categorization datasets AP (Al-

64

muhareb, 2006) and BLESS (Baroni and Lenci,
2011). The purity curves (Fig. 2) are more noisy,
this is because the datasets available for this task
are quite limited in size. Almost all the curves ex-
hibit a peak which is relatively more pronounced
for smaller embedding sizes, while the limit be-
haviour for very negative alphas is better perform-
ing for larger embedding size. This points to the
fact that the natural clustering performed by the
limit embeddings of Eq. 9 is better behaved when
the dimension of the embedding grows. Increasing
the embedding size, increases the number of suf-
ficient statistics, thus allowing more flexibility for
the limit clustering during training.

Table 3: Best cross-validated alphas for methods of Ta-
ble 2 (enwiki and geb).

method sem syn tot
en E-U+V-0-I 1.8± 0.1 −∞ 1.7± 0.1
geb E-U+V-0-I 1.7± 0.1 1.3± 0.1 1.3± 0.1

Figure 2: Cluster purity on concept categorization task.

3.2 Extrinsic Tasks

As extrinsic tasks we choose 20 Newsgroup multi
classification (Lang, 1995) and IMDBReviews sen-
timent analysis (Maas et al., 2011). Embeddings
are normalized before training either with I or F. We
use a linear architecture (BatchNorm+Dense) for
both tasks, while for sentiment analysis we also use
a recurrent architecture (Bidirectional LSTM 32
channels, GlobalMaxPool1D, Dense 20 + Dropout
0.05, Dense). In Tables 4 and 5 we report the
best methods chosen with respect to the valida-
tion set and the best limit embedding performances
for embedding size 300. A more complete set of

experiments can be found in Appendix. Limit Em-
beddings have been generalized, instead of con-
sidering only the max row χ∗ (see Sec. 2.2), by
considered the top k rows from ∆V . Limit embed-
dings are evaluated with respect to top 1, 3, and 5,
denoted -t1/3/5. Furthermore we denote by -w if
a weighted average (with weights pw(χ)/p0(χ)) is
performed for the top rows of ∆V . The improve-
ments reported in the Tables are small but consis-
tent, of above 0.5% accuracy on both Newsgroups
and IMDBReviews, furthermore the improvement
persist also with increased complexity of the net-
work architecture (bidirectional LSTM). Fig. 3

Table 4: AUC and accuracy on test of 20 Newsgroups
multiclass classification, compared to baseline vectors.
Best alpha and best limit method (on validation) are
reported in parenthesis.

method
20 Newsgroups

AUC acc
U+V 96.34 65.06

E-U+V-0-F 96.76 (0.2) 65.86 (0.4)
E-U+V-u-F 96.79 (0.2) 66.30 (0.2)
E-U+V-ud-F 96.79 (0.4) 65.24 (0.6)
LE-U+V-0-F 96.65 (t3-w) 64.47 (t1)
LE-U+V-u-F 96.65 (t3-w) 64.54 (t1)
LE-U+V-ud-F 96.38 (t5-w) 64.76 (t3-w)

Table 5: Accuracy on test of IMDBReviews sentiment
analysis binary classification, with linear and with BiL-
STM architecture, compared to baseline vectors. Best
alpha and best limit method (on validation), are re-
ported in parenthesis.

method
IMDB Reviews

acc lin acc BiLSTM
U+V 83.76 88.00

E-U+V-0-F 83.58 (2.4) 88.12 (−4.0)
E-U+V-u-F 83.72 (−3.0) 88.56 (−4.0)

E-U+V-ud-F 84.23 (−3.0) 88.48 (−2.2)
LE-U+V-0-F 84.00 (t1) 88.36 (t1)
LE-U+V-u-F 84.29 (t1) 88.66 (t1)
LE-U+V-ud-F 84.00 (t3-w) 88.49 (t3-w)

reports curves for the values on test with early stop-
ping based on validation for embedding sizes of 50
and 300. The improvements for tuning alpha are
higher on size 50 exhibiting a more evident peak.
For size 300 improvements are smaller but consis-
tent. In particular a peak performance for alpha can
be always easily identified for a chosen reference
distribution and a chosen normalization.

65

Figure 3: Performances on 20 Newsgroups and IMDB Reviews for varying alphas. Metrics I and F refers to
embeddings normalization before training.

66

4 Conclusions

For word similarities and analogies alpha embed-
dings provide significant improvements over base-
line methods (corresponding to α = 1). For the
other tasks the improvements are smaller but con-
sistent, depending on the value of α, the chosen
reference distribution (0, u, ud) and the chosen
normalization method (I, F). The improvements
persist also when increasing the complexity of the
networks used (linear vs BiLSTM). This motivates
further studies on more complex architectures, for
example on models employing transformers with
the aim to close the experimental gap with the state
of the art.

The best value of alpha depends both on the task
and on the dataset. Alpha embeddings thus provide
an extra handle on the optimization problem, al-
lowing to choose the deformation parameter based
on data. Alpha values lower than 1 and negative
seems to be preferred across most tasks. Limit
embeddings provide a simple method which does
not require validation over alpha, but can still offer
an improvement on several tasks of interest. Fur-
thermore limit embeddings can be interpreted as a
natural clustering in space learned by the SG model
itself during training. Performances of the limit em-
beddings grow with increasing dimension, pointing
to the possibility to have a consistent improvement
in higher embedding dimensions without tuning
alpha.

Acknowledgments

R. Volpi and L. Malagò are supported by the Deep-
Riemann project, co-funded by the European Re-
gional Development Fund and the Romanian Gov-
ernment through the Competitiveness Operational
Programme 2014-2020, Action 1.1.4, project ID
P 37 714, contract no. 136/27.09.2016.

References
Abdulrahman Almuhareb. 2006. Attributes in lexical

acquisition. Ph.D. thesis, University of Essex.

Shun-ichi Amari. 1985. Differential-geometrical meth-
ods in statistics, volume 28 of Lecture Notes in
Statistics. Springer-Verlag, New York.

Shun-ichi Amari. 2016. Information Geometry and Its
Applications, volume 194 of Applied Mathematical
Sciences. Springer Japan, Tokyo.

Shun-ichi Amari and Hiroshi Nagaoka. 2000. Methods
of information geometry. American Mathematical

Society, Providence, RI. Translated from the 1993
Japanese original by Daishi Harada.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. Rand-walk: A latent
variable model approach to word embeddings. arXiv
preprint arXiv:1502.03520.

Attardi. Wikiextractor: A tool for extract-
ing plain text from wikipedia dumps.
https://github.com/attardi/wikiextractor. Accessed:
2017-10.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 238–247.

Marco Baroni and Alessandro Lenci. 2011. How we
blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEomet-
rical Models of Natural Language Semantics, pages
1–10. Association for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

BookCorpus. Aligning books and movie:
Towards story-like visual explanations
by watching movies and reading books.
https://yknzhu.wixsite.com/mbweb. Accessed:
2019-09.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of ar-
tificial intelligence research, 49:1–47.

John A. Bullinaria and Joseph P. Levy. 2007. Ex-
tracting semantic representations from word co-
occurrence statistics: A computational study. Be-
havior Research Methods, 39(3):510–526.

John A. Bullinaria and Joseph P. Levy. 2012. Ex-
tracting semantic representations from word co-
occurrence statistics: stop-lists, stemming, and SVD.
Behavior Research Methods, 44(3):890–907.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406–
414.

Gutenberg. Free ebooks - project gutenberg.
https://www.gutenberg.org. Accessed: 2019-09.

67

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics:
Long Papers-Volume 1, pages 873–882. Association
for Computational Linguistics.

Sosuke Kobayashi. Homemade bookcorpus.
https://github.com/soskek/bookcorpus. Accessed:
2019.

Ken Lang. 1995. Newsweeder: Learning to filter
netnews. In Machine Learning Proceedings 1995,
pages 331–339. Elsevier.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems,
pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.

Minh-Thang Luong, Richard Socher, and Christo-
pher D Manning. 2013. Better word representations
with recursive neural networks for morphology. In
Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning, pages 104–
113.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies-volume 1, pages 142–150. Asso-
ciation for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In NAACL-HLT, pages 746–
751.

George A Miller and Walter G Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
cognitive processes, 6(1):1–28.

Jiaqi Mu, Suma Bhat, and Pramod Viswanath. 2017.
All-but-the-Top: Simple and Effective Postprocess-
ing for Word Representations. arXiv:1702.01417
[cs, stat]. ArXiv: 1702.01417.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv:1802.05365 [cs]. ArXiv:
1802.05365.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Kira Radinsky, Eugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
word at a time: computing word relatedness using
temporal semantic analysis. In Proceedings of the
20th international conference on World wide web,
pages 337–346.

Vikas Raunak. 2017. Simple and Effective Di-
mensionality Reduction for Word Embeddings.
arXiv:1708.03629 [cs]. ArXiv: 1708.03629.

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning representations by back-
propagating errors. Nature, 323(6088):533–536.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 298–307, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Amari Shun-Ichi and Nagaoka Hiroshi. 2000. (Trans-
lations of mathematical monographs 191) Methods
of information geometry. American Mathematical
Society.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guil-
laume Lample, and Chris Dyer. 2015. Evaluation of
word vector representations by subspace alignment.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2049–2054, Lisbon, Portugal. Association for Com-
putational Linguistics.

68

Riccardo Volpi and Luigi Malagò. 2019. Natural alpha
embeddings. ArXiv:1912.02280.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. ArXiv, abs/1906.08237.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

69

A Additional Details

We have performed experiments using two corpora:
english Wikipedia dump October 2017 (enwiki)
and also we augmented this last one with Guthen-
berg(Gutenberg) and BookCorpus(BookCorpus;
Kobayashi) calling this geb (guthenberg, enwiki,
bookcorpus). We used the wikiextractor python
script(Attardi) to parse the Wikipedia dump xml
file. A minimal preprocessing have been used:
lower case all the letters, remove stop-words and
remove punctuation. We use a cut-off minimum fre-
quency (m0) of 1000 during GloVe training (Pen-
nington et al., 2014). We obtained a dictionary of
about 67k words for both enwiki and geb. The win-
dow size was set to be 10 as in (Pennington et al.,
2014), with decaying weighting rate from the cen-
ter of 1/d for the calculation of cooccurrences. We
trained the models for a maximum of 1000 epochs.
Embedding sizes used are 50 and 300.

Table 6: AUC on Newsgroups with linear architecture
(BatchNorm + Dense). We use geb embeddings, fixed
during the classifiers training. The alpha for which to
report performances on test is chosen based on the best
measure on the validation set and we report both per-
formances on validation and on test (α between -4 and
4 with adaptive step: 0.2 between [-1, 1] and 0.4 in be-
tween [-3, 3] and 1 between [-4, 4]). We also report
limit embedding performances.

method AUC val AUC test
E-U+V-0-I (α = 1.0) 0.96347 0.96342
E-U+V-0-F (α = 0.2) 0.96765 0.9676
E-U+V-u-F (α = 0.2) 0.96792 0.96787
E-U+V-ud-F (α = 0.4) 0.96798 0.96792

LE-U+V-0-F-t3-w 0.9666 0.96654
LE-U+V-u-F-t3-w 0.96662 0.96655
LE-U+V-ud-F-t5-w 0.96388 0.96381

Table 7: Accuracy on Newsgroups (BatchNorm +
Dense).

method accuracy val accuracy test
E-U+V-0-I (α = 1.0) 0.66846 0.65056
E-U+V-0-F (α = 0.4) 0.67708 0.65858
E-U+V-u-F (α = 0.2) 0.68068 0.66298
E-U+V-ud-F (α = 0.6) 0.67744 0.65242

LE-U+V-0-F-t1 0.66739 0.64472
LE-U+V-u-F-t1 0.66954 0.64545

LE-U+V-ud-F-t3-w 0.6602 0.64763

Table 8: Accuracy on IMDBReviews with linear archi-
tecture (BatchNorm + Dense).

method accuracy val accuracy test
E-U+V-0-I (α = 1.0) 0.83426 0.83758
E-U+V-0-F (α = 2.4) 0.83574 0.83582

E-U+V-u-F (α = −3.0) 0.83434 0.83721
E-U+V-ud-F (α = −3.0) 0.8360 0.8423

LE-U+V-0-F-t1-f 0.8351 0.84001
LE-U+V-u-F-t1-wf 0.83724 0.84293
LE-U+V-ud-F-t3-wf 0.83493 0.84001

Table 9: Accuracy on IMDBReviews with BiLSTM-
pool architecture (Bidirectional LSTM 32 channels,
GlobalMaxPool1D, Dense 20 + Dropout 0.05, Dense).

method accuracy val accuracy test
E-U+V-0-I (α = 1.0) 0.87813 0.88002

E-U+V-0-F (α = −4.0) 0.88066 0.88117
E-U+V-u-F (α = −4.0) 0.88173 0.88565
E-U+V-ud-F (α = −2.2) 0.88366 0.88481

LE-U+V-0-F-t1 0.88258 0.88365
LE-U+V-u-F-t1 0.87761 0.88656
LE-U+V-ud-F-t1 0.88117 0.8825

70

Table 10: Spearman correlations for similarities tasks for the different methods on enwiki and geb. LE represents
the cos product between limit embeddings on the exponential family model. WG5 inside the enwiki and geb
section are the wikigiga5 pretrained vectors on 6B words (Pennington et al., 2014) tested for comparison on the
dictionary of the smaller corpora enwiki and geb. Lastly, U and U+V are the non-geometric methods with the word
embeddings vectors.

method ws353 mc rg scws ws353sim ws353rel men mturk287 rw simlex999 all

en
w

ik
i

LE-U+V-0-F 70.7 77.2 77.3 64.0 75.7 66.6 74.7 68.7 54.2 37.7 61.0
LE-U+V-0-I 72.1 82.7 81.3 64.2 76.5 67.1 74.8 65.9 54.8 40.0 61.7
LE-U+V-u-F 69.6 77.1 77.5 63.6 74.7 65.2 74.5 69.1 54.1 36.7 60.5
LE-U+V-u-I 72.5 81.9 81.7 64.3 76.7 67.8 75.6 67.7 55.9 39.1 62.1

LE-U+V-ud-F 75.5 83.4 81.5 63.5 77.8 69.2 75.6 60.1 55.6 41.6 62.6
LE-U+V-ud-I 68.6 82.9 78.9 59.3 73.6 57.2 71.3 50.3 53.8 41.6 58.8
WG5-U+V 65.1 73.8 77.6 62.2 71.3 60.7 77.2 65.7 51.5 41.0 61.3

U 60.2 69.3 69.8 58.3 67.1 56.4 69.2 67.2 47.1 31.4 53.6
U+V 63.8 74.5 75.2 58.7 69.5 60.9 71.6 67.3 45.5 32.2 55.1

ge
b

LE-U+V-0-F 72.9 80.5 83.9 65.4 78.6 66.3 77.2 70.7 57.6 39.6 62.0
LE-U+V-0-I 74.3 82.2 84.6 66.0 79.3 67.1 78.0 67.3 58.6 43.4 63.5
LE-U+V-u-F 74.1 81.4 84.6 65.8 79.9 67.5 78.2 70.4 57.7 40.4 62.7
LE-U+V-u-I 75.7 82.1 84.8 66.0 80.5 68.2 79.2 67.0 58.8 44.1 64.1

LE-U+V-ud-F 77.0 81.2 83.5 65.0 80.3 68.7 79.6 62.4 59.3 46.9 65.2
LE-U+V-ud-I 71.5 78.2 79.9 60.9 76.8 58.9 74.7 52.4 57.2 48.1 61.5
WG5-U+V 65.1 73.8 77.9 61.8 71.3 60.7 77.2 65.7 53.2 40.6 60.4

U 61.3 73.0 76.3 58.7 68.6 54.0 68.7 68.1 48.9 30.6 51.9
U+V 64.9 77.4 79.9 59.1 71.5 58.8 71.4 68.1 48.5 32.5 53.7

Table 11: Analogy tasks for the different methods on enwiki and geb. The best alpha is selected with a 3-fold
cross validation (α between -10 and 10). The methods reported are implementing either euclidean normalization
(I) or normalization with the Fisher (F) in different points on the manifold (0, u). Scalar products (-p) are always
calculated with respect to the Identity in this table (I).

corpus method
semantic syntactic total

alpha acc alpha acc alpha acc

en
w

ik
i1

.5
B

E-U+V-0-nF-pI 1.7± 0.1 85.7± 0.3 −9.5± 0.5 65.9± 0.4 −9.5± 0.5 73.6± 0.4
E-U+V-0-nI-pI 1.8± 0.0 84.6± 0.4 −2.2± 5.5 66.6± 0.3 1.7± 0.1 74.4± 0.1
E-U+V-u-nF-pI −7.2± 3.3 81.8± 0.2 −9.5± 0.7 65.7± 0.5 −9.5± 0.7 72.7± 0.4
E-U+V-u-nI-pI −8.5± 0.3 82.3± 0.4 −9.1± 1.2 67.1± 0.4 −8.5± 1.1 73.6± 0.4

LE-U+V-0-nF-pI −∞ 83.4 −∞ 66.9 −∞ 74.0
LE-U+V-0-nI-pI −∞ 82.8 −∞ 67.3 −∞ 74.0
LE-U+V-u-nF-pI −∞ 81.6 −∞ 66.2 −∞ 72.8
LE-U+V-u-nI-pI −∞ 82.0 −∞ 67.5 −∞ 73.7

WG5-U+V n/a 79.4 n/a 67.5 n/a 72.6
U n/a 77.8 n/a 62.1 n/a 68.9

U+V n/a 80.9 n/a 63.4 n/a 70.9

ge
b

1.
8B

E-U+V-0-nF-pI 1.9± 0.2 84.6± 0.3 −8.5± 2.0 68.1± 0.2 −9.9± 0.1 73.8± 0.3
E-U+V-0-nI-pI 1.7± 0.1 83.8± 0.4 1.3± 0.1 72.2± 0.4 1.3± 0.1 76.7± 0.3
E-U+V-u-nF-pI −9.1± 1.3 80.0± 0.2 −9.7± 0.4 69.7± 0.4 −9.7± 0.4 73.9± 0.3
E-U+V-u-nI-pI 1.0± 0.0 81.8± 0.3 −2.1± 4.4 70.3± 0.8 1.0± 0.0 75.2± 0.2

LE-U+V-0-nF-pI −∞ 82.1 −∞ 67.1 −∞ 73.2
LE-U+V-0-nI-pI −∞ 81.2 −∞ 67.3 −∞ 72.9
LE-U+V-u-nF-pI −∞ 80.1 −∞ 68.0 −∞ 72.9
LE-U+V-u-nI-pI −∞ 80.9 −∞ 68.5 −∞ 73.5

WG5-U+V n/a 78.7 n/a 65.2 n/a 70.7
U n/a 75.7 n/a 66.8 n/a 70.4

U+V n/a 80.0 n/a 68.5 n/a 73.2

71

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 72–77
July 9, 2020. c©2020 Association for Computational Linguistics

Exploring the Limits of Simple Learners in Knowledge Distillation for
Document Classification with DocBERT

Ashutosh Adhikari†, Achyudh Ram†, Raphael Tang†,
William L. Hamilton‡, Jimmy Lin†

†David R. Cheriton School of Computer Science, University of Waterloo
‡ Mila, McGill University

{adadhika, arkeshav, r33tang, jimmylin}@uwaterloo.ca
wlh@cs.mcgill.ca

Abstract

Fine-tuned variants of BERT are able to
achieve state-of-the-art accuracy on many nat-
ural language processing tasks, although at
significant computational costs. In this pa-
per, we verify BERT’s effectiveness for doc-
ument classification and investigate the extent
to which BERT-level effectiveness can be ob-
tained by different baselines, combined with
knowledge distillation—a popular model com-
pression method. The results show that BERT-
level effectiveness can be achieved by a single-
layer LSTM with at least 40× fewer FLOPS
and only ∼3% parameters. More importantly,
this study analyzes the limits of knowledge dis-
tillation as we distill BERT’s knowledge all the
way down to linear models—a relevant base-
line for the task. We report substantial im-
provement in effectiveness for even the sim-
plest models, as they capture the knowledge
learnt by BERT.

1 Introduction

Transformer-based (Vaswani et al., 2017) pre-
trained contextual word embedding models such as
BERT (Devlin et al., 2019) and XLNet (Yang et al.,
2019) currently power many of the state-of-the-art
models across various natural language process-
ing (NLP) tasks. However, these models consume
immense computational resources (Strubell et al.,
2019). With the surge of such pre-trained mod-
els being developed in quick succession, there is a
need for effective compression techniques for their
inexpensive deployment.

Knowledge distillation (KD; Hinton et al. 2015;
Ba and Caruana 2014) has been shown to be a fairly
straightforward and effective model-agnostic com-
pression method, which transfers knowledge learnt
by huge models into more efficient models. In this
work, we investigate if BERT-level effectiveness
can be achieved by more efficient models using

KD. And more importantly, if so, how simple can
these models be?

We investigate these questions through the lens
of document classification—a setting where these
computational concerns are particularly relevant
due to potentially long document lengths. Further,
in previous work, neural networks as an architec-
tural choice have been questioned owing to the ef-
fectiveness of simple bag-of-words baselines (Ad-
hikari et al., 2019).

We first confirm that a fine-tuned BERT model
leads to state-of-the-art model quality by a sub-
stantial margin on standard document classification
benchmarks. Following this, we investigate the
extent to which BERT-level effectiveness can be
obtained by various different baselines, combined
with KD. We demonstrate, quite surprisingly, that
it is possible to apply KD successfully on impov-
erished student models, such as a single-layer con-
volutional neural network (CNN) (Kim, 2014) and
even linear models. The key contributions of this
work are as follows:

1. We develop and release* a fine-tuned BERT
model (DocBERT), which achieves state-of-the-
art model quality for document classification.
While this finding is perhaps obvious, we care-
fully document experimental results.

2. We explore the limits of KD from BERT by
distilling to substantially simpler and more effi-
cient baselines than previous work (e.g., logistic
regression). We are the first, to our knowledge,
to demonstrate the working of KD all the way
down to linear models.

3. We show that an LSTM baseline (40× faster
than BERTbase), combined with KD can achieve
BERT-level model quality.

* https://github.com/castorini/hedwig

72

2 Background and Methods

Typically, the task of document classification deals
with classifying long texts (documents). More of-
ten than not, a document may be associated with
more than one label, thus exposing the classifiers
to multi-label classification and class imbalance.
Here, we review a subset of approaches developed
to solve the task and highlight the methods that we
compare and build upon in this work.

2.1 Document Classification Models

Neural network-based models. In recent years
neural network-based architectures have dominated
the task of document classification. Many re-
searchers (Kim, 2014; Conneau et al., 2017; John-
son and Zhang, 2017) show convolutional neural
networks to be effective for classifying single-label
short texts. Furthermore, Liu et al. (2017) develop
a variant of the popular KimCNN (Kim, 2014),
XML-CNN, for addressing the multi-label nature
of document classification, which they call extreme
classification. Alternatively, others (Yang et al.,
2016; Adhikari et al., 2019; Yang et al., 2018) show
effective use of recurrent neural networks to exploit
semantic representations by treating documents as
a sequence of words or sentences for classifica-
tion. In this work, we explore several neural base-
line models and use both LSTM (Hochreiter and
Schmidhuber, 1997) and KimCNN architectures
for knowledge distillation experiments.
Non-neural models. Logistic regression (LR) and
support vector machines (SVM) trained on tf–idf
vectors form efficient and effective baselines for
document classification. Adhikari et al. (2019)
show LR and SVM surpass most of the neural base-
lines on multiple datasets, questioning the need
for employing neural networks to model syntac-
tic structure for document classification. Here, we
explore both LR and SVMs, and we perform knowl-
edge distillation experiments using an LR model.
Large-scale pre-training. Recent work (Howard
and Ruder, 2018; Devlin et al., 2019; Yang et al.,
2019) has demonstrated the effectiveness of large-
scale pre-training for NLP tasks. In this work, we
use BERT as a representative of this approach and
demonstrate the power of fine-tuned BERT on doc-
ument classification (termed DocBERT).

2.2 Knowledge Distillation
Knowledge distillation (KD; Hinton et al., 2015; Ba
and Caruana, 2014) is an effective model-agnostic

Dataset C N W S

Reuters 90 10,789 144.3 6.6
AAPD 54 55,840 167.3 1.0
IMDB 10 135,669 393.8 14.4
Yelp 2014 5 1,125,386 148.8 9.1

Table 1: Summary of the datasets. C denotes the num-
ber of classes in the dataset, N the number of samples,
and W and S the average number of words and sen-
tences per document, respectively.

approach to model compression, where an efficient
student model captures the knowledge learnt by
privileged but cumbersome teacher model(s). The
knowledge transfer takes place by forcing the stu-
dent to mimic the soft target probabilities of the
teacher. Hinton et al. (2015) highlight that it is in
the interest of the generalizability of the student
model to capture the exact class probabilities from
a better model, the teacher. In supervised settings,
the student is trained using a distillation objective
in combination with the classification objective:

L = Lclassification + λ · Ldistill (1)

where λ is a hyperparameter chosen to weigh
the two different optimization objectives. The
Lclassification term is the task-specific classifica-
tion loss, which is most often the cross-entropy
loss between the logits of the student model and
the target labels, while the distillation term Ldistill
quantifies the difference between the student pre-
dictions and the teacher. In this work, we use a
fine-tuned BERT model as the teacher and exper-
iment with various baseline architectures for the
students. Following Hinton et al. (2015), we set
Ldistill to be equal to the Kullback–Leibler diver-
gence between the class probabilities output by the
student and the teacher BERT model.

3 Datasets

We use the following four datasets to evaluate
BERT: Reuters-21578 (Reuters; Apté et al., 1994),
arXiv Academic Paper dataset (AAPD; Yang et al.,
2018), IMDB reviews, and Yelp 2014 reviews.
Reuters and AAPD are multi-label datasets while
documents in IMDB and Yelp ’14 contain only a
single label per document. Table 1 summarizes the
statistics of these datasets.

For Reuters, we use the standard ModApté
splits (Apté et al., 1994); for AAPD, we use the

73

splits provided by Yang et al. (2018); for IMDB and
Yelp, following Yang et al. (2016), we randomly
sample 80% of the data for training and 10% each
for validation and test.

4 Training and Hyperparameters

As a simple and straightforward adaptation of
BERT models (Devlin et al., 2019) for document
classification, we introduce a fully-connected layer
over the final hidden state corresponding to the
[CLS] input token. During fine-tuning, we opti-
mize the entire model end-to-end, with the addi-
tional softmax classifier parameters W ∈RK×H ,
where H is the dimension of the hidden state vec-
tors and K is the number of classes. We mini-
mize the cross-entropy and binary cross-entropy
loss for single-label and multi-label tasks, respec-
tively. While fine-tuning BERT, we optimize the
number of epochs, batch size, learning rate, and
maximum sequence length (MSL; i.e., the number
of tokens that documents are truncated to).

For knowledge distillation, we train the LSTM,
KimCNN, and LR to capture the learnt repre-
sentations from BERTlarge using the objective
of the type shown in Equation (1). Depending
upon the dataset, we use cross-entropy or binary
cross-entropy loss as Lclassification, Equation (1).
For Ldistill, following Hinton et al. (2015), we
minimize the Kullback–Leibler (KL) divergence
KL(p||q) where p and q are the class probabilities
produced by the student and the teacher models,
respectively.

To build an effective transfer set for distillation
as suggested by Ba and Caruana (2014), we aug-
ment the training splits of the datasets by applying
POS-guided word swapping and random masking,
as in Tang et al. (2019), along with randomizing the
order of the sentences of documents in the training
set. The transfer set sizes for Reuters, IMDB and
AAPD are 3×, 4×, and 4× their training splits,
respectively; for Yelp2014, no data augmentation
was performed due to computational restrictions.
Refer to the appendix for further details regarding
the training hyperparameters.

5 Results and Discussion

In Table 2, which shows our main results, we re-
port the mean F1 scores for multi-label datasets
and accuracy for single-label datasets, along with
the corresponding standard deviation across five
runs. Due to their higher computational costs, we

report the scores from only a single run per task for
BERTbase and BERTlarge.

Rows 1–7 report the model quality of pre-BERT
models (that do not take advantage of pre-training).
As observed by Adhikari et al. (2019), LR and
SVM trained with tf–idf vectors form effective
baselines as they challenge many neural network-
based baselines (e.g., HAN) on multiple datasets.
This raises the question whether neural networks
are a suitable architectural choice for document
classification. However, at a much higher computa-
tional cost, the regularized LSTM (Adhikari et al.,
2019) (row 7) achieves the best numbers for the
class of models that do not exploit pre-training.

Consistent with Devlin et al. (2019), the BERT-
based models achieve state-of-the-art results on
all four datasets (see Table 2, rows 8 and 9), with
the BERTlarge model consistently achieving the
highest model quality (compared to BERTbase).

Surprisingly, distilled LSTM (KD-LSTM, row
10) achieves parity with BERTbase on average for
Reuters, AAPD, and IMDB. In fact, it outperforms
BERTbase (on both dev and test) in at least one of
the five runs. For Yelp, we see that KD-LSTM re-
duces the difference between BERTbase and LSTM,
but not to the same extent as in the other datasets.

Next, we explore the limits of KD by further
distilling BERTbase all the way down to KimCNN
(Kim, 2014) (a single-layer CNN) and LR. It is not
surprising that these models don’t come close to
BERTbase owing to their limited expressivity. How-
ever, interestingly, we see massive leaps in model
quality of these models after distillation (rows 1–3;
11–12). Specifically for multi-label datasets, both
these models beat or come close to HAN and SGM,
which are far more complex models. To put things
in perspective, LR is a simple fully-connected layer
and KimCNN contains merely ∼ 0.4% parameters
of BERTbase. These results demonstrate that KD
can yield a broad spectrum of baselines for vary-
ing computational costs, all of which can be useful
depending on the requirements.

Table 3 emphasizes the scale of compression
achieved during inference with the help of KD,
yielding over 4000× faster LR to 40× faster but
effective LSTM compared to BERTbase. We calcu-
late the number of parameters (# params) of mod-
els and floating-point operations (# FLOPS) during
inference on average for Reuters. Additionally, Fig-
ure 1 shows the comparison between the number
of parameters and prediction quality on the vali-

74

Model Reuters AAPD IMDB Yelp ’14

Val. F1 Test F1 Val. F1 Test F1 Val. Acc. Test Acc. Val. Acc. Test Acc.

1 LR 77.0 74.8 67.1 64.9 43.1 43.4 61.1 60.9
2 SVM 89.1 86.1 71.1 69.1 42.5 42.4 59.7 59.6
3 KimCNN 83.5 ±0.4 80.8 ±0.3 54.5 ±1.4 51.4 ±1.3 42.9 ±0.3 42.7 ±0.4 66.5 ±0.1 66.1 ±0.6
4 XML-CNN 88.8 ±0.5 86.2 ±0.3 70.2 ±0.7 68.7 ±0.4 – – – –
5 HAN 87.6 ±0.5 85.2 ±0.6 70.2 ±0.2 68.0 ±0.6 51.8 ±0.3 51.2 ±0.3 68.2 ±0.1 67.9 ±0.1
6 SGM 82.5 ±0.4 78.8 ±0.9 – 71.0† – – – –
7 LSTM 89.1 ±0.8 87.0 ±0.5 73.1 ±0.4 70.5 ±0.5 53.4 ±0.2 52.8 ±0.3 69.0 ±0.1 68.7 ±0.1

8 BERTbase 90.5 89.0 75.3 73.4 54.4 54.2 72.1 72.0
9 BERTlarge 92.3 90.7 76.6 75.2 56.0 55.6 72.6 72.5

10 KD-LSTM 91.0 ±0.2 88.9 ±0.2 75.4 ±0.2 72.9 ±0.3 54.5 ±0.1 53.7 ±0.3 69.7 ±0.1 69.4 ±0.1
11 KD-KimCNN 90.0 ±0.3 87.0 ±0.2 72.7 ±0.4 70.6 ±0.1 49.0 ±0.2 48.3 ±0.3 66.5 ±0.1 66.2 ±0.0
12 KD-LR 87.0 83.7 73.1 71.3 43.8 43.3 62.7 62.3

Table 2: Results for each model on the validation and test sets. Best values are bolded. Rows 1–7 have been
taken from Adhikari et al. (2019). Model names of type “KD-X” (rows 10-12) refer to X trained using knowledge
distillation from the fine-tuned BERTlarge (row 9).

32 64 128 256 512
Number of hidden units

0.70

0.75

0.80

0.85

0.90

F1
 sc

or
e

Reuters/KD-LSTM
Reuters/BERT Base
Reuters/BERT Large
AAPD/KD-LSTM
AAPD/BERT Base
AAPD/BERT Large

32 64 128 256 512
Number of hidden units

0.50

0.55

0.60

0.65

0.70

F1
 sc

or
e

IMDB/KD-LSTM
IMDB/BERT Base
IMDB/BERT Large
Yelp14/KD-LSTM
Yelp14/BERT Base
Yelp14/BERT Large

Figure 1: Effectiveness of KD-LSTM vs. BERTbase and BERTlarge

Model # Params # FLOPS

LR 3.3 (3%) 6.5 (4620×)
KimCNN 0.4 (0.4%) 26.0 (1150×)
LSTM 3.3 (3%) 780.9 (40×)
BERTbase 110 ∼30000

Table 3: # params for the models and # FLOPS for a
single inference pass. Values are in millions. Figures
in brackets are relative comparisons to BERTbase.

dation sets. These plots convey the effectiveness
of the KD-LSTM model with different numbers of
hidden units: 32, 64, 128, 256, and 512. We find
that KD-LSTM, with just 256 hidden units (i.e.,
∼ 1% parameters of BERTbase) attains parity with
BERTbase on Reuters and IMDB, while for AAPD,
512 hidden units (∼ 3% of BERTbase) are enough.

6 Conclusion and Future Work

In this paper we improve baselines for document
classification by fine-tuning BERT (DocBERT).
Using DocBERT, we show the effectiveness of KD
over a range of efficient models—a single-layer
LSTM model, a single layer CNN, and a logis-
tic regression trained on tf–idf. This provides us
with a spectrum of baselines for varying tradeoffs
in classification accuracy and complexity. In fact,
we show that the distilled LSTM model achieves
BERTbase parity on a majority of datasets, using
only ∼ 3% parameters of the latter.

While distillation is an effective way to reduce
computational cost during inference, it doesn’t aid
in reducing resources needed for training. Thus,
methods for reducing the computational resources
required while training deserve attention in future.

75

7 Acknowledgements

This research was supported in part by the Nat-
ural Sciences and Engineering Research Council
(NSERC) of Canada.

References
Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Rethinking complex neural net-
work architectures for document classification. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4046–
4051.

Chidanand Apté, Fred Damerau, and Sholom M. Weiss.
1994. Automated learning of decision rules for text
categorization. ACM Transactions on Information
Systems, 12(3):233–251.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in Neural Information
Processing Systems 27, pages 2654–2662.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann Lecun. 2017. Very deep convolutional net-
works for text classification. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 1107–1116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
arxiv/1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 562–570.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014

Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1746–1751.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yim-
ing Yang. 2017. Deep learning for extreme multi-
label text classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
115–124.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. arxiv/1903.12136.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. SGM: sequence gen-
eration model for multi-label classification. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 3915–3926.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R. Salakhutdinov, and Quoc V. Le.
2019. XLNet: Generalized autoregressive pretrain-
ing for language understanding. In Advances in Neu-
ral Information Processing Systems 32, pages 5753–
5763.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

76

A Appendix

A.1 Training Hyperparameters
While fine-tuning BERT, we optimize the num-
ber of epochs, batch size, learning rate, and maxi-
mum sequence length (MSL), the number of tokens
that documents are truncated to. We observe that
model quality is quite sensitive to the number of
epochs, and thus the number must be tailored for
each dataset. We train on Reuters, AAPD, and
IMDB for 30, 20, and 4 epochs, respectively. Due
to resource constraints, we train on Yelp for only
one epoch. As is the case with Devlin et al. (2019),
we find that choosing a batch size of 16, learning
rate of 2×10−5, and MSL of 512 tokens yields op-
timal model quality on the validation sets for all
the datasets.

For distillation, we train an LSTM to capture the
learnt representations from BERTlarge using the
objective shown in Equation (1). We use a batch
size of 128 for the multi-label tasks and 64 for the
single-label tasks. We find the learning rates and
dropout rates used in Adhikari et al. (2019) to be
optimal even for the distillation process.

To build an effective transfer set for distillation
as suggested by Hinton et al. (2015), we augment
the training splits of the datasets by applying POS-
guided word swapping and random masking for
data augmentation, similar to Tang et al. (2019).
For the distillation objective given in Equation (1),
we use a λ of 1 for multi-label datasets and 4 for
single-label datasets.

A.2 Hyperparameter Analysis for DocBERT

MSL analysis. A decrease in the maximum se-
quence length (MSL) corresponds to only a minor
loss in F1 on Reuters (see top-left subplot in Fig-
ure 2), possibly due to Reuters having shorter doc-
uments. On IMDB (top-right subplot in Figure 2),
lowering the MSL corresponds to a drastic fall in
accuracy, suggesting that the entire document is
necessary for this dataset.

On the one hand, these results appear obvious.
Alternatively, one can argue that, since IMDB con-
tains longer documents, truncating tokens may hurt
less. The top two subplots in Figure 2 show that
this is not the case, since truncating to even 256
tokens causes accuracy to fall lower than that of the
much smaller LSTMreg (see Table 2). From these
results, we conclude that any amount of truncation
is detrimental in document classification, but the
level of degradation may differ.

128 256 512 128 256 512

IMDB
56

54

52

50

48

46

44

42

Reuters
93

92

91

90

89

88

87

86

92

90

88

86

84

82
80

78

76

77

76

75

74

73

72

71

70
Theirs (4) Ours (30) Theirs (4) Ours (20)

Reuters AAPD

Figure 2: Results on the validation set from varying the
MSL and the number of epochs.

Epoch analysis. The bottom two subplots in Fig-
ure 2 illustrate the F1 score of BERT fine-tuned
using different numbers of epochs for AAPD and
Reuters. Contrary to Devlin et al. (2019), who
achieve the state of the art on small datasets with
only a few epochs of fine-tuning, we find that
smaller datasets require many more epochs to con-
verge. On both the datasets (see Figure 2), we see
a significant drop in model quality when the BERT
models are fine-tuned for only four epochs, as sug-
gested in the original paper. On Reuters, using
four epochs result in an F1 worse than even logistic
regression (Table 2, row 1).

77

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 78–88
July 9, 2020. c©2020 Association for Computational Linguistics

Joint Training with Semantic Role Labeling for Better Generalization in
Natural Language Inference

Cemil Cengiz Deniz Yuret
KUIS AI Lab

Koç University, İstanbul, Turkey
ccengiz17,dyuret@ku.edu.tr

Abstract
End-to-end models trained on natural lan-
guage inference (NLI) datasets show low gen-
eralization on out-of-distribution evaluation
sets. The models tend to learn shallow heuris-
tics due to dataset biases. The performance
decreases dramatically on diagnostic sets mea-
suring compositionality or robustness against
simple heuristics. Existing solutions for this
problem employ dataset augmentation which
has the drawbacks of being applicable to only
a limited set of adversaries and at worst hurt-
ing the model performance on other adver-
saries not included in the augmentation set.
Our proposed solution is to improve sentence
understanding (hence out-of-distribution gen-
eralization) with joint learning of explicit se-
mantics. We show that a BERT based model
trained jointly on English semantic role la-
beling (SRL) and NLI achieves significantly
higher performance on external evaluation sets
measuring generalization performance.

1 Introduction

NLI is the task of determining the inference re-
lationship between a premise and a hypothesis
sentence which is usually formulated as a three-
class classification task with entailment, contra-
diction and neutral labels. It has been regarded
as a central problem in natural language under-
standing and found its place in benchmarks such
as GLUE (Wang et al., 2018). Contemporary neu-
ral network based models achieve state-of-the-art
(SOTA) results on these benchmarks. However,
scoring high on test sets that have a similar distri-
bution to the training sets does not guarantee wider
generalization. Models that top the leaderboards
on standard test sets may perform poorly on specif-
ically constructed evaluation sets targeting dataset
biases. For instance, the HANS challenge dataset
(McCoy et al., 2019b) showed that models trained
on NLI get fooled easily by heuristics when the

input sentence pairs have high lexical similarity.
The following example from HANS can explain
how this might happen.

Premise: The judge by the actor stopped the
banker.

Hypothesis: The banker stopped the actor.
A human reading this sentence pair carefully can

conclude that the hypothesis can not be inferred
from the premise. However, models relying on the
lexical overlap heuristic will be fooled and predict
the label as entailment since the premise contains
all words of the hypothesis. Existing approaches
commonly tackle such adversaries by training the
model with a dataset augmented with similar ad-
versarial examples. As detailed in Section 5, the
problem with this approach is that it might lead to
overfitting to the adversaries on the augmentation
set. Therefore, it can decrease the performance on
other possible adversaries and hurt generalization
(Nie et al., 2018).

Semantic Role Labeling (SRL) asks the “who
did what to whom, when and where etc.” questions
to find the semantic roles of words or phrases in
a sentence (He et al., 2017). We hypothesize that
using the SRL task as a joint objective should im-
prove the semantic knowledge of the models, thus
making them less prone to dataset biases. Con-
sider the semantic roles in the previous example
sentence pair, which are shown in Table 1. We can
see that the role of “the banker” differs between
the sentences. Since “stop” is not a reciprocal verb,
a model that is aware of the semantic roles can find
out that the inference relation is non-entailment
although the premise contains all words in the hy-
pothesis, albeit with a different order. In contrast,
if a model pays too much attention to lexical simi-
larity, it might falsely predict the relation as entail-
ment as the SOTA models analyzed on HANS such
as BERT (Devlin et al., 2018) do. SRL informs the
model directly about the semantic roles of words

78

Premise The judge by the actor stopped
the banker.

VERB stopped
ARG0 The judge by the actor
ARG1 the banker

Hypoth. The banker stopped the actor.
VERB stopped
ARG0 The banker
ARG1 the actor

Table 1: An example pair from HANS, including the
semantic roles of the words in each sentence. ARG0
represents the proto-agent, i.e. the thing that stops,
ARG1 represents the proto-patient, i.e. the object be-
ing stopped, in this example.

which makes it easier for the model to rely on more
than just shallow lexical cues.

Our contribution in this work is threefold:

• We propose a BERT based multi-task learning
(MTL) model jointly trained on English SRL
and NLI (Section 3), and show that this model
achieves scores comparable to the single-task
BERT on both tasks (Section 4).

• We evaluate the proposed model on out-of-
distribution test sets such as HANS (Mc-
Coy et al., 2019b) and Comparisons (Das-
gupta et al., 2018) and demonstrate that it
exceeds the single-task BERT performance
significantly. Specifically, when trained on
MultiNLI, the multi-task model exceeds the
single-task model accuracy by 4% on HANS
and 5.3% on Comparisons without using data
augmentation. (Section 4.1.2 and 4.2)

• We compare the proposed MTL approach to
the sequential transfer learning and show that
the MTL is more helpful. (Section 4.1.3)

2 Datasets

In this section, we describe the datasets used in the
experiments. We explain the shortcomings of the
NLI datasets and describe an SRL dataset that can
be used to alleviate these shortcomings.

2.1 Large-scale NLI Datasets
In this work, we consider two open-domain, large-
scale NLI datasets in English, SNLI (Bowman
et al., 2015) and MultiNLI (Williams et al., 2018).
SNLI is created using image captions written by

humans whereas MultiNLI includes five different
genres of written and spoken English such as travel
guides and telephone conversations. Both datasets
have been used for training general NLI models,
or as an intermediate training resource for trans-
fer learning to a domain-specific dataset, possibly
with smaller size (Cengiz et al., 2019). Recently,
deep neural network models achieved human-level
performance on NLI tasks in benchmarks such as
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019). However, as McCoy et al. (2019b)
and Dasgupta et al. (2018) showed, these results
do not reflect the performance of the models on
out-of-distribution test sets. They proposed such
adversarial test sets targeting specific biases appar-
ent in the original NLI datasets to show that SOTA
models are vulnerable to these superficial patterns.

2.2 Adversarial NLI Datasets

HANS is an extensive evaluation set proposed by
McCoy et al. (2019b), that consists of three types
of adversarial examples: lexical overlap, subse-
quence and constituent. Lexical overlap is the most
general category, indicating all the words in the
hypothesis sentence are present in the premise as
well. An example from this category with entail-
ment gold label is the following: “The banker near
the judge saw the actor. ⇒ The banker saw the
actor.” Subsequence is a special case of lexical
overlap, indicating that the hypothesis is a contigu-
ous subsequence of the premise. The following pair
is an example from this category with entailment
gold label: “The artist and the student called the
judge. ⇒ The student called the judge.” Lastly,
constituent is a special case of the subsequence, de-
noting that the hypothesis is a complete subtree of
the premise’s constituency parse tree. An instance
from constituent category with non-entailment gold
label is as following: “If the actor slept, the judge
saw the artist. ⇒ The actor slept.” It is worth not-
ing that although there is a hierarchical relation be-
tween the categories, their instances do not overlap.
Therefore, they will be treated as distinct categories
throughout the paper. The sentences included in
this dataset were created using templates and en-
sured to be plausible. Moreover, the verbs were
chosen from the frequently used verbs in MultiNLI
so that the models trained on MultiNLI are familiar
with them. Differently than MultiNLI, this dataset
has binary labels, a label is either entailment or
non-entailment. Finally, this dataset has two parti-

79

BERT Encoder Layer

a Sentence or a Sentence Pair
(including [CLS] and [SEP] tokens)

[SEP][CLS] tok-1 tok-2 ... tok-n

BERT Embedding Layer
(token, segment and position)

Wordpiece Tokenizer

BERT Encoder Layer

BERT Encoder Layer

NLI Classifier SRL Tagger

[SEP][CLS] tok-1 tok-2 ... tok-n

Figure 1: Multi-task BERT model for SRL and NLI.
Each task-specific head contains a linear layer to trans-
form the embeddings into the task’s label space.

tions with identical size, a test set to evaluate the
models and an augmentation set to augment the
MultiNLI training set. In our experiments, we treat
the augmentation set as a validation set and do not
use it for training.

The Comparisons dataset (Dasgupta et al., 2018)
attempts to evaluate the models trained on SNLI for
three types of adversarial examples: same, more-
less, not. The same category consists of hypothesis-
premise pairs having exactly the same words in
a different order. An example with contradiction
gold label is as following: “The woman is more
cheerful than the man.⇒ The man is more cheerful
than the woman.” The more-less type contains in-
stances whose sentence pair differ by including the
word “more” or the word “less”, and possibly in
word order. The following pair is an example from
this category with entailment label: “The woman
is more cheerful than the man. ⇒ The man is less
cheerful than the woman.” The third category is
the not type, representing the instances having the
negation word “not” either in the hypothesis or in

the premise, but not in both. The word order of
the sentences might differ as well. A sentence pair
from this category with entailment gold label is
the following: “The woman is more cheerful than
the man. ⇒ The man is not more cheerful than
the woman.” The authors created this dataset by
automatically generating examples fitting into one
of the described categories using a vocabulary sim-
ilar to SNLI’s. Moreover, they analyzed SNLI and
showed that it has many examples fitting into the
examined categories with labels mostly supporting
the heuristic choice. Unlike SNLI, this dataset does
not have the neutral label. It has the entailment la-
bel for the positive examples and the contradiction
label for the negative examples.

2.3 Semantic Role Labeling as an Auxiliary
Objective for Sentence Understanding

In this work, we use the English Ontonotes v5.0
SRL dataset with the CONLL-2012 shared task
format (Pradhan et al., 2013) which gives the
predicate-argument structure for each sentence.
The auxiliary task we used is formulated as pre-
diction of the arguments for a given predicate in a
sentence. Therefore, each predicate in a sentence
together with the semantic role label spans associ-
ated with it yield a different training instance. The
number of training instances in the whole dataset
is around 280,000.

3 Model Description

We propose a multi-task BERT model to jointly pre-
dict semantic roles and perform natural language
inference. BERT is used as the shared encoder mod-
ule and two separate decoder heads are appended
on top of it to perform task-specific operations. The
overall picture of the model can be seen from Fig-
ure 1. Following Liu et al. (2019), the tasks share
the encoder part of the model including the lexicon
encoder and all BERT layers.

We follow the original sentence pair classifica-
tion formulation for BERT while training it for NLI
task. On the input side, we concatenate the premise
and hypothesis tokens, add a [SEP] token at the end
of both sentences, and finally add a [CLS] token
at the beginning of the whole sequence. Figure 2
shows the token embedding for an example sen-
tence pair. While processing an NLI input, we take
the [CLS] token embedding at the BERT’s output
and treat it as the summary of the whole sequence.
The dimension of this embedding is reduced to

80

[CLS] judge by banker . [SEP]the the [SEP].bankerInput

E[CLS] Ethe Ebanker E[SEP]E . E .Ejudge Eby E[SEP] Ethe Ebanker
Token
Embeddings

Segment
Embeddings

Position
Embeddings

EA EA EA EBEA EBEA EA EA EB EB

E0 E1 E8 E17E9 E16E2 E3 E10 E11 E12

Figure 2: Input representation of “The judge by the actor stopped the banker. ⇒ The banker stopped the actor.”
sentence pair for NLI task.

three after passing through a two-layer MLP since
there are three labels in MultiNLI and SNLI. Fi-
nally, a softmax is applied to get the probability for
each label class. Following McCoy et al. (2019b),
when we evaluate the model on HANS or Compar-
isons, we collapse the predicted contradiction and
neutral labels into a single negative label to output
binary labels.

For the SRL training, we adapt an architecture
similar to the one proposed by Shi and Lin (2019).
In our implementation, we indicate the predicate
using the segment embeddings by assigning 1 to
the predicate word pieces and 0 to the other tokens.
Figure 3 denotes the embeddings used for the SRL.
We opt for a simple decoder and rely purely on
the self attention to capture contextual information.
The embedding of each token is directly passed
through a two-layer MLP independently, and the
SRL tag is determined by a final softmax layer. We
use the Inside Outside Beginning (IOB)1 tagging
for spans, and a Viterbi decoder to ensure predic-
tion of valid spans during testing. As Figure 2 and 3
show, the segment embeddings represent different
things for SRL and NLI inputs. In NLI, segment
embeddings separate the sentences whereas they
indicate the target verb in SRL. Moreover, how the

1In IOB style tagging, each span begins with a B- tag and
continues with I- tags except for Other tokens, which takes O
tags.

BERT outputs are processed is also different be-
tween the tasks. In spite of these differences, the
training is expected to optimize the BERT weights
so that it can generate embeddings suitable for both
tasks. Intuitively, this representation will be less
prone to dataset biases in the NLI thanks to ex-
plicitly forcing the model to pay attention to the
semantic roles of the words.

4 Experiments and Results

In this section, we present the experiments we con-
ducted by training the BERT based model in single-
task and multi-task learning setups. MultiNLI and
SNLI datasets are used to train the models whereas
HANS and Comparisons are used for evaluation.
For the multi-task learning experiments, we used
the SRL dataset for joint training with NLI. In both
of the HANS and Comparisons experiments, we
tuned the hyperparameters using a validation set
from the same distribution as the adversarial test set.
Nevertheless, we also tested our highest performing
models on the original MultiNLI and SNLI valida-
tion sets to make sure our multi-task BERT model
performs well on those as well. Indeed, the multi-
task model performance on the original validation
sets turned out to be similar (accuracy difference is
around±0.5%, depending on the hyperparameters)
to the single-task BERT performance.

[CLS] saw a yellow bird flying in the sky .John [SEP]Input

E[CLS] EJohn Ein Ethe EskyEsaw Ea Eyellow Ebird Eflying E . E[SEP]
Token
Embeddings

Segment
Embeddings

Position
Embeddings

EA EA EA EA EAEB EA EA EA EA EA EA

E0 E1 E7 E8 E9E2 E3 E4 E5 E6 E10 E11

Figure 3: Input representation of “John saw a yellow bird flying in the sky.” sentence for SRL task when the
predicate is saw.

81

4.1 HANS Experiments
We experimented with direct training on NLI, se-
quential transfer learning using SRL, and a multi-
task learning approach to train on the NLI and SRL
tasks jointly. As HANS was proposed as an ad-
versarial evaluation set for the NLI models trained
on MultiNLI, we use it as the NLI training dataset.
Following McCoy et al. (2019b), we output non-
entailment label when a model predicts contradic-
tion or neutral.

4.1.1 Single-task MultiNLI Training
We trained a single-task BERT model on the
MultiNLI dataset to be used as the baseline for the
HANS evaluation. The BERT weights are initial-
ized with the pre-trained weights from Devlin et al.
(2018) whereas the classifier head is randomly ini-
tialized. During training, all weights are updated.
We used the HANS augmentation dataset as the
development set for hyperparameter tuning.

As reported by McCoy et al. (2019b), BERT
performs poorly on HANS although better than
bag-of-words or LSTM (Hochreiter and Schmidhu-
ber, 1997) based models. However, the follow-up
work by McCoy et al. (2019a) showed BERT’s per-
formance on HANS varied dramatically depend-
ing on the order of instances fed during training
and the initial weights of the classifier head, both
of which can be varied by changing the random
seeds. To further investigate that, they repeated
the training of BERT 100 times with the same set-
tings except that randomness and compared the
results. The largest variance was encountered on
the lexical overlap category when the gold label
is non-entailment whereas the other results were
close among different runs. In our experiment, we
got a 51% accuracy on lexical overlap, which is
close to the upper limit of the range (6% − 54%)
reported by McCoy et al. (2019a). Table 2 includes

the comparison of the original results (McCoy et al.,
2019b) with our run. Our results are comparable
so we use this model as the baseline for single-task
BERT.

4.1.2 Multi-task Training for SRL and
MultiNLI

In this part, we present the result of training BERT
on SRL and MultiNLI jointly with the multi-task
approach described in Section 3. We used the
HANS augmentation dataset as the validation set
for MultiNLI, and CoNLL-2012 development set
for SRL validation. We validated the trained model
against both validation set separately at the end of
each epoch. Then, the model performed highest on
the HANS augmentation set was evaluated on the
HANS test set. The results are shown in Table 2,
together with the single-task results for comparison.
The multi-task approach improved the overall accu-
racy by 4%. Although there is a slight decrease in
the results when the correct label is entailment, this
is an expected drop. The accuracy of the single-task
model reaches 100% on the subsequence category,
and is at least 96% on the remaining two categories
when the correct label is entailment. Since the
MultiNLI instances involving a heuristic examined
by HANS are mostly labeled with entailment, the
models tend to assign entailment labels to such
examples in the HANS dataset. Because our multi-
task model is less severely affected by the heuris-
tics, it is less likely to output entailment when these
heuristics are encountered. As one would expect,
the gains come from the instances whose correct
label is non-entailment. Noticeably, the multi-task
training improved the accuracy for this label in all
three categories dramatically.

To examine the improvements in more detail,
we present the results broken down into subcate-
gories in Table 3. We refer the readers to McCoy

Correct: Entailment Correct: Non-entailment
BERT model Lexical Subseq. Const. Lexical Subseq. Const. Avg.
McCoy et al. (2019b) 0.95 0.99 1.00 0.16 0.04 0.16 0.55
Single-task 0.96 1.00 0.99 0.51 0.05 0.18 0.62
Multi-task 0.91 0.98 0.95 0.71 0.13 0.25 0.66

Table 2: Comparison of the previous work (McCoy et al., 2019b) and our single-task and multi-task BERT models
on HANS. All models started from pre-trained weights. The multi-task model was jointly trained on SRL and
MultiNLI whereas single-task models were only trained on MultiNLI. The highest accuracy for each category is
indicated with bold. Note that (McCoy et al., 2019b) results on the entailment and non-entailment categories were
obtained by averaging the subcases using the BERT column of Table 7 and Table 8 respectively in their paper.
(Lexical: lexical overlap, Subseq.: subsequence, Const.: constituent)

82

Category Single-Task Multi-Task
Lexical Overlap
Subject-object

0.68 0.83
swap
Preposition 0.68 0.79

Relative clause 0.60 0.73

Conjunction 0.55 0.70

Passive 0.01 0.51

Subsequence
NP/S ambiguity 0.00 0.03

Prepositional
0.14 0.20

phrase on subject
Relative clause

0.10 0.24
on subject
Past participle 0.00 0.06

NP/Z ambiguity 0.02 0.15

Constituent
Embedded

0.46 0.71
under if
After if

0.00 0.00
clause
Embedded

0.31 0.47
under verb
Disjunction 0.07 0.02

Adverb 0.08 0.06

Table 3: Fine-grained comparison of single-task and
multi-task BERT on HANS’s three different categories
when the correct label is non-entailment. The rows de-
note the heuristic type found in the sentences.

et al. (2019b) for details and examples of the sub-
categories. The top part of the Table 3 shows the
fine-grained results for the lexical overlap category
with the non-entailment gold labels. Although all
subcategories improved, the largest gain comes
from the passive examples. The passive case with
non-entailment labels includes examples with sen-
tence pairs almost identical to each other, only one
of them has an active verb while the other has the
passive form of it. An example sentence pair is
the following: “The senators were helped by the
managers. ⇒ The senators helped the managers.”
The single-task model misclassified almost all non-
entailment examples involving passive sentences
whereas the multi-task model could predict them
correctly half of the time. This is a significant im-
provement, the multi-task model has begun to iden-

tify the meaning changes when a verb is switched
from passive to active while the word order is kept
unchanged.

The middle section of Table 3 shows the results
on the subsequence category for the non-entailment
gold labels. All subcategories improved although
the degree is less than lexical overlap. The largest
improvement is found on relative clause on sub-
ject, which represents the sentence pairs differing
by their subjects such that the premise’s subject
is a relative clause and the hypothesis’s subject is
a particular segment of that clause that leads to
non-entailment. An example sentence pair from
this category is the following: “The secretary that
admired the senator saw the actor. ⇒ The senator
saw the actor.”. When trained with a multi-task ap-
proach, the model makes some progress on recog-
nizing that the overall meaning of a relative clause
does not necessarily entail a part of it.

The last category we investigated is constituents
with non-entailment gold labels, whose results are
given in the bottom part of Table 3. There are signif-
icant improvements in two subcategories whereas
the remaining three did not improve or very slightly
dropped. The largest improvement (25% accuracy)
is on embedded under if subcategory, which de-
notes the examples with a premise having an if (or
unless) clause whereas the hypothesis has the result
part of the if clause. An example from this subcat-
egory is: “Unless the authors saw the students, the
doctors resigned. ⇒ The doctors resigned.” The
second largest gain (16% accuracy) comes from
embedded under verb subcategory, which is simi-
lar to the previous one, except that the embedding
is achieved using a verb. An example is: “The
tourists said that the lawyer saw the banker. ⇒
The lawyer saw the banker.”.

As shown by the HANS results, there are solid
improvements on NLI evaluation after switching to
the multi-task training. However one needs to ask
if the joint training hurts the other task, SRL. In
the multi-task experiment, the F1 score on SRL
test dataset is 86.0 which is comparable to the
single model SOTA results noted by Shi and Lin
(2019). Therefore, the joint training did not harm
the SRL performance, while improving the out-of-
distribution performance on NLI.

4.1.3 Sequential Transfer Learning from
SRL to MultiNLI

We experimented with sequential transfer learn-
ing to test if a simple transfer learning strategy is

83

more
Model same /less not Avg.
BOW-MLP 50.0 50.0 49.9 50.0
InferSent 51.4 50.1 47.8 49.8
BERT 85.3 47.9 44.5 59.2
MTL-BERT 80.5 47.9 51.3 59.9

Table 4: Percent accuracy of the models on Compar-
isons dataset. BERT based models are our implementa-
tions while the others are from Dasgupta et al. (2018).
Multi-task (MTL) BERT is trained on SRL and SNLI.
The highest accuracy for each category is indicated
with bold. Note that the BOW-MLP and InferSent rows
are obtained by merging the neutral and contradiction
labels in Figure 2 and 3 from Dasgupta et al. (2018).

enough to carry information from the SRL task so
that the model is more robust to the biases in the
NLI dataset. First, an SRL tagger head with ran-
dom weights is appended on top of the pre-trained
BERT encoder. This model is fine-tuned on SRL
until the F1 score on the SRL validation set is maxi-
mized. The model weights from the epoch resulting
in the highest SRL development set score is stored.
Then, its SRL head is stripped, and an NLI classi-
fier head with random weights is appended on top
of the [CLS] token. Finally, the model is trained on
MultiNLI and validated against HANS augmenta-
tion set. After training, the model is evaluated on
HANS test set. The result is within the accuracy
range for the single-task training results reported
by McCoy et al. (2019a). This shows that our trans-
fer learning strategy did not improve HANS results
over the BERT trained only on MultiNLI. We an-
ticipate that this is because the model forgets most
of the knowledge about the SRL task during NLI
training. To avoid that, we switched to multi-task
setup presented in Section 3 to learn SRL and NLI
jointly so that the semantic role knowledge is not
forgotten.

4.2 Comparisons Dataset Results

We trained BERT with single-task and multi-task
learning approaches and compared them on the

Comparisons dataset. First, we used the SNLI
dataset as the NLI training source following Das-
gupta et al. (2018). We used the validation set
released with the Comparisons dataset for hyper-
parameter optimization during training of both the
single-task and multi-task models. Unlike SNLI,
this dataset contains only two labels, entailment
and contradiction. Therefore, differently than Das-
gupta et al. (2018), we converted the predicted
neutral labels to contradiction to have a unified
negative label. Table 4 compares the overall perfor-
mance of our BERT based models and the previ-
ously examined models on the test set. InferSent
(Conneau et al., 2017) is a sentence encoding based
NLI model that uses LSTM as the encoder. Al-
though it is more complex than the bag-of-words
(BOW-MLP) model, their performances are sim-
ilar on this set. We see that the performance of
BERT models on the same category are much bet-
ter than the simpler models. The high performance
of BERT models on this category can be attributed
to the fact that the BERT was pre-trained on a large
corpus with missing word prediction and next sen-
tence prediction tasks, making it more aware of the
word order. However, in the remaining two cate-
gories, both the single-task and multi-task BERT
perform relatively close to the remaining models.

MultiNLI is a more diverse dataset compared
to SNLI, including examples from several genres.
Therefore, we also tried MultiNLI as the NLI train-
ing source and replicated the experiments to see
how the single-task and multi-task BERT perfor-
mance will change. The results are given in Table
5 together with the SNLI based results for compar-
ison. We see that switching to MultiNLI improved
both models substantially. However, the increase
in the multi-task model is significantly more promi-
nent, showing the advantage of the joint training
with SRL. The multi-task model correctly classifies
almost all test examples in the more/less category
and most of the not category. However, the trend of
observing better performance on the same category
from the single-task model holds here as well. This
result is surprising and needs further investigation.

Training set: SNLI Training set: MultiNLI
BERT Model same more/less not Avg. same more/less not Avg.
Single-task 85.3 47.9 44.5 59.2 74.1 88.3 74.3 78.9
Multi-task 80.5 47.9 51.3 59.9 63.3 97.3 91.9 84.2

Table 5: Percent accuracy of the BERT models on Comparisons dataset.

84

4.3 Training Details

We used the PyTorch (Paszke et al., 2017) frame-
work and the AllenNLP (Gardner et al., 2018) li-
brary for implementation. We adapted some code
to implement the multi-task training logic from
Sanh et al. (2019)’s hierarchical multi-task learn-
ing project2. In all experiments, we used the base
version of BERT by initializing it with the weights
released by Devlin et al. (2018).

We use uniform mini-batches, i.e. a mini-batch
contains instances from a single-task. Each dataset
is divided into mini-batches with the same size and
an iterator for each of them is created that can cycle
through a dataset and provide batches indefinitely.
In a training step, we decide which task to train
with a probabilistic sampling, get a mini-batch from
the iterator for that task, and perform a forward
pass on it and back-propagate the loss. During the
back-propagation, we update the task-specific head
of the chosen task, as well as the BERT encoder.
Following Sanh et al. (2019), we use proportional
sampling to decide on the task type at the beginning
of each training step.

Recent studies generally use a single global op-
timizer for all tasks (Sanh et al., 2019; Liu et al.,
2019). In this work, we tried both this approach
and using a different optimizer for each task. The
advantage of using multiple optimizers is that the
learning rates of the individual tasks can be set to
different values, and each task can have its own
learning rate scheduler. We used BertAdam op-
timizer from HuggingFace, and set its maximum
learning rate to 2e-5 or 5e-5 according to the vali-
dation accuracy on the NLI evaluation task. More-
over, we employed a slanted triangular learning
rate scheduler (Howard and Ruder, 2018) with a
cut fraction of 0.1 and decay factor of 0.38. In all
experiments the maximum sequence length is set
to 256, and longer sequences are truncated. In all
training experiments, 4 GPUs were used in parallel
and the datasets were divided into mini-batches of
size 12 based on GPU memory limitations.

5 Related Work

In this section, we discuss various solution ap-
proaches proposed for the NLI task. We start with
a sentence embedding based approach and con-
tinue with a data augmentation method targeting
the generalization problem of NLI models. Then,

2https://github.com/huggingface/hmtl

we discuss some models benefiting from syntax or
semantic roles and touch on multi-task models.

Some previous studies used sentence embedding
based approaches to solve NLI. Noticeably, In-
ferSent (Conneau et al., 2017) uses an LSTM to
encode the premise and hypothesis sentences in-
dependently. Then, it concatenates the premise,
hypothesis embeddings and two feature vectors
obtained by their element-wise multiplication and
absolute difference to get the overall sentence pair
representation. Finally, an MLP layer followed by
a softmax is used to calculate the class scores. Be-
ing trained on SNLI, this model suffers from the
biases in its training data and performed close to
the BOW model on the Comparisons evaluation
set.

There are a number of studies that use data aug-
mentation to address the generalization problem
revealed by NLI challenge datasets like HANS and
Comparisons. McCoy et al. (2019b); Dasgupta et al.
(2018); Nie et al. (2018) created augmentation sets
consisting of training instances with properties sim-
ilar to the proposed adversarial evaluation set. The
augmentation set is focused on the examined phe-
nomena and considerably smaller than the original
training set in general. Nevertheless, the models
are shown to achieve very strong results, even close
to %100 accuracy on the evaluation sets after train-
ing with augmented datasets. However, there are
some problems with an augmentation approach per-
formed this way, i.e. using a new dataset targeting
the inspected phenomena in the proposed evalua-
tion set. First of all, it is not clear if they do result
in improvement on the language understanding of
the model in general. Rather, the model at hand is
patched so that it can excel on some specific cases
that the new evaluation dataset examines. However,
one can presumably find other adversarial exam-
ple classes for a given training dataset, so creating
an augmentation set for each possible adversarial
class may not be feasible. Moreover, Nie et al.
(2018) showed that augmenting the training dataset
by targeting some specific category of adversar-
ial examples might be harmful to other types of
adversarial examples. In other words, dataset aug-
mentation with such limited focus might lead to
overfitting to the targeted adversaries and hurt the
overall robustness. Therefore, in this work, we took
a different approach and introduced an inductive
bias on the model by explicitly enforcing it to pro-
duce representations suitable to extract semantic

85

role information.

Some recent studies have investigated the bene-
fits of semantic role labeling on the performance
of natural language inference models. Noticeably,
Zhang et al. (2020, 2018) used SRL as a supple-
mentary task for text comprehension tasks such as
textual entailment and question answering. Similar
to our work, they used PropBank (Palmer et al.,
2005) style role annotations and treated SRL as a
sequence tagging problem. Zhang et al. (2020)’s
approach is different from ours in that they use a
pre-trained, SOTA SRL model to provide semantic
embeddings to enrich the contextual embeddings
from BERT. They kept the SRL model frozen and
trained other parts of the model including the BERT
encoder. Similarly, Zhang et al. (2018) employed
two different networks where one of them is an
SRL model responsible for generating the semantic
embeddings to support the other network which
is trained to solve the downstream task at hand.
Moreover, both networks in this model use pre-
trained word embeddings such as ELMo (Peters
et al., 2018) or GloVe (Pennington et al., 2014).
The main difference of our approach from these
is that we use a single network and train it in a
multi-task fashion by sharing encoder representa-
tions among different tasks. Moreover, unlike our
work, they evaluated their models on the original
datasets e.g. MultiNLI, so their focus was not to
improve the model performance on the adversarial
evaluation sets.

Instead of semantic role information, some re-
cent works investigated the benefits of syntax to
support the natural language inference models. No-
ticeably, Pang et al. (2019) used the hidden word
representations of an externally trained, high per-
forming dependency parser to enrich the BERT
based NLI models. With this approach, the mod-
els achieved some modest increase on the overall
HANS results.

Multi-task models powered with pre-trained lan-
guage model based encoders have achieved SOTA
performance on natural language understanding
benchmarks such as GLUE (Wang et al., 2018),
and SuperGLUE (Wang et al., 2019). However,
there is not much work focusing on simultaneously
solving both a word-level semantics task such as
SRL and a sentence-level understanding such as
NLI which requires higher level reasoning. Instead,
the existing approaches such as Liu et al. (2019);
Clark et al. (2019) combine multiple sentence-level

understanding tasks to solve them jointly without
any aid from lower level tasks focusing on syntax
or word-level semantics. Our approach differs from
them in that we hypothesize using both word-level
semantics and high level reasoning tasks might be a
more suitable approach to learn deeper understand-
ing of the sentences, thereby suffering less from
the dataset biases in reasoning tasks such as NLI.

Some previous work attempted to cast NLI to a
different natural language understanding task such
as question answering. Particularly, McCann et al.
(2018) suggested a collection of various tasks in-
cluding NLI for a benchmark and proposed a novel
approach to solve all those tasks using a single
multi-task model. They casted each task to the
question answering problem and trained a model
to solve all of them jointly.

6 Conclusion and Future Work

This work presents a multi-task learning approach
using SRL task to apply an inductive bias on a
BERT based NLI model. Our experiments show
that joint training with SRL makes the model more
robust to the superficial patterns in the NLI train-
ing data. As opposed to the augmentation based
solutions focused on specific adversarial classes,
this approach has the advantage of being applica-
ble to a variety of adversaries without overfitting
to some of them. Having access to the semantic
role information improves the sentence understand-
ing of the model, hence making it generalize better
to the unseen dataset distributions including the
adversarial ones such as HANS and Comparisons.
The SRL task utilized in this work processes a sin-
gle predicate per data instance. The future work
might incorporate joint prediction of all predicates
and corresponding roles to analyze its effect on
adversarial NLI evaluation performance.

Acknowledgments

The authors would like to thank Ulaş Sert and
Ceyda Özler for their help in creating the figures
and the anonymous reviewers for their valuable
feedback. Cemil Cengiz is supported by Huawei
Turkey R&D Center through the Huawei Graduate
Research Support Scholarship.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.

86

In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Cemil Cengiz, Ulaş Sert, and Deniz Yuret. 2019.
KU ai at MEDIQA 2019: Domain-specific pre-
training and transfer learning for medical NLI. In
Proceedings of the 18th BioNLP Workshop and
Shared Task, pages 427–436, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
BAM! born-again multi-task networks for natural
language understanding. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5931–5937, Florence, Italy.
Association for Computational Linguistics.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Ishita Dasgupta, Demi Guo, Andreas Stuhlmüller,
Samuel J Gershman, and Noah D Goodman. 2018.
Evaluating compositionality in sentence embed-
dings. arXiv preprint arXiv:1802.04302.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and what’s next. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
473–483, Vancouver, Canada. Association for Com-
putational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019. Multi-task deep neural networks for
natural language understanding. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4487–4496, Florence,
Italy. Association for Computational Linguistics.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language de-
cathlon: Multitask learning as question answering.
arXiv preprint arXiv:1806.08730.

R. Thomas McCoy, Junghyun Min, and Tal Linzen.
2019a. Berts of a feather do not generalize together:
Large variability in generalization across models
with similar test set performance.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019b.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2018.
Analyzing compositionality-sensitivity of NLI mod-
els. CoRR, abs/1811.07033.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics,
31(1):71–106.

Deric Pang, Lucy H. Lin, and Noah A. Smith. 2019.
Improving natural language inference with a pre-
trained parser.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Pro-
ceedings of the Seventeenth Conference on Computa-
tional Natural Language Learning, pages 143–152,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

87

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. Proceedings of the
AAAI Conference on Artificial Intelligence, 33:6949–
6956.

Peng Shi and Jimmy Lin. 2019. Simple bert mod-
els for relation extraction and semantic role labeling.
CoRR, abs/1904.05255.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Zhuosheng Zhang, Yuwei Wu, Zuchao Li, and Hai
Zhao. 2018. Explicit contextual semantics for text
comprehension.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li,
Shuailiang Zhang, Xi Zhou, and Xiang Zhou. 2020.
Semantics-aware BERT for language understanding.
In the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-2020).

88

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 89–94
July 9, 2020. c©2020 Association for Computational Linguistics

A Metric Learning Approach to Misogyny Categorization

Juan M. Coria and Sahar Ghannay and Sophie Rosset and Hervé Bredin
Université Paris-Saclay, CNRS, LIMSI

{coria, ghannay, rosset, bredin}@limsi.fr

Abstract
The task of automatic misogyny identifica-
tion and categorization has not received as
much attention as other natural language tasks
have, even though it is crucial for identify-
ing hate speech in social Internet interactions.
In this work, we address this sentence clas-
sification task from a representation learning
perspective, using both a bidirectional LSTM
and BERT optimized with the following met-
ric learning loss functions: contrastive loss,
triplet loss, center loss, congenerous cosine
loss and additive angular margin loss. We set
new state-of-the-art for the task with our fine-
tuned BERT, whose sentence embeddings can
be compared with a simple cosine distance,
and we release all our code as open source for
easy reproducibility. Moreover, we find that al-
most every loss function performs equally well
in this setting, matching the regular cross en-
tropy loss.

1 Introduction

Whether it is at the word or at the sentence level,
learning robust representations allows neural net-
works to consolidate knowledge that can later be
transferred to other tasks and domains. Many ap-
proaches have dealt with this problem in differ-
ent ways, for instance with CBOW or skip-gram
from word2vec (Mikolov et al., 2013) for context-
independent word embeddings, or more recently
with BERT’s (Devlin et al., 2019) sentence embed-
dings and contextual word embeddings.

In order to learn sentence representations, a
neural encoder enc needs to learn a mapping
from an initial representation xi to a target vec-
tor space. In a metric learning approach, the dis-
tances between each pair of sentence embeddings
(enc(xi), enc(xj)) should be low if classes yi = yj
(intra-class compactness) and high if yi 6= yj (inter-
class separability). To achieve this objective, the an-
gle θij separating a pair of embeddings (as depicted

in Figure 1) can be used to redefine the model’s
loss function.

In the domain of face recognition, many loss
functions (Schroff et al., 2015; Wen et al., 2016; Liu
et al., 2017; Wang et al., 2018; Deng et al., 2019)
have been proposed to learn better face representa-
tions, motivated by high intra-class variability due
to lighting, position or background. Other studies
have experimented with these methods in different
domains with similar characteristics, like speaker
verification (Bredin, 2017; Chung et al., 2018; Ya-
dav and Rai, 2018), and even as an enhancement
of BERT’s sentence representations (Reimers and
Gurevych, 2019) for semantic textual similarity.
A recent study (Srivastava et al., 2019) has also
focused on comparing these methods on face verifi-
cation, showing that angular margin losses achieve
superior performance.

On the other hand, the automatic misogyny
identification (AMI) evaluation campaign (Fersini
et al., 2018a) was proposed to address misogyny
on tweets. Included tasks were identification (i.e.
misogynous or not), categorization over five dif-
ferent misogyny types, and target identification (to
an individual or a group). However, no partici-
pant has proposed a metric learning model. The
best system (Ahluwalia et al., 2018) uses a bidirec-
tional LSTM with word embeddings of size 100 for
the identification task, and ensemble methods with
feature engineering for category and target classi-
fication. They achieve a macro F1 score of 36.1
on the misogyny categorization part of sub-task B,
which is the one we address as well. A different
architecture (Caselli et al., 2018) uses a multi-layer
character bidirectional LSTM for categorization,
obtaining a macro F1 score of 14.1.

In this paper, we focus on five metric learning
losses for the task of misogyny categorization, us-
ing the AMI (Fersini et al., 2018a) dataset. Our
hypothesis was that metric learning might reduce

89

Figure 1: Depiction of embeddings in two dimensions.
The dotted vector wk represents a centroid for some
class k, while the other vectors are sentence embed-
dings. θ values are angles separating two vectors.

the natural intra-class variability within misogyny
categories, making representations robust to writ-
ing styles, irony, insults, etc. The loss functions
we experiment with are contrastive loss (Hadsell
et al., 2006), triplet loss (Schroff et al., 2015), cen-
ter loss (Wen et al., 2016), congenerous cosine loss
(Liu et al., 2017) and additive angular margin loss
(Deng et al., 2019), as well as cross entropy loss.
We optimize these loss functions with two different
architectures: a bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) and BERT (Devlin et al.,
2019), and we evaluate their performance using
a simple K-nearest neighbors (KNN) classifier to
better measure representation quality.

Our main contributions consist of new state-of-
the-art performance for the misogyny categoriza-
tion task, as well as empirical evidence that these
methods do not perform better than cross entropy
loss on closed-set sentence classification. More-
over, our code is released as open source for easy
reproducibility.

2 Loss Functions

In this section, we present the loss functions chosen
for our study, which can be separated into contrast-
based and classification-based, according to how
they are computed.

2.1 Contrast-based losses

The contrastive loss (Hadsell et al., 2006) uses
pairs annotated as similar/dissimilar (also called
positive/negative). It brings representations from
similar examples closer together, while separating

dissimilar ones explicitly:

L =

P+∑

i=1

(Di)
2 +

P−∑

i=1

max(m−Di, 0)
2 (1)

where P+ is the number of similar pairs, P− the
number of dissimilar pairs, Di = 1 − cos θi the
distance between embeddings of the ith pair, and
m a margin.

The triplet loss (Schroff et al., 2015) is calcu-
lated over triplets composed of a reference example
known as the anchor, a positive and a negative, both
the latter with respect to the anchor. Following the
idea introduced by Gelly and Gauvain (2017), we
define this loss using the sigmoid function:

L =
T∑

i=0

sigmoid(α (cos θni − cos θpi))) (2)

where T is the number of triplets, α a scaling hyper-
parameter, θpi the angle separating the anchor and
the positive embeddings, and θni the angle separat-
ing the anchor and the negative ones.

Taking Figure 1 as an example, contrast-based
losses encourage the cosine distance between em-
beddings i and j to be larger if yi 6= yj , and smaller
if yi = yj . This is achieved a single pair at a
time with contrastive loss, while triplet loss does it
jointly using both the positive and negative inside
the triplet.

2.2 Classification-based losses
These loss functions derive from the cross entropy
loss, either by modifying how the classification
layer output is calculated or working as a penal-
ization term. The cross entropy loss is defined as:

LCE = − 1

N

N∑

i=1

log softmax(σi, yi) (3)

whereN is the number of training examples, σi the
output of the classification layer, and yi the class
of the ith example.

The congenerous cosine (CoCo) loss (Liu et al.,
2017) interprets the weights wk of the classifica-
tion layer as class centroids, learning to maximize
the cosine similarity between a representation and
its centroid. The classification layer output σi is
redefined as:

∀k σik = α · cos θiwk
(4)

where θiwk
is the angle separating the ith represen-

tation and wk, and α a scaling hyper-parameter.

90

The additive angular margin (AAM) loss (Deng
et al., 2019) goes one step further adding a margin
in angular space to penalize the distance between a
representation and its centroid:

∀k σik = α · cos(θiwk
+ δikm) (5)

where m is a margin, and δik = 1 if k = yi and 0
otherwise.

Finally, the center loss (Wen et al., 2016) pe-
nalizes the cross entropy loss with the distance to
jointly learned centroids ck external to the classifi-
cation layer:

L = LCE +
λ

2

N∑

i=1

(1− cos θicyi)
2 (6)

where λ is a hyper-parameter controlling the effect
of penalization.

To see the effect of classification-based losses
more intuitively, consider embeddings and centers
in Figure 1. If yi = k, then both congenerous co-
sine loss and center loss will penalize the loss value
with the distance from embedding i to wk (or ck in
the case of center loss), hence bringing all vectors
from class k close to the centroid k. The additive
angular margin loss follows the same principle, but
penalizing further by artificially augmenting the
distance of embedding i to wk with the angular
margin.

3 Task

The term misogyny is defined as hatred towards
women. Hate speech of this nature is unfortu-
nately common in social Internet interactions, and
current language models are generally unable to
accurately detect and classify it. The AMI task
and corpus were proposed in the context of the
IberEval 2018 (Fersini et al., 2018b) and Evalita
2018 (Fersini et al., 2018a) evaluation campaigns,
allowing researchers to train models focused specif-
ically on misogyny. The corpus consists of an en-
semble of tweets with three different types of an-
notations: misogyny (binary), misogyny category
and target (active or passive).

We use the same dataset as in Fersini et al.
(2018a) and we focus exclusively on misogyny
categorization, using an additional class for non
misogynous tweets. Our results are thus compared
to the categorization part of sub-task B. An ex-
planation of misogyny categories according to the
definitions given in Fersini et al. (2018a) can be
found in Table 2.

Class Train Dev Test

derailing 74 18 11
discredit 811 203 141
dominance 118 30 124
sexual harassment 282 70 44
stereotype 143 36 140
non misogynous 1,772 443 540
total 3,200 800 1,000

Table 1: Number of sentences per class for each parti-
tion of the AMI dataset. Note that classes are greatly
imbalanced.

As the corpus does not provide a development
set, one was constructed from the training set fol-
lowing the same class distribution. The final Train
set is composed of 3200 tweets, and the Dev and
Test sets of 800 and 1000 tweets respectively. Class
distribution is described in detail in Table 1. The
task is evaluated using the macro F1 score.

4 Experiments

4.1 Experimental protocol
As different losses rely on different hyper-
parameters, we perform a hyper-parameter search
including learning rates, margins m, scalings α,
and λ. The values we have experimented with are
shown in Table 3. Each configuration is trained
on Train for 60 epochs and validated using a KNN
classifier on Dev. As we deal with a rather small
dataset, the best configuration for each loss and
each architecture is then trained and validated from
scratch 10 times to reduce the effect of randomness.
Reported results are the mean macro F1 score and
standard deviation on Test over these 10 runs.

In all experiments we use the cosine distance
to compare embeddings, as congenerous cosine
loss and additive angular margin loss can only be
optimized in this way. Additionally, a linear clas-
sification layer is jointly trained with the sentence
encoder when optimizing classification-based loss
functions.

4.2 Architecture
We experiment with two different encoder archi-
tectures. The first one is a one-layer bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) with
output size 768 (to match BERT) and word em-
beddings of size 300 obtained from a word2vec
CBOW model (Mikolov et al., 2013) trained on 2-
billion-word Wikipedia dumps. The second one is

91

Category Description Example

derailing
“to justify women abuse, “if rape is real why aren’t more people

rejecting male responsibility” reporting it? just another feminist lie”

discredit
“slurring over women with

“this b*** is a s***”
no other larger intention”

dominance
“to assert the superiority of men “#didyouknow the male brain is 3.4 times larger

over women to highlight gender inequality” than the female brain? #maledominance”

sexual “sexual advances, harassment of
“come on box I show you my c*** darling”

harassment a sexual nature, etc.”

stereotype
“a widely held but fixed and “these people are hysterical. it’s like a commercial

oversimplified image or idea of a woman” for why men should never marry [. . .]”

Table 2: Misogyny categories as described by the corpus authors (Fersini et al., 2018a) along with examples found
in the training set.

Parameter Values

LR
{10−2, 10−3, 10−4, 10−5, 10−6}•
{10−4, 10−5, 10−6, 10−7}◦

m {0.02, 0.05, 0.25, 0.5, 0.75}
α and λ {0.01, 0.1, 1, 10, 100, 1000}

Table 3: Values tested during initial hyper-parameter
search, totaling 486 configurations. LR stands for learn-
ing rate, and m, α and λ are loss parameters (see Sec-
tion 2). Values with • are LSTM only and values with
◦ are BERT only.

the standard monolingual uncased BERT (Devlin
et al., 2019) from the huggingface library (Wolf
et al., 2019) pretrained on Wikipedia.

To obtain a sentence embedding from an encoder,
we perform a max pooling over the hidden states of
the last layer, leaving us with sentence embeddings
of size 768 on both models.

4.3 Implementation details

All sentences are pre-tokenized using the
TweetTokenizer from the NLTK toolkit (Bird
et al., 2009) in order to correctly deal with Twitter-
specific tokens like hashtags, mentions, and even
emojis. During this process we remove handles
and URLs. When training BERT, we do a second
pass of tokenization with BERT’s pretrained
tokenizer. We use a batch size of 32 sentences and
RMSprop as optimizer, reducing the learning rate
by half every 5 epochs of no improvement. The
best configurations found during hyper-parameter
search for each architecture and loss function are
shown in Table 4.

Our code is released as open source, available at
github.com/juanmc2005/MetricAMI.

4.4 Evaluation
We evaluate each model with the macro F1 score of
a KNN classifier with K = 10 fit with all sentence
embeddings from Train. However, given the high
class imbalance, the a priori probability of a ran-
dom embedding being closer to a non-misogynous
embedding is higher than for a discredit one (see
Table 1). To circumvent this issue, we penalize the
vote for class k by the number of examples from k
in Train. We believe this simple classifier to be a
better measure for representation quality, as it re-
lates to the separability and compactness properties
that we expect from a metric learning model.

5 Results

The results are summarized in Figure 2. With a
fixed architecture, it is clear that all loss functions
perform equally, with the exception of LSTM with
contrastive and triplet loss. As the LSTM encoder
is rather shallow (4.4M parameters) in compari-
son to BERT (110M parameters), it is possible that
contrast-based losses need bigger models to per-
form competitively.

The fact that almost all losses perform equally
well shows that, contrary to what we thought, met-
ric learning models perform no better than cross
entropy, in contrast to other findings (Srivastava
et al., 2019) on face verification. One possible ex-
planation is that the AMI dataset may not contain
enough examples or classes for these models to
exploit. However, another factor might be responsi-
ble for this behavior. One of the key differences of
AMI with respect to face verification is the closed-
set nature of the problem. An open-set task is
evaluated with unseen classes, while a closed-set
task is evaluated with unseen instances of the train-

92

Loss Hyper-parameters

Cross entropy
LR = 10−3 •

LR = 10−5 ◦

AAM
LR = 10−3, m = 0.05, α = 100 •

LR = 10−5, m = 0.05, α = 100 ◦

Center
LR = 10−4, λ = 1000 •

LR = 10−5, λ = 0.1 ◦

Congenerous LR = 10−3, α = 10 •

cosine LR = 10−5, α = 100 ◦

Contrastive
LR = 10−4, m = 0.25 •

LR = 10−6, m = 0.25 ◦

Triplet
LR = 10−4, α = 1000 •

LR = 10−6, α = 1000 ◦

Table 4: Best hyper-parameter configurations found per
loss function. LR stands for learning rate, and m, α
and λ are loss parameters (see Section 2). Rows with •
correspond to LSTM and rows with ◦ to BERT.

ing classes. It is possible that open-set verification
tasks are more suitable for metric learning than
closed-set tasks, meaning that the power of metric
learning might in fact lie in generalizing to unseen
classes rather than unseen class instances. The fact
that verification tasks more closely resemble the
training objective than exact class prediction could
provide an explanation for this.

On the other hand, our fine-tuned BERT outper-
forms the Evalita winner baseline (Ahluwalia et al.,
2018), setting new state-of-the-art for misogyny
categorization, with the added benefit of having
comparable embeddings with a simple cosine dis-
tance.

As a final note, results in Table 4 suggest that
congenerous cosine loss and center loss hyper-
parameters could be more sensitive to architecture
changes than other losses, as they are the only ones
whose best configurations differ from one architec-
ture to the other. Perhaps not surprisingly, we also
observe that additive angular margin loss works
better with lower margins. This is consistent with
the margin’s role, serving as an upper bound for
the distance between an embedding and its cen-
troid, while the margin in contrastive loss serves as
a lower bound for the distance between two nega-
tives.

6 Conclusion

In this work we have addressed the problem of
misogyny categorization from a metric learning
perspective, comparing the performance of sev-

cross
entropy

additive
angular
margin

center congenerous
cosine

contrastive triplet
0

5

10

15

20

25

30

35

40

Te
st
 F
1
sc

or
e
(%

)

36.3 40.5 35.1 40.3 36.0 40.2 35.3 39.7 26.5 37.5 30.4 38.1

EVALITA winner LSTM BERT

Figure 2: F1 scores on Test for each architecture and
loss function. Scores are calculated as the mean of 10
runs and standard deviation is shown as error bars. The
baseline of the Evalita 2018 winner (Ahluwalia et al.,
2018) is shown for reference.

eral loss functions. We hypothesized that reducing
intra-class variability in this way would be bene-
ficial. However, we have shown that none of the
considered losses can outperform the regular cross
entropy on the task. Our results suggest that metric
learning approaches might not be suited to closed-
set sentence classification tasks.

Finally, our fine-tuned BERT sets new state-of-
the-art performance, with a macro F1 score of 40.5.

Acknowledgements

This work has been partially funded by the
LIHLITH project (ANR-17-CHR2-0001-03), and
supported by ERA-Net CHIST-ERA, and the
“Agence Nationale pour la Recherche” (ANR,
France). It has also been made possible thanks
to the Saclay-IA computing platform.

Finally, we would like to thank the reviewers for
their useful comments.

References
Resham Ahluwalia, Himani Soni, Edward Callow, An-

derson Nascimento, and Martine De Cock. 2018.
Detecting Hate Speech Against Women in English
Tweets. In Tommaso Caselli, Nicole Novielli, Vi-
viana Patti, and Paolo Rosso, editors, EVALITA Eval-
uation of NLP and Speech Tools for Italian, pages
194–199. Accademia University Press.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Herve Bredin. 2017. TristouNet: Triplet loss for
speaker turn embedding. In 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal

93

Processing (ICASSP), pages 5430–5434, New Or-
leans, LA. IEEE.

Tommaso Caselli, Nicole Novielli, Viviana Patti,
and Paolo Rosso. 2018. Tweetaneuse@ AMI
EVALITA2018: Character-based Models for the Au-
tomatic Misogyny Identification Task. In Proceed-
ings of the Final Workshop, volume 12, page 13.

Joon Son Chung, Arsha Nagrani, and Andrew Zisser-
man. 2018. VoxCeleb2: Deep Speaker Recognition.
In Interspeech, pages 1086–1090. ISCA.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. 2019. ArcFace: Additive Angular Mar-
gin Loss for Deep Face Recognition. In The IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Elisabetta Fersini, Debora Nozza, and Paolo Rosso.
2018a. Overview of the Evalita 2018 Task on Auto-
matic Misogyny Identification (AMI). In Tommaso
Caselli, Nicole Novielli, Viviana Patti, and Paolo
Rosso, editors, EVALITA Evaluation of NLP and
Speech Tools for Italian, pages 59–66. Accademia
University Press.

Elisabetta Fersini, Paolo Rosso, and Maria Anzovino.
2018b. Overview of the Task on Automatic Misog-
yny Identification at IberEval 2018. In IberEval@
SEPLN, pages 214–228.

G. Gelly and J.L. Gauvain. 2017. Spoken Language
Identification Using LSTM-Based Angular Proxim-
ity. In Interspeech, pages 2566–2570. ISCA.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimen-
sionality Reduction by Learning an Invariant Map-
ping. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), volume 2, pages
1735–1742, New York, NY, USA. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Yu Liu, Hongyang Li, and Xiaogang Wang. 2017.
Rethinking Feature Discrimination and Polymer-
ization for Large-scale Recognition. ArXiv,
abs/1710.00870.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jef-
frey Dean. 2013. Efficient Estimation of Word Rep-
resentations in Vector Space. ArXiv, abs/1301.3781.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992, Hong Kong, China. Association
for Computational Linguistics.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. FaceNet: A Unified Embedding for
Face Recognition and Clustering. The IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 815–823.

Yash Srivastava, Vaishnav Murali, and Shiv Ram
Dubey. 2019. A Performance Comparison of Loss
Functions for Deep Face Recognition. ArXiv,
abs/1901.05903.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Di-
hong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu.
2018. CosFace: Large Margin Cosine Loss for Deep
Face Recognition. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and
Yu Qiao. 2016. A Discriminative Feature Learning
Approach for Deep Face Recognition. In Computer
Vision – ECCV 2016, volume 9911, pages 499–515,
Cham. Springer International Publishing.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. ArXiv, abs/1910.03771.

Sarthak Yadav and Atul Rai. 2018. Learning Discrimi-
native Features for Speaker Identification and Verifi-
cation. In Interspeech, pages 2237–2241.

94

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 95–102
July 9, 2020. c©2020 Association for Computational Linguistics

On the Choice of Auxiliary Languages for Improved Sequence Tagging

Lukas Lange1,2,3 Heike Adel1
1 Bosch Center for Artificial Intelligence, Renningen, Germany

2 Spoken Language Systems (LSV), Saarland University, Saarbrücken, Germany
3 Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany
{Lukas.Lange,Heike.Adel,Jannik.Stroetgen}@de.bosch.com

Jannik Strötgen1

Abstract
Recent work showed that embeddings from re-
lated languages can improve the performance
of sequence tagging, even for monolingual
models. In this analysis paper, we investi-
gate whether the best auxiliary language can
be predicted based on language distances and
show that the most related language is not al-
ways the best auxiliary language. Further, we
show that attention-based meta-embeddings
can effectively combine pre-trained embed-
dings from different languages for sequence
tagging and set new state-of-the-art results for
part-of-speech tagging in five languages.

1 Introduction

State-of-the-art methods for sequence tagging
tasks, such as named entity recognition (NER) and
part-of-speech (POS) tagging, exploit embeddings
as input representation. Recent work suggested to
include embeddings trained on related languages
as auxiliary embeddings to improve model perfor-
mance: Catalan and Portuguese embeddings, for
instance, help NER models on Spanish-English
code-switching data (Winata et al., 2019a). In this
paper, we analyze whether auxiliary embeddings
should be chosen from related languages, or if em-
beddings from more distant languages could also
help.

For this, we revisit current language distance
measures (Gamallo et al., 2017) and adapt them
to the embeddings and training data used in our
experiments. We investigate the question, whether
we can predict the best auxiliary language based
on those language distance measures. Our results
suggest that no strong correlation exists between
language distance and performance and that even
less related languages can be a good choice as aux-
iliary languages.

In our experiments, we explore both available
monolingual and multilingual pre-trained byte-

pair encoding (Heinzerling and Strube, 2018) and
FLAIR embeddings (Akbik et al., 2018). For com-
bining monolingual subword embeddings from
different languages, we investigate two different
methods: the concatenation of embeddings and the
use of attention-based meta-embeddings (Kiela
et al., 2018; Winata et al., 2019a).

We perform experiments on CoNLL and univer-
sal dependency datasets for NER and POS tagging
in five languages and show that meta-embeddings
are a promising alternative to the concatenation of
additional auxiliary embeddings as they learn to
decide on the auxiliary languages in an unsuper-
vised way. Moreover, the inclusion of more lan-
guages is often beneficial and meta-embeddings
can be effectively used to leverage a larger num-
ber of embeddings and achieve new state-of-the-
art performance on all five POS tagging tasks. Fi-
nally, we propose guidelines to decide which aux-
iliary languages one should use in which setting.

2 Related Work

Combination of Embeddings. Previous work
has seen performance gains by combining, e.g.,
various types of word embeddings (Tsuboi, 2014)
or variants of the same type of embeddings trained
on different corpora (Luo et al., 2014). For the
combination, alternative solutions have been pro-
posed, such as different input channels (Zhang
et al., 2016), concatenation (Yin and Schütze,
2016), averaging of embeddings (Coates and Bol-
legala, 2018), and attention (Kiela et al., 2018). In
this paper, we compare the inclusion of auxiliary
languages via concatenation to the dynamic com-
bination with attention.

Auxiliary Languages. Winata et al. (2019a)
proposed to include embeddings from closely-
related languages to improve NER performance

95

(a) BiLSTM-CRF. (b) Concatenation. (c) Meta Embedding.

Figure 1: Overview of our model architecture (left). The embedding combination e can be either computed using
the concatenation eCONCAT (middle) or the meta embedding method eATT (right).

in code-switching settings, i.e., it was shown
that Catalan and Portuguese embeddings help for
Spanish-English NER. In a later work, it was
shown that also more distant languages can be
beneficial (Winata et al., 2019b), but only tests in
the special setting of code-switching NER were
performed and no connection between the relat-
edness of languages and the performance increase
was analyzed. In contrast, our work shows that
the inclusion of auxiliary languages increases per-
formance in monolingual settings as well and we
analyze whether language distance measures can
be used to select the best auxiliary language in ad-
vance.

Language Distance Measures. Gamallo et al.
(2017) proposed to measure distances between
languages by using the perplexity of language
models trained on one language and applied to an-
other language. Campos et al. (2019) used a sim-
ilar method to retrace changes in multilingual di-
achronic corpora over time. Another popular mea-
sure of similarity is based on vocabulary overlap,
assuming that similar languages share a large por-
tion of their vocabulary (Brown et al., 2008).

3 Sequence Tagging Model

Following Lample et al. (2016), we use a bidi-
rectional long short-term memory network (BiL-
STM) (Hochreiter and Schmidhuber, 1997) fol-
lowed by a conditional random field (CRF) classi-
fier (Lafferty et al., 2001) (see Figure 1a).

3.1 Embeddings

Each input word is represented with a pretrained
word vector. We experiment with byte-pair en-
coding (BPEmb) (Heinzerling and Strube, 2018)
and FLAIR embeddings (Akbik et al., 2018), as

for both of them pretrained embeddings are pub-
licly available for all the languages we consider.1

3.2 Combination of Embeddings

As we experiment with multiple word embed-
dings, we compare two combination methods: a
simple concatenation eCONCAT and attention-
based meta-embeddings eATT as shown in Fig-
ure 1b and 1c, respectively, and described next.

In both cases, the input are n embeddings
ei, 1 ≤ i ≤ n that should be combined. In our
experiments, we use embeddings from n different
languages.

For concatenation, we simply stack the individ-
ual embeddings into a single vector: eCONCAT =
[e1, e2, .., en].

In the case of meta-embeddings, we fol-
low Kiela et al. (2018) and compute the combi-
nation as a weighted sum of embeddings. For
this, all n embeddings ei need to be mapped to
the same size first. In contrast to previous work,
we use a nonlinear mapping as this yielded better
performance in our experiments. Thus, we com-
pute xi = tanh(Qi · ei + bi) with weight matrix
Qi, bias bi and xi ∈ RE being the i-th embed-
ding ei mapped to the size E of the largest embed-
ding. The attention weight αi for each embedding
xi is then computed with a fully-connected hidden
layer of size H with parameters W ∈ RH×E and
V ∈ R1×H , followed by a softmax layer.

αi =
exp(V · tanh(Wxi))∑n
l=1 exp(V · tanh(Wxl))

The parameters of the meta-embedding layer
(Q1, ..., Qn, b1, ..., bn,W, V) are randomly initial-
ized and learnt during training.

1https://github.com/flairNLP/flair
https://nlp.h-its.org/bpemb/

96

NER De En Es Fi Nl

Monolingual 79.78 ± .49 86.78 ± .15 78.99 ± .91 78.00 ± .87 78.91 ± .42
Multilingual 75.37 ± .87 86.52 ± .34 78.33 ± .47 77.41 ± .86 77.49 ± .45

Mono + Multi 81.13 ± .46 88.01 ± .27 80.32 ± .50 81.44 ± .36 81.15 ± .43

Mono + DE - 87.46 ± .19 79.79 ± .74 80.31 ± .21 81.31 ± .15
Mono + EN 80.92 ± .29 - 80.48 ± .56 81.22 ± .26 80.84 ± .30
Mono + ES 80.29 ± .20 87.37 ± .30 - 80.80 ± .83 80.62 ± .39
Mono + FI 81.10 ± .36 87.94 ± .17 79.91 ± .82 - 80.65 ± .48
Mono + NL 81.25 ± .14 87.38 ± .22 80.93 ± .25 80.67 ± .49 -

Mono + All 81.52 ± .33 87.70 ± .06 80.63 ± .34 82.07 ± .33 † 81.73 ± .26 †

Meta-Embeddings 81.75 ± .50 † 87.87 ± .23 80.84 ± .52 83.12 ± .12 † 82.13 ± .50 †

POS De En Es Fi Nl

Monolingual 93.02 ± .11 94.17 ± .09 96.23 ± .04 92.84 ± .13 94.01 ± .21
Multilingual 92.19 ± .20 94.10 ± .06 96.01 ± .07 91.95 ± .11 93.35 ± .22

Mono + Multi 93.40 ± .08 95.11 ± .07 96.54 ± .03 94.70 ± .12 94.94 ± .13

Mono + DE - 95.11 ± .09 96.43 ± .13 94.43 ± .18 94.70 ± .09
Mono + EN 93.26 ± .11 - 96.52 ± .06 94.45 ± .14 94.80 ± .12
Mono + ES 93.31 ± .13 95.03 ± .09 - 94.48 ± .14 94.79 ± .17
Mono + FI 93.41 ± .12 94.97 ± .04 96.34 ± .08 - 94.92 ± .13
Mono + NL 93.52 ± .10 94.99 ± .08 96.41 ± .07 94.42 ± .08 -

Mono + All 93.60 ± .14 † 95.40 ± .04 † 96.46 ± .09 95.61 ± .08 † 95.31 ± .08
Meta-Embeddings 93.51 ± .08 95.36 ± .10 † 96.48 ± .06 95.61 ± .11 † 95.34 ± .14 †

Table 1: Results of NER (F1, above) and POS (Accuracy, below) experiments with BPE embeddings. † marks
models that are statistically significant to the best Mono + X model. box highlights the closest auxiliary language
according to language distance measure dMV , and box the best auxiliary language according to performance.

De En Es Fi Nl

N
E

R Straková et al. (2019) 85.1 93.3 88.8 - 92.7
Meta-Emb. (BPEmb) 81.8 87.9 80.8 83.1 82.1
Meta-Emb. (FLAIR) 83.9 90.7 86.2 85.1 86.6

PO
S Yasunaga et al. (2018) 94.4 95.8 96.8 95.4 93.1

Meta-Emb. (BPEmb) 93.5 95.4 96.5 95.6 95.3
Meta-Emb. (FLAIR) 94.8 96.5 97.2 97.8 96.8

Table 2: Comparison with state of the art.

Finally, the embeddings xi are weighted using
the attention weights αi resulting in the word rep-
resentation eATT =

∑
i αi · xi

4 Experiments and Results

We perform NER and POS experiments on five
languages: German (De), English (En), Spanish
(Es), Finnish (Fi), and Dutch (Nl). Note that we
assume at least a character overlap to use auxiliary
embeddings from another language. Thus, lan-
guages with a different character set, e.g., Asian
languages, cannot be used, in this setting. Future
work could investigate the inclusion of languages
with different character sets, e.g., by using bilin-
gual dictionaries or machine translation.

For NER, we use the CoNLL 2002/03 datasets

(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) and the FiNER corpus (Ruoko-
lainen et al., 2019). For POS tagging, we experi-
ment with the universal dependencies treebanks.2

For each language, we report results for the fol-
lowing methods:

Monolingual (Mono). Only embeddings from
the source language were taken for the experi-
ments. This is the baseline setting. We also
compare our results to multilingual embeddings
(Multi) which have been successfully used in
monolingual settings as well (Heinzerling and
Strube, 2019). To ensure comparability, we use
the multilingual versions of BPEmb and FLAIR,
which were trained simultaneously on 275 and 300
languages, respectively.

Mono + X. A second set of embeddings from
a different language X is concatenated with the
original monolingual embeddings. While for this
typically embeddings from a related language are
chosen, we report results for all language combi-
nations and investigate in particular whether relat-
edness is necessary for improvement.

2We predict the UPOS tag from the following UD v2.0
treebanks: de gsd, en ewt, es gsd, fi tdt, nl alpino.

97

Mono + All & Meta-Embeddings. We also ex-
periment with the combination of all embeddings
from all languages from our experiments. In this
setting, we use all six embeddings (five mono-
lingual embeddings and the multilingual embed-
dings) and combine them either using concatena-
tion (Mono + All) or meta-embeddings.

We have chosen these settings that are mainly
based on monolingual embeddings, as the cur-
rent state-of-the-art for named entity recognition
is based on monolingual FLAIR embeddings (Ak-
bik et al., 2019). In addition, multilingual embed-
dings, such as multilingual BERT (Devlin et al.,
2019) tend to perform worse than their mono-
lingual counterparts3 in monolingual experiments.
For completeness, we include experiments with
multilingual embeddings as mentioned before.

4.1 Results

Following Reimers and Gurevych (2017), we re-
port all experimental results as the mean of five
runs and their standard deviation in Table 1 for
experiments with byte-pair encoding embeddings.
The results with FLAIR embeddings can be found
in the appendix. We performed statistical signifi-
cance testing to check if the concatenation (Mono
+ All) and meta-embeddings models are better
than the best Mono + X model. We used paired
permutation testing with 220 permutations and a
significance level of 0.05 and performed the Fis-
cher correction following Dror et al. (2017).4

For meta-embeddings, we found statistically
significant differences in 12 out of 20 settings
(6 with BPEmb, 6 with FLAIR) against the best
monolingual + X model, while we found statis-
tically significant differences for Mono + All in
only 7 out of 20 cases. This suggests that meta-
embeddings are superior to monolingual settings
with one auxiliary language as well as to the con-
catenation of all embeddings. Further, we found
that the combination of monolingual and multi-
lingual byte-pair encoding embeddings is always
superior to either monolingual or multilingual em-
beddings alone for both tasks. Even though the
multilingual embeddings have seen many lan-
guages during pre-training, they can still benefit
from the high performance of monolingual em-
beddings and vice versa. As the meta-embeddings

3https://github.com/google-research/
bert/blob/master/multilingual.md

4We take the model with median performance on the de-
velopment set for significance testing.

Rank dMV

De En Es Fi Nl

1 Nl Nl En En De∗

2 En Fi Nl De En∗

3 Fi De Fi Nl Fi
4 Es Es Es Es Es

Table 3: Language ranking according to the majority
voting distance dMV . ∗ highlights equal ranks.

assign attention weights for each embedding, we
can inspect the importance the models give to the
different embeddings. An analysis for an exam-
ple sentence can be found in Section D in the ap-
pendix. Table 2 provides the results of BPEmb and
FLAIR meta-embeddings in comparison to state
of the art, showing that we set the new state of the
art for POS tagging.

4.2 Analysis of Language Distances
To evaluate how useful language distances are for
predicting the best auxiliary language, we com-
pare rankings based on language distances and
the observed performance rankings based on Ta-
ble 1. For this, we take the language distance from
Gamallo et al. (2017), which is based on language
modeling perplexity PP of unigram language mod-
els LM applied to texts of foreign languages CH.
Lower language model perplexities on a foreign
dataset indicate higher language relatedness.

dP (L1, L2) = PP(CHL2,LML1)

We also test language similarities based on vo-
cabulary overlap with W (L1|L2) being the num-
ber of words of L1 which are shared with L2 and
N(L1) the number of words of L1 shared with
other languages.

dV (L1, L2) =
W (L1|L2) +W (L2|L1)
2 ·min(N(L1), N(L2))

For our experiments, we further adapt dP to
use the perplexity of the FLAIR forward language
models on the test data provided by Gamallo et al.
(2017) and call it d∗P . Similarly, we adapt d∗V to
compute the overlap of words in our training data.
Note that both variants, d∗P and d∗V , are based on
properties from either our model or training data
and are, therefore, specific to our setting. Fi-
nally, we create a ranking dMV which combines
the rankings from dP , d∗P , dV , d∗V with majority
voting. The ranking of dMV is provided in Ta-
ble 3, the rankings of the individual distance mea-
sures are given in the appendix.

98

0.00

0.25

0.50

0.75

1.00

NER POS
Tasks

Sp
ea

rm
an

C
or

re
la

tio
n

Ranking Methods: dP d∗P dV d∗V dMV

Figure 2: Spearman’s rank correlation between lan-
guage distance and model performance rankings for
NER and POS tasks for different language distances.

To analyze the correlation between language
distance measures and the performance of our
model, we compute the Spearman’s rank corre-
lation coefficient between the real rankings based
on performance and predicted rankings from our
language distances. The results are shown in Fig-
ure 2. We conclude that predicting the auxiliary
language ranking is a hard task and see that the
most related language is not always the best auxil-
iary language in practice (cf., Table 1). This holds
in particular for POS tagging, where the perfor-
mance differences of models are quite small.

In general, d∗P shows a higher correlation with
model performance than dP and dV , indicating
that not only word overlap plays a role but also
context information. The majority voting dMV

achieves the highest correlation and often predicts
the best auxiliary language for NER models using
byte-pair encoding. However, the actual ranking
of all languages does not match the performance
ranking, which results in a relatively low correla-
tion with only a little above 0.5.

4.3 Practical Guide

Figure 3: Proposal for auxiliary embedding selection.

Finally, we propose a small guide in Figure 3
to decide which auxiliary languages one can use
to improve performance over monolingual em-
beddings. Depending on the available amount of
data, it is recommended to train multiple monolin-
gual embeddings and combine them using meta-
embeddings, which was observed to be the best
method in our experiments. If not enough data
is available to train monolingual embeddings, the
best solution would be the inclusion of multilin-
gual embeddings, assuming the existence of high-
quality embeddings, such as multilingual byte-pair
encoding. If none of the above applies, language
distance measures, in particular the combination
of multiple distances, can help to identify the most
promising auxiliary embeddings. Despite not al-
ways predicting the best model, the predicted aux-
iliary language often led to improvements over the
monolingual baseline in our experiments.

5 Conclusion

In this paper, we investigated the benefits of aux-
iliary languages for sequence tagging. We showed
that it is hard to predict the best auxiliary lan-
guage based on language distances. We further
showed that meta-embeddings can leverage multi-
ple embeddings effectively for those tasks and set
the new state of the art on part-of-speech tagging
across different languages. Finally, we proposed a
guide on how to decide which method of including
auxiliary languages one should use.

Acknowledgments

We would like to thank Dietrich Klakow, Mar-
ius Mosbach, Michael A. Hedderich, the members
of the BCAI NLP&KRR research group and the
anonymous reviewers for their helpful comments
and suggestions.

References
Alan Akbik, Tanja Bergmann, and Roland Vollgraf.

2019. Pooled contextualized embeddings for named
entity recognition. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 724–728, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International

99

Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Cecil H Brown, Eric W Holman, Søren Wichmann, and
Viveka Velupillai. 2008. Automated classification of
the world s languages: a description of the method
and preliminary results. STUF-Language Typology
and Universals Sprachtypologie und Universalien-
forschung, 61(4):285–308.

Jos Ramom Pichel Campos, Pablo Gamallo Otero, and
Iaki Alegria Loinaz. 2019. Measuring diachronic
language distance using perplexity: Application to
english, portuguese, and spanish. Natural Language
Engineering, page 122.

Joshua Coates and Danushka Bollegala. 2018. Frus-
tratingly easy meta-embedding – computing meta-
embeddings by averaging source word embeddings.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 194–198, New
Orleans, Louisiana. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Rotem Dror, Gili Baumer, Marina Bogomolov, and Roi
Reichart. 2017. Replicability analysis for natural
language processing: Testing significance with mul-
tiple datasets. Transactions of the Association for
Computational Linguistics, 5:471–486.

Pablo Gamallo, José Ramom Pichel, and Iñaki Alegria.
2017. From language identification to language dis-
tance. Physica A: Statistical Mechanics and its Ap-
plications, 484:152–162.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free pre-trained subword em-
beddings in 275 languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Benjamin Heinzerling and Michael Strube. 2019. Se-
quence tagging with contextual and non-contextual
subword representations: A multilingual evaluation.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 273–
291, Florence, Italy. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computing, 9(8):1735–
1780.

Douwe Kiela, Changhan Wang, and Kyunghyun Cho.
2018. Dynamic meta-embeddings for improved sen-
tence representations. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1466–1477, Brussels, Bel-
gium. Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Yong Luo, Jian Tang, Jun Yan, Chao Xu, and Zheng
Chen. 2014. Pre-trained multi-view word embed-
ding using two-side neural network. In Proceed-
ings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence, AAAI’14, pages 1982–1988.
AAAI Press.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
338–348, Copenhagen, Denmark. Association for
Computational Linguistics.

Teemu Ruokolainen, Pekka Kauppinen, Miikka Sil-
fverberg, and Krister Lindén. 2019. A finnish news
corpus for named entity recognition. Language Re-
sources and Evaluation, pages 1–26.

Jana Straková, Milan Straka, and Jan Hajič. 2019.
Neural Architectures for Nested NER through Lin-
earization. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 5326–5331, Florence, Italy. Association
for Computational Linguistics.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The
6th Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In

100

Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Yuta Tsuboi. 2014. Neural networks leverage corpus-
wide information for part-of-speech tagging. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 938–950, Doha, Qatar. Association for Com-
putational Linguistics.

Genta Indra Winata, Zhaojiang Lin, and Pascale Fung.
2019a. Learning multilingual meta-embeddings for
code-switching named entity recognition. In Pro-
ceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 181–
186, Florence, Italy. Association for Computational
Linguistics.

Genta Indra Winata, Zhaojiang Lin, Jamin Shin, Zihan
Liu, and Pascale Fung. 2019b. Hierarchical meta-
embeddings for code-switching named entity recog-
nition. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3541–3547, Hong Kong, China. Association
for Computational Linguistics.

Michihiro Yasunaga, Jungo Kasai, and Dragomir
Radev. 2018. Robust multilingual part-of-speech
tagging via adversarial training. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 976–986, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Wenpeng Yin and Hinrich Schütze. 2016. Learning
word meta-embeddings. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1351–1360, Berlin, Germany. Association for Com-
putational Linguistics.

Ye Zhang, Stephen Roller, and Byron C. Wallace. 2016.
MGNC-CNN: A simple approach to exploiting mul-
tiple word embeddings for sentence classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1522–1527, San Diego, California. Associa-
tion for Computational Linguistics.

A Hyperparameters and Training

We use the Byte-Pair-Encoding embed-
dings (Heinzerling and Strube, 2018) with
300 dimensions and a vocabulary size of 200k
tokens for all languages. For FLAIR, we use
the embeddings provided by the FLAIR frame-
work (Akbik et al., 2018) with 2048 dimensions
for each language model resulting in a total

embedding size of 4096 dimensions. The bidi-
rectional LSTM has a hidden size of 256 units.
For training, we use stochastic gradient descent
with a learning rate of 0.1 and a batch size of
64 sentences. The learning rate is halved after
3 consecutive epochs without improvement on
the development set. We apply dropout with
probability 0.1 after the input layer.

B Language Distances

We report the language rankings of the single met-
rics dP , d∗P , dV and d∗V in Table 4.

C Results on NER and POS tagging with
FLAIR embeddings

We performed the same experiments as in Section
4.1 with FLAIR embeddings as well and report the
results in Table 5 for NER and for POS tagging.

In difference to the BPE experiments reported in
the paper, we do not include multilingual embed-
dings in the Mono + All and meta-embedding ver-
sions of FLAIR. The reason is prior experiments
in which multilingual embeddings led to reduced
performance. This is also reflected in the poor per-
formance of the multilingual FLAIR embeddings
alone. It seems that the multilingual BPE embed-
dings are more effective in downstream tasks than
the multilingual FLAIR embeddings.

D Analysis of Attention Weights

As the meta-embeddings assign attention weights
for each embedding, we can inspect the impor-
tance the models give to the different embeddings.
Figure 4 shows the assigned weights for an En-
glish sentence. In general, the model assigns
most weight to the English embeddings. However,
we observe an increased weight for German and
the multilingual embedding for the German word
Bayerische. Even though Vereinsbank is also a
German word, the model focuses more on English
for this word, probably because the subword bank
has the same meaning in English.

E Study: Increased Number of
Parameters vs. Auxiliary Language

To investigate whether the performance increase
comes from the increased number of parameters
rather than the inclusion of more embeddings, we
also investigated including the same embedding
type twice (Mono + Mono). However, we found

101

Rank de en es fi nl
dP d∗P dV d∗V dP d∗P dV d∗V dP d∗P dV d∗V dP d∗P dV d∗V dP d∗P dV d∗V

1 nl nl en nl nl nl de fi en nl en en de nl en en de de en en
2 en en nl en es fi nl nl nl en de nl nl de de nl en en de de
3 fi fi es∗ fi de de fi es fi de fi fi en en es∗ de fi fi es∗ es
4 es es fi∗ es fi es es de de fi nl de es es nl∗ es es es fi∗ fi

Table 4: Language distances. Languages marked with ∗ are ranked the same.

NER De En Es Fi Nl

Straková et al. (2019) 85.10 93.28 88.81 - 92.69
Monolingual 82.66 ± .11 89.98 ± .11 85.08 ± .68 83.38 ± .31 85.68 ± .27
Multilingual 66.21 ± .79 82.87 ± .24 77.87 ± .93 73.95 ± .74 77.44 ± .52

Mono + Mono 82.45 ± .45 89.95 ± 0.21 85.26 ± .06 83.37 ± .48 85.67 ± .06
Mono + Multi 82.95 ± .21 90.04 ± .11 84.70 ± .50 83.46 ± .37 86.04 ± .28

Mono + DE - 90.24 ± .19 85.16 ± .23 84.23 ± .22 85.82 ± .22
Mono + EN 83.27 ± .36 - 85.53 ± .20 84.10 ± .26 86.73 ± .09
Mono + ES 82.85 ± .34 90.14 ± .13 - 83.88 ± .31 86.16 ± .09
Mono + FI 83.10 ± .45 90.14 ± .09 85.06 ± .64 - 86.14 ± .31
Mono + NL 82.79 ± .24 90.18 ± .15 85.77 ± .27 83.65 ± .31 -

Mono + All 83.43 ± .29 90.29 ± .18 85.48 ± .78 84.32 ± .32 86.43 ± .33
Meta-Embeddings 83.90 ± .14 † 90.70 ± .29 † 86.18 ± .35 85.09 ± .30 † 86.58 ± .58

POS De En Es Fi Nl

Yasunaga et al. (2018) 94.35 95.82 96.84 95.40 93.09
Monolingual 94.72 ± .07 96.28 ± .05 97.08 ± .03 97.52 ± .03 96.48 ± .11
Multilingual 92.82 ± .20 93.69 ± .07 96.06 ± .13 92.98 ± .10 94.85 ± .11

Mono + Mono 94.74 ± .15 96.24 ± .02 97.04 ± .08 97.55 ± .05 96.45 ± .13
Mono + Multi 94.72 ± .13 96.29 ± .04 97.04 ± .05 97.52 ± .05 96.77 ± .02

Mono + DE - 96.41 ± .07 97.11 ± .08 97.64 ± .04 96.62 ± .06
Mono + EN 94.71 ± .04 - 97.13 ± .12 97.52 ± .06 96.49 ± .09
Mono + ES 94.67 ± .06 96.36 ± .03 - 97.48 ± .03 96.61 ± .13
Mono + FI 94.65 ± .05 96.38 ± .03 97.14 ± .05 - 96.68 ± .05
Mono + NL 94.64 ± .03 96.31 ± .07 97.06 ± .04 97.51 ± .04 -

Mono + All 94.64 ± .10 96.48 ± .05 97.11 ± .04 97.52 ± .06 96.54 ± .20
Meta-Embeddings 94.78 ± .09 96.49 ± .03 † 97.18 ± .07 97.82 ± .03 † 96.83 ± .13 †

Table 5: Results of NER (F1, above) and POS (Accuracy, below) experiments with FLAIR embeddings. † marks
models that are statistically significant to the best Mono + X model. box highlights the closest auxiliary language
according to language distance measure dMV , and box the best auxiliary language according to performance.

Now

Bay
eri

sch
e

Vere
ins

ba
nk

bro
ad

en
s
sha

re
off

er
14
15
16
17
18
19
20

At
te

nt
io

n
W

ei
gh

t (
in

 %
)

En (Avg.: 18.0%)
De (Avg.: 16.6%)
Multi (Avg.: 14.7%)

Figure 4: Learned attention weights of the meta-
embeddings model with byte-pair encoding embed-
dings for English NER.

that this does not help: The performance is com-
parable to the monolingual baseline. Thus, the
performance increase for Mono + X really comes
from additional information provided by the em-
beddings of the auxiliary language.

102

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 103–109
July 9, 2020. c©2020 Association for Computational Linguistics

Adversarial Alignment of Multilingual Models
for Extracting Temporal Expressions from Text

Lukas Lange1,2,3 Anastasiia Iurshina1

1 Bosch Center for Artificial Intelligence, Renningen, Germany
2 Spoken Language Systems (LSV), Saarland University, Saarbrücken, Germany
3 Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany
{Lukas.Lange,Heike.Adel,Jannik.Stroetgen}@de.bosch.com

Heike Adel1 Jannik Strötgen1

Abstract
Although temporal tagging is still dominated
by rule-based systems, there have been recent
attempts at neural temporal taggers. How-
ever, all of them focus on monolingual settings.
In this paper, we explore multilingual meth-
ods for the extraction of temporal expressions
from text and investigate adversarial training
for aligning embedding spaces to one common
space. With this, we create a single multilin-
gual model that can also be transferred to un-
seen languages and set the new state of the art
in those cross-lingual transfer experiments.

1 Introduction

The extraction of temporal expressions from text is
an important processing step for many applications,
such as topic detection and questions answering
(Strötgen and Gertz, 2016). However, there is a
lack of multilingual models for this task. While re-
cent temporal taggers, such as the work by Laparra
et al. (2018) focus on English, only little work was
dedicated to multilingual temporal tagging so far.

Strötgen and Gertz (2015) proposed to automat-
ically generate language resources for the rule-
based temporal tagger HeidelTime, but all of these
models are language specific and can only process
texts from a fixed language. In this paper, we pro-
pose to overcome this limitation by training a single
model on multiple languages to extract temporal ex-
pressions from text. We experiment with recurrent
neural networks using FastText embeddings (Bo-
janowski et al., 2017) and the multilingual version
of BERT (Devlin et al., 2019). In order to process
multilingual texts, we investigate an unsupervised
alignment technique based on adversarial training,
making it applicable to zero- or low-resource sce-
narios and compare it to standard dictionary-based
alternatives (Mikolov et al., 2013).

We demonstrate that it is possible to achieve
competitive performance with a single multilingual

model trained jointly on English, Spanish and Por-
tuguese. Further, we demonstrate that this multilin-
gual model can be transferred to new languages, for
which the model has not seen any labeled sentences
during training by applying it to unseen French,
Catalan, Basque, and German data. Our model
shows superior performance compared to Heidel-
Time (Strötgen and Gertz, 2015) and sets new state-
of-the-art results in the cross-lingual extraction of
temporal expressions.

2 Related Work

Temporal Tagging. The current state of the art
for temporal tagging are rule-based systems, such
as HeidelTime (Strötgen and Gertz, 2013) or SU-
Time (Chang and Manning, 2012). In particular,
HeidelTime uses a different set of rules depending
on the language and domain. Strötgen and Gertz
(2015) automatically generated HeidelTime rules
for more than 200 languages in order to support
many languages. However, the quality of these
rules does not match the high quality of manually
created rules and the models are still language spe-
cific. Aside from rule-based systems, Lee et al.
(2014) proposed to learn context-dependent seman-
tic parsers for extracting temporal expressions from
text. Laparra et al. (2018) made a first step towards
neural models by using recurrent neural networks.
However, they only performed experiments on En-
glish corpora using monolingual models. In con-
trast, we propose a truly multilingual model.

Multilingual Embeddings. Recently, it became
popular to train embedding models on resources
from many languages jointly (Lample and Con-
neau, 2019; Conneau et al., 2019). For exam-
ple, multilingual BERT (Devlin et al., 2019) was
trained on Wikipedia articles from more than 100
languages. Although performance improvements
show the possibility to use multilingual BERT in

103

Figure 1: Overview of our multilingual system with adversarial training for improving the embedding space.

monolingual (Hakala and Pyysalo, 2019), multi-
lingual (Tsai et al., 2019) and cross-lingual set-
tings (Wu and Dredze, 2019), it has been ques-
tioned whether multilingual BERT is truly multi-
lingual (Pires et al., 2019; Singh et al., 2019; Li-
bovickỳ et al., 2019). Therefore, we will investi-
gate the benefits of aligning its embeddings in our
experiments.

Aligning Embedding Spaces. A common
method to create multilingual embedding
spaces is the alignment of monolingual embed-
dings (Mikolov et al., 2013; Joulin et al., 2018).
Smith et al. (2017) proposed to align embedding
spaces by creating orthogonal transformation
matrices based on bilingual dictionaries, which we
use as baseline alignment method.

It was shown that BERT can also benefit from
alignment, i.a. in cross-lingual (Schuster et al.,
2019; Liu et al., 2019) or multilingual settings (Cao
et al., 2020). In contrast to prior work, we experi-
ment with aligning BERT using adversarial train-
ing, which is related to using adversarial training
for domain adaptation (Ganin et al., 2016), cop-
ing with bias or confounding variables (Li et al.,
2018; Raff and Sylvester, 2018; Zhang et al., 2018;
Barrett et al., 2019; McHardy et al., 2019) or trans-
ferring models from a source to a target language
(Zhang et al., 2017; Keung et al., 2019; Wang et al.,
2019). Similar to Chen and Cardie (2018), we use
a multinomial discriminator in our setting.

3 Methods

We model the task of extracting temporal expres-
sions as a sequence tagging problem and explore
the performance of state-of-the-art recurrent neural
networks with FastText and BERT embeddings, re-
spectively. In particular, we train multilingual mod-
els that process all languages in the same model.
To create and improve the multilingual embedding

spaces, we propose an unsupervised alignment ap-
proach based on adversarial training and compare
it to two baseline approaches. Figure 1 provides an
overview of the system. The different components
are described in detail in the following.

3.1 Temporal Expression Extraction Model

Following previous work, e.g., Lample et al. (2016),
we train a bidirectional long-short term memory
network (BiLSTM) (Hochreiter and Schmidhuber,
1997) with a conditional random field (CRF) (Laf-
ferty et al., 2001) output layer. As input, we experi-
ment with two embedding methods: (i) pre-trained
FastText (Bojanowski et al., 2017) word embed-
dings from multiple languages,1 and (ii) multilin-
gual BERT (Devlin et al., 2019) embeddings.2 For
BERT, we use the averaged output of the last four
layers as input to the BiLSTM and fine-tune the
whole model during the training of temporal infor-
mation extraction. We also experimented with a
BERT setup similar to Devlin et al. (2019) where
the embeddings are directly mapped to the label
space and the softmax function is used to compute
the label probabilities instead of a CRF. However,
we found superior performance for the BiLSTM-
CRF models.

3.2 Alignment of Embeddings

We propose an unsupervised approach based on ad-
versarial training to align multilingual embeddings
in a common space (Section 3.2.2) and compare it
with two approaches from related work based on
linear transformation matrices (Section 3.2.1).

1https://fasttext.cc/docs/en/
crawl-vectors.html

2https://github.com/google-research/
bert/blob/master/multilingual.md

104

3.2.1 Baseline Alignment
Embedding spaces are typically aligned using a
linear transformation based on bilingual dictionar-
ies. We follow the work from Smith et al. (2017),
and align embedding spaces based on orthogonal
transformation matrices. These matrices can either
be constructed in an unsupervised way by using
words that appear in the vocabularies from both
languages, i.e., equal words that can be identified
using string matching, or in a supervised way based
on real-world dictionaries (Mikolov et al., 2013;
Joulin et al., 2018). For the latter method, we build
dictionaries based on translations from wiktionary.3

For both methods, we reduce the vocabularies to
the most frequent 5k words per language and treat
English as the pivot language.

3.2.2 Adversarial Alignment
We propose to use gradient reversal training to
align embeddings from different (sub)spaces in
an unsupervised way. Note that neither dictio-
naries nor other language resources are needed
for this approach, making it applicable to zero-
or low-resource scenarios. In particular, we ex-
tend the extraction model C with a discrimina-
tor D. Both model parts are trained alternately
in a multi-task fashion. The feature extractor F
is shared among them and consists of the embed-
ding layer E, followed by a non-linear mapping:
F (x) = tanh(W>E(x)) with x being the current
word, W ∈ RS×S and S being the embedding
dimensionality.

The discriminator D is a multinomial non-linear
classifier consisting of one hidden layer with ReLU
activation (Hahnloser et al., 2000):
D(x) = softmax(T>ReLU(V >F (x))) with V ∈
RS×H , T ∈ RH×O, H being a hyperparameter
and O the number of different languages.

In total, we distinguish three sets of parameters:
θC : the parameters of the downstream classifica-
tion model (i.e., the temporal tagger), θD: the pa-
rameters of the discriminator, and θF : the param-
eters of the feature extractor. The loss functions
of the temporal tagger LC and of the discriminator
LD are cross-entropy loss functions. While θC and
θD are updated using standard gradient descent,
gradient reversal training updates θF as follows:

θF = θF − η(
∂LC

∂θF
− λ∂LD

∂θF
) (1)

3https://github.com/open-dsl-dict/
wiktionary-dict

Dataset Train Dev Test

English (EN) 3,461/1,456 420/164 354/202
Spanish (ES) 1,705/972 189/122 332/199
Portuguese (PT) 3,501/948 389/100 481/172

French (FR) - - 708/424
German (DE) - - 2,666/500
Catalan (CA) - - 1,944/1389
Basque (EU) - - 163/123

Table 1: Number of sentences / temporal expressions
per corpus. The lower part is only used for evaluation.

with η being the learning rate and λ a hyperparame-
ter to control the discriminator influence. Thus, θF
is updated in the opposite direction of the gradients
from the discriminator loss, making the discrimi-
nator an adversary. With this, the discriminator is
optimized for predicting the correct origin language
of a given sentence, but at the same time the feature
extractor gets updated with gradient reversal, such
that the language detection becomes harder and the
discriminator cannot easily distinguish the word
representations from different languages.

4 Experiments and Results

4.1 Evaluation Metrics and Datasets

For evaluation, we use the TempEval3 evaluation
script and report strict and relaxed extraction F1

score for complete and partial overlap to gold stan-
dard annotations, respectively. We also report the
type F1 score for the classification into the four
temporal types: Date, Time, Duration, and Set.

Our multilingual models are trained using the
Portuguese TimeBank (Costa and Branco, 2012)
and TempEval3 (UzZaman et al., 2013) for Spanish
and English (TimeBank subset). To demonstrate
that our model is able to generalize to unseen lan-
guages, we perform tests using the French (Bit-
tar et al., 2011), Catalan (Saurı and Badia, 2012)
and Basque (Altuna et al., 2016) TimeBanks and
the Zeit subset of the German KRAUTS corpus
(Strötgen et al., 2018). Corpus statistics are shown
in Table 1.

4.2 Hyperparameters and Model Training

We use the AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 1e−5 for the
BiLSTM-CRF model part and 1e−6 for BERT. The
model is trained for a maximum of 50 epochs using
early stopping on the development set. The BiL-
STM has a hidden size of 128 units per direction.
The labels are encoded in the IOB2 format. For

105

FastText BERT

Task Metric HeidelTime unaligned aligned
w/o Dict.

aligned
w/ Dict

aligned
w/ AT unaligned aligned

w/ AT

EN
strict 81.78 68.36 69.10 70.80 75.63 † 73.09 74.80 †

relaxed 90.71 79.14 79.03 81.21 82.03 † 84.34 86.61 †

type 83.27 72.13 72.18 73.32 72.85 † 75.50 79.53 †

ES
strict 85.87 75.67 76.53 77.44 79.64 † 79.11 79.55

relaxed 90.13 82.43 82.45 82.47 84.46 † 84.12 85.71
type 87.47 78.07 78.46 78.24 80.88 † 80.22 80.11

PT
strict 71.59 70.36 70.20 70.48 72.41 74.52 75.47

relaxed 81.18 76.77 75.86 76.29 78.15 80.75 81.51
type 76.75 72.29 71.50 72.26 73.84 75.47 76.23

Table 2: Results for multilingual models trained on English, Spanish and Portuguese data jointly. †highlights
aligned models with statistical significant differences to the unaligned model (paired permutation test, p=0.05).

regularization, we apply dropout with a rate of 10%
after the input embeddings. The discriminator for
adversarial training has a hidden size H of 100
units and is trained after every 10th batch of the
sequence tagger with λ set to 0.001.

4.3 Results

The results for the multilingual experiments are
shown in Table 2. We trained three models with
different random seeds and report the performance
of the model with median performance on the
combined development set of all languages. Cur-
rent state of the art for English (Lee et al., 2014)
achieves 83.1/91.4/85.4 for strict/relaxed/type F1.
However, this is a monolingual model that can only
be applied to English.

The effects of aligning FastText embeddings are
clearly visible in Table 2. The supervised alignment
using a dictionary is always superior compared to
the unsupervised alignment without a dictionary or
the unaligned embeddings. Our proposed adversar-
ial alignment (w/ AT) leads to the best results across
languages. The performance of BERT is close to
the best FastText model.4 Aligning BERT with ad-
versarial training also increases performance. The
improvements are smaller compared to FastText
but still statistically significant for English.

Table 3 provides transfer results of the models
with BERT embeddings to languages without la-
beled training data.5 In particular, the model using
the Wikipedia data for training the discriminator is
effective in generalizing to languages without train-

4Additional experiments with the multilingual XLM
model (Lample and Conneau, 2019) trained on 100 languages
led to similar results as the multilingual BERT model.

5The results of the FastText models were considerably
lower for cross-lingual transfer.

BERT

Task Metric
HeidelTime

-Auto unalign. aligned
w/ AT

FR
strict 52.35 60.12 62.58

relaxed 72.02 74.23 75.46
type 68.70 61.96 62.07

DE
strict 38.87 63.34 66.53

relaxed 52.11 76.51 77.82
type 50.15 66.95 69.04

CA
strict 28.11 63.24 64.21

relaxed 62.81 74.95 77.00
type 60.84 65.66 67.85

EU
strict 22.54 43.96 47.87

relaxed 26.76 61.54 63.83
type 23.94 57.14 58.51

Table 3: Results for the unsupervised cross-lingual set-
ting. We compare to HeidelTime with automatically
generated resources, which resembles a similar setting.

ing resources for temporal expression extraction,
as these languages are also aligned during model
training. It outperforms the state-of-the-art Heidel-
Time models by a large margin. The impressive
performance of the multilingual BERT in the cross-
lingual setting can be explained by the fact that
the model has seen many sentences in our target
languages during the pre-training phase, which can
now be effectively leveraged in this new setting.

4.4 Analysis
The embedding spaces of BERT before and after
aligning are shown in Figure 2. The left sub-figure
presents the original BERT embeddings without
any fine-tuning. In this visualization, clear clus-
ters for each language exist. After fine-tuning on
multilingual temporal expression extraction and ad-
versarial alignment (right sub-figure) the clusters
for each language mostly disappear.

106

50 0 50
t-SNE 1

80

60

40

20

0

20

40

60

80

t-S
NE

 2

English
Spanish
Portuguese

(a) without training.

50 0 50
t-SNE 1

80

60

40

20

0

20

40

60

80

t-S
NE

 2

(b) after joint temporal extrac-
tion and adversarial training.

Figure 2: t-SNE plots of the last BERT layer without
any training (left) and after training (right).

5 Conclusion

In this paper, we investigated how a multilingual
neural model with FastText or BERT embeddings
can be used to extract temporal expressions from
text. We investigated adversarial training for cre-
ating multilingual embedding spaces. The model
can effectively be transferred to unseen languages
in a cross-lingual setting and outperforms a state-
of-the-art model by a large margin.

Acknowledgments

We would like to thank the members of the BCAI
NLP&KRR research group and the anonymous re-
viewers for their helpful comments.

References
Begoña Altuna, Marı́a Jesús Aranzabe, and

Arantza Dı́az de Ilarraza. 2016. Adapting timeml
to basque: Event annotation. In International
Conference on Intelligent Text Processing and
Computational Linguistics.

Maria Barrett, Yova Kementchedjhieva, Yanai Elazar,
Desmond Elliott, and Anders Søgaard. 2019. Adver-
sarial removal of demographic attributes revisited.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP).

André Bittar, Pascal Amsili, Pascal Denis, and Lau-
rence Danlos. 2011. French TimeBank: An ISO-
TimeML annotated reference corpus. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5.

Steven Cao, Nikita Kitaev, and Dan Klein. 2020. Mul-
tilingual alignment of contextual word representa-
tions. In International Conference on Learning Rep-
resentations.

Angel X. Chang and Christopher Manning. 2012. SU-
Time: A library for recognizing and normalizing
time expressions. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12).

Xilun Chen and Claire Cardie. 2018. Multinomial ad-
versarial networks for multi-domain text classifica-
tion. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers).

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Francisco Costa and António Branco. 2012. Time-
BankPT: A TimeML annotated corpus of Por-
tuguese. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC’12).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers).

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavio-
lette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. J.
Mach. Learn. Res., 17(1).

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A
Mahowald, Rodney J Douglas, and H Sebastian Se-
ung. 2000. Digital selection and analogue amplifica-
tion coexist in a cortex-inspired silicon circuit. Na-
ture, 405(6789).

Kai Hakala and Sampo Pyysalo. 2019. Biomedical
named entity recognition with multilingual BERT.
In Proceedings of The 5th Workshop on BioNLP
Open Shared Tasks.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computing, 9(8).

Armand Joulin, Piotr Bojanowski, Tomas Mikolov,
Hervé Jégou, and Edouard Grave. 2018. Loss in
translation: Learning bilingual word mapping with a
retrieval criterion. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing.

107

Phillip Keung, yichao lu, and Vikas Bhardwaj. 2019.
Adversarial learning with contextual embeddings for
zero-resource cross-lingual classification and NER.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP).

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. Advances in
Neural Information Processing Systems (NeurIPS).

Egoitz Laparra, Dongfang Xu, and Steven Bethard.
2018. From characters to time intervals: New
paradigms for evaluation and neural parsing of time
normalizations. Transactions of the Association for
Computational Linguistics, 6.

Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettle-
moyer. 2014. Context-dependent semantic parsing
for time expressions. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018.
Towards robust and privacy-preserving text represen-
tations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers).

Jindřich Libovickỳ, Rudolf Rosa, and Alexander Fraser.
2019. How language-neutral is multilingual bert?
arXiv preprint arXiv:1911.03310.

Qianchu Liu, Diana McCarthy, Ivan Vulić, and Anna
Korhonen. 2019. Investigating cross-lingual align-
ment methods for contextualized embeddings with
token-level evaluation. In Proceedings of the 23rd
Conference on Computational Natural Language
Learning (CoNLL).

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Robert McHardy, Heike Adel, and Roman Klinger.
2019. Adversarial training for satire detection: Con-
trolling for confounding variables. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers).

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics.

E. Raff and J. Sylvester. 2018. Gradient reversal
against discrimination: A fair neural network learn-
ing approach. In 2018 IEEE 5th International Con-
ference on Data Science and Advanced Analytics
(DSAA).

Roser Saurı and Toni Badia. 2012. Catalan timebank
1.0 corpus documentation. Technical report.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-lingual alignment of con-
textual word embeddings, with applications to zero-
shot dependency parsing. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers).

Jasdeep Singh, Bryan McCann, Richard Socher, and
Caiming Xiong. 2019. BERT is not an interlingua
and the bias of tokenization. In Proceedings of the
2nd Workshop on Deep Learning Approaches for
Low-Resource NLP (DeepLo 2019).

Samuel L. Smith, David H. P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.

Jannik Strötgen and Michael Gertz. 2013. Multilingual
and cross-domain temporal tagging. Language Re-
sources and Evaluation, 47(2).

Jannik Strötgen and Michael Gertz. 2015. A baseline
temporal tagger for all languages. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing.

Jannik Strötgen and Michael Gertz. 2016. Domain-
sensitive temporal tagging. Synthesis Lectures on
Human Language Technologies, 9(3).

Jannik Strötgen, Anne-Lyse Minard, Lukas Lange,
Manuela Speranza, and Bernardo Magnini. 2018.
KRAUTS: A German temporally annotated news
corpus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018).

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari-
vazhagan, Xin Li, and Amelia Archer. 2019. Small
and practical BERT models for sequence labeling.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP).

108

Naushad UzZaman, Hector Llorens, Leon Derczyn-
ski, James Allen, Marc Verhagen, and James Puste-
jovsky. 2013. SemEval-2013 task 1: TempEval-3:
Evaluating time expressions, events, and temporal
relations. In Second Joint Conference on Lexical
and Computational Semantics (*SEM), Volume 2:
Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013).

Haozhou Wang, James Henderson, and Paola Merlo.
2019. Weakly-supervised concept-based adversarial
learning for cross-lingual word embeddings. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP).

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:
The surprising cross-lingual effectiveness of BERT.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP).

Brian Hu Zhang, Blake Lemoine, and Margaret
Mitchell. 2018. Mitigating unwanted biases with
adversarial learning. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society,
AIES ’18.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017. Adversarial training for unsupervised
bilingual lexicon induction. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

109

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 110–119
July 9, 2020. c©2020 Association for Computational Linguistics

Contextual and Non-Contextual Word Embeddings:
an in-depth Linguistic Investigation

Alessio Miaschi? �, Felice Dell’Orletta�
?Department of Computer Science, University of Pisa

�ItaliaNLP Lab, Istituto di Linguistica Computazionale “Antonio Zampolli”, Pisa
alessio.miaschi@phd.unipi.it, felice.dellorletta@ilc.cnr.it

Abstract

In this paper we present a comparison between
the linguistic knowledge encoded in the inter-
nal representations of a contextual Language
Model (BERT) and a contextual-independent
one (Word2vec). We use a wide set of prob-
ing tasks, each of which corresponds to a
distinct sentence-level feature extracted from
different levels of linguistic annotation. We
show that, although BERT is capable of un-
derstanding the full context of each word in
an input sequence, the implicit knowledge en-
coded in its aggregated sentence representa-
tions is still comparable to that of a contextual-
independent model. We also find that BERT
is able to encode sentence-level properties
even within single-word embeddings, obtain-
ing comparable or even superior results than
those obtained with sentence representations.

1 Introduction

Distributional word representations (Mikolov et al.,
2013) trained on large-scale corpora have rapidly
become one of the most prominent component in
modern NLP systems. In this context, the recent de-
velopment of context-dependent embeddings (Pe-
ters et al., 2018; Devlin et al., 2019) has shown that
such representations are able to achieve state-of-
the-art performance in many complex NLP tasks.

However, the introduction of such models made
the interpretation of the syntactic and semantic
properties learned by their inner representations
more complex. Recent studies have begun to study
these models in order to understand whether they
encode linguistic phenomena even without being
explicitly designed to learn such properties (Marvin
and Linzen, 2018; Goldberg, 2019; Warstadt et al.,
2019). Much of this work focused on the definition
of probing models trained to predict simple linguis-
tic properties from unsupervised representations.
In particular, those work provided evidences that

contextualized Neural Language Models (NLMs)
are able to capture a wide range of linguistic phe-
nomena (Adi et al., 2016; Perone et al., 2018; Ten-
ney et al., 2019b) and even to organize this infor-
mation in a hierarchical manner (Belinkov et al.,
2017; Lin et al., 2019; Jawahar et al., 2019). De-
spite this, less study focused on the analysis and
the comparison of contextual and non-contextual
NLMs according to their ability to encode implicit
linguistic properties in their representations.

In this paper we perform a large number of
probing experiments to analyze and compare the
implicit knowledge stored by a contextual and a
non-contextual model within their inner represen-
tations. In particular, we define two research ques-
tions, aimed at understanding: (i) which is the
best method for combining BERT and Word2vec
word representations into sentence embeddings and
how they differently encode properties related to
the linguistic structure of a sentence; (ii) whether
such sentence-level knowledge is preserved within
BERT single-word representations.

To answer our questions, we rely on a large suite
of probing tasks, each of which codifies a particular
propriety of a sentence, from very shallow features
(such as sentence length and average number of
characters per token) to more complex aspects of
morphosyntactic and syntactic structure (such as
the depth of the whole syntactic tree), thus making
them as suitable to assess the implicit knowledge
encoded by a NLM at a deep level of granularity.

The remainder of the paper is organized as fol-
lows. First we present related work (Sec. 2), then,
after briefly presenting our approach (Sec. 3), we
describe in more details the data (Sec. 3.1), our set
of probing features (Sec. 3.2) and the models used
for the experiments (Sec. 3.3). Experiments and
results are described in Sec. 4 and 5. To conclude,
in Sec. 6 we summarize the main findings of the
study.

110

Contributions In this paper: (i) we perform an
in-depth study aimed at understanding the linguis-
tic knowledge encoded in a contextual (BERT) and
a contextual-independent (Word2vec) Neural Lan-
guage Model; (ii) we evaluate the best method
for obtaining sentence-level representations from
BERT and Word2vec according to a wide spectrum
of probing tasks; (iii) we compare the results ob-
tained by BERT and Word2vec according to the dif-
ferent combining methods; (iv) we study whether
BERT is able to encode sentence-level properties
within its single word representations.

2 Related Work

In the last few years, several methods have been
devised to open the black box and understand the
linguistic information encoded in NLMs (Belinkov
and Glass, 2019). They range from techniques
to examine the activations of individual neurons
(Karpathy et al., 2015; Li et al., 2016; Kádár et al.,
2017) to more domain specific approaches, such
as interpreting attention mechanisms (Raganato
and Tiedemann, 2018; Kovaleva et al., 2019; Vig
and Belinkov, 2019) or designing specific probing
tasks that a model can solve only if it captures a
precise linguistic phenomenon using the contextual
word/sentence embeddings of a pre-trained model
as training features (Conneau et al., 2018; Zhang
and Bowman, 2018; Hewitt and Liang, 2019).
These latter studies demonstrated that NLMs are
able to encode a wide range of linguistic infor-
mation in a hierarchical manner (Belinkov et al.,
2017; Blevins et al., 2018; Tenney et al., 2019b)
and even to support the extraction of dependency
parse trees (Hewitt and Manning, 2019). Jawa-
har et al. (2019) investigated the representations
learned at different layers of BERT, showing that
lower layer representations are usually better for
capturing surface features, while embeddings from
higher layers are better for syntactic and semantic
properties. Using a suite of probing tasks, Tenney
et al. (2019a) found that the linguistic knowledge
encoded by BERT through its 12/24 layers follows
the traditional NLP pipeline: POS tagging, parsing,
NER, semantic roles and then coreference. Liu
et al. (2019), instead, quantified differences in the
transferability of individual layers between differ-
ent models, showing that higher layers of RNNs
(ELMo) are more task-specific (less general), while
transformer layers (BERT) do not exhibit this in-
crease in task-specificity.

Closer to our study, Adi et al. (2016) proposed
a method for analyzing and comparing different
sentence representations and different dimensions,
exploring the effect of the dimensionality on the re-
sulting representations. In particular, they showed
that sentence representations based on averaged
Word2vec embeddings are particularly effective
and encode a wide amount of information regard-
ing sentence length, while LSTM auto-encoders
are very effective at capturing word order and word
content. Similarly, but focused on the resolution
of specific downstream tasks, Shen et al. (2018)
compared a Single Word Embedding-based model
(SWEM-based) with existing recurrent and convo-
lutional networks using a suite of 17 NLP datasets,
demonstrating that simple pooling operations over
SWEM-based representations exhibit comparable
or even superior performance in the majority of
cases considered. On the contrary, Joshi et al.
(2019) showed that, in the context of three differ-
ent classification problems in health informatics,
context-based representations are a better choice
than word-based representations to create vectors.
Focusing instead on the geometry of the represen-
tation space, Ethayarajh (2019) first showed that
the contextualized word representations of ELMo,
BERT and GPT-2 produce more context specific
representations in the upper layers and then pro-
posed a method for creating a new type of static
embedding that outperforms GloVe and FastText
on many benchmarks, by simply taking the first
principal component of contextualized representa-
tions in lower layers of BERT.

Differently from those latter work, our aim is
to investigate the implicit linguistic knowledge
encoded in pre-trained contextual and contextual-
independent models both at sentence and word lev-
els.

3 Our Approach

We studied how layer-wise internal representations
of BERT encode a wide spectrum of linguistic
properties and how such implicit knowledge dif-
fers from that learned by a context-independent
model such as Word2vec. Following the probing
task approach as defined in Conneau et al. (2018),
we proposed a suite of 68 probing tasks, each of
which corresponds to a distinct linguistic feature
capturing raw-text, lexical, morpho-syntactic and
syntactic characteristics of a sentence. More specif-
ically, we defined two sets of experiments. The

111

Level of Annotation Linguistic Feature Label

Raw Text
Sentence Length sent length
Word Length char per tok
Type/Token Ratio for words and lemmas ttr form, ttr lemma

POS tagging
Distibution of UD and language–
specific POS

upos dist *, xpos dist *

Lexical density lexical density
Inflectional morphology of lexical verbs
and auxiliaries (Mood, Number, Person,
Tense and VerbForm)

verbs *, aux *

Dependency Parsing
Depth of the whole syntactic tree parse depth
Average length of dependency links and
of the longest link

avg links len, max links len

Average length of prepositional chains
and distribution by depth

avg prepositional chain len, prep dist *

Clause length (n. tokens/verbal heads) avg token per clause
Order of subject and object subj pre, obj post
Verb arity and distribution of verbs by
arity

avg verb edges, verbal arity *

Distribution of verbal heads and verbal
roots

verbal head dist, verbal root perc

Distribution of dependency relations dep dist *
Distribution of subordinate and principal
clauses

principal proposition dist, subordinate proposition dist

Average length of subordination chains
and distribution by depth

avg subordinate chain len, subordinate dist 1

Relative order of subordinate clauses subordinate post

Table 1: Linguistic Features used in the probing tasks.

first consists in evaluating which is the best method
for generating sentence-level embeddings using
BERT and Word2vec single-word representations.
In particular, we defined a simple probing model
that takes as input layer-wise BERT and Word2vec
combined representations for each sentence of a
gold standard Universal Dependencies (UD) (Nivre
et al., 2016) English dataset and predicts the actual
value of a given probing feature. Moreover, we
compared the results to understand which model
performs better according to different levels of lin-
guistic sophistication.

In the second set of experiments, we measured
how many sentence-level properties are encoded
in single-word representations. To do so, we per-
formed our set of probing tasks using the embed-
dings extracted from both BERT and Word2vec
individual tokens. In particular, we considered the
word representations corresponding to the first, last
and two internal tokens for each sentence of the
UD dataset.

3.1 Data

In order to perform the probing experiments
on gold annotated sentences, we relied on the
Universal Dependencies (UD) English dataset.
The dataset includes three UD English treebanks:
UD English-ParTUT, a conversion of a multilin-

gual parallel treebank consisting of a variety of text
genres, including talks, legal texts and Wikipedia
articles (Sanguinetti and Bosco, 2015); the Uni-
versal Dependencies version annotation from the
GUM corpus (Zeldes, 2017); the English Web Tree-
bank (EWT), a gold standard universal dependen-
cies corpus for English (Silveira et al., 2014). Over-
all, the final dataset consists of 23,943 sentences.

3.2 Probing Features

As previously mentioned, our method is in line
with the probing tasks approach defined in Con-
neau et al. (2018), which aims to capture linguistic
information from the representations learned by a
NLM. Specifically, in our work, each probing task
correspond to predict the value of a specific linguis-
tic feature automatically extracted from the POS
tagged and dependency parsed sentences in the En-
glish UD dataset. The set of features is based on
the ones described in Brunato et al. (2020) and it
includes characteristics acquired from raw, morpho-
syntactic and syntactic levels of annotation. As de-
scribed in Brunato et al. (2020), this set of features
has been shown to have a highly predictive role
when leveraged by traditional learning models on a
variety of classification problems, covering differ-
ent aspects of stylometric and complexity analysis.

As shown in Table 1, these features capture sev-

112

eral linguistic phenomena ranging from the average
length of words and sentence, to morpho–syntactic
information both at the level of POS distribution
and about the inflectional properties of verbs. More
complex aspects of sentence structure are derived
from syntactic annotation and model global and lo-
cal properties of parsed tree structure, with a focus
on subtrees of verbal heads, the order of subjects
and objects with respect to the verb, the distribution
of UD syntactic relations and features referring to
the use of subordination.

3.3 Models
We relied on a pre-trained English version of BERT
(BERT-base uncased, 12 layers) for the extraction
of the contextual word embeddings. To obtain the
representations for our sentence-level tasks we ex-
perimented the activation of the first input token
([CLS])1 and four different combining methods:
Max-pooling, Min-pooling, Mean and Sum. Each
of this four combining methods returns a single ~s
vector, such that each sn is obtained by combin-
ing the nth components w1n, w2n, ..., wmn of the
embedding of each word in the input sentence.

In order to conduct a comparison of context-
based and word-based representations when solv-
ing our set of probing tasks, we performed all the
probing experiments using also the embeddings
extracted from a pre-trained version of Word2vec.
In particular, we trained the model on the English
Wikipedia dataset (dump of March 2020), resulting
in 300-dimensional vectors. In the same manner
as BERT’s contextual representations, we exper-
imented four combining methods: Max-pooling,
Min-pooling, Mean and Sum.

We used a linear Support Vector Regression
model (LinearSVR) as probing model.

4 Evaluating Sentence Representations

The first set of experiments consists in evaluating
which is the best method for combining word-level
embeddings into sentence representations in order
to understand what kind of implicit linguistic prop-
erties are encoded within both contextual and non-
contextual representations using different combin-
ing methods. To do so, we firstly extracted from
each sentence in the UD dataset the correspond-
ing word embeddings using the output of the inter-
nal representations of Word2vec and BERT layers

1As suggested in Jawahar et al. (2019), the [CLS] token
somehow summerizes the information encoded in the input
sequence.

Categories BERT Word2vec Baseline
Raw text 0.65 0.51 0.37
Morphosyntax 0.49 0.57 0.28
Syntax 0.55 0.56 0.44
All features 0.53 0.56 0.38

Table 2: BERT (average between layers) and Word2vec
ρ scores computed by averaging Max-, Min-, Mean and
Sum scores according to the three linguistic levels of an-
notations and considering all the probing features (All
features). Baseline scores are also reported.

Categories Sum Min Max Mean
Raw text 0.56 0.51 0.51 0.46
Morphosyntax 0.59 0.52 0.54 0.61
Syntax 0.61 0.55 0.55 0.54
All features 0.60 0.54 0.55 0.57

Table 3: Word2vec probing scores obtained with the
four sentence combining methods.

(from input layer -12 to output layer -1). Secondly,
we computed the sentence-representations accord-
ing to the different combining strategies defined
in 3.3. We then performed our set of 68 probing
tasks using the LinearSVR model for each sentence
representation. Since the majority of our probing
features is correlated to sentence length, we com-
pared probing results with the ones obtained with a
baseline computed by measuring the ρ coefficient
between the length of the UD sentences and each
of the 68 probing features.

Evaluation was performed with a 5-cross fold
validation and using Spearman correlation score
(ρ) between predicted and gold labels as evaluation
metric.

Table 2 report average ρ scores aggregating all
probing results (All features) and according to raw
text (Raw text), morphosyntactic (Morphosyntax)
and syntactic (Syntax) levels of annotations. Scores
are computed by averaging Max-, Min-pooling,
Mean and Sum results. As a general remark, we
notice that the scores obtained by Word2vec and
BERT’s internal representations outperforms the
ones obtained with the correlation baseline, thus
showing that both models are capable of implicitly
encoding a wide spectrum of linguistic phenomena.
Interestingly, we can notice that Word2vec sen-
tence representations outperform BERT ones when
considering all the probing features in average.

We report in Table 3 and Figure 1 the probing
scores obtained by the two models. For what con-
cerns Word2vec representations, we notice that
the Sum method prove to be the best one for en-
coding raw text and syntactic features, while mo-

113

Figure 1: Layerwise ρ scores for the three categories of raw-text, morphosyntactic and syntactic features. Layer-
wise average results are also reported. Each line in the four plots corresponds to a different aggregating strategy.

rophosyntactic properties are better represented av-
eraging all the word embeddings (Mean). In gen-
eral, best results are obtained with probing tasks
related to morphosyntactic and syntactic features,
like the distribution of POS (e.g. upos dist PRON,
upos dist VERB) or the maximum depth of the syn-
tactic tree (parse depth). If we look instead at
the average ρ scores obtained with BERT layer-
wise representations (Figure 1), we observe that,
differently from Word2vec, best results are the
ones related to raw-text features, such as sentence
length or Type/Token Ratio. The Mean method
prove to be the best one for almost all the probing
tasks, achieving highest scores in the first five lay-
ers. The only exceptions mainly concern some of
the linguistic features related to syntactic proper-
ties, e.g. the average length of dependency links
(avg links len) or the maximum depth of the syntac-
tic tree (parse depth), for which best scores across
layers are obtained with the Sum strategy. The Max-
and Min-pooling methods, instead, show a similar
trend for almost all the probing features. Inter-
estingly, the representations corresponding to the

Layers Mean Max-pooling Min-pooling Sum
-12 .052 -.058 -.038 -.091
-11 .065 -.055 -.038 -.084
-10 .063 -.053 -.043 -.088
-9 .058 -.044 -.036 -.089
-8 .066 -.039 -.034 -.088
-7 .058 -.046 -.033 -.088
-6 .051 -.048 -.045 -.094
-5 .046 -.035 -.032 -.096
-4 .042 -.043 -.025 -.102
-3 .026 -.049 -.041 -.113
-2 .006 -.057 -.045 -.119
-1 -.007 -.069 -.063 -.128

Table 4: Average ρ differences between BERT
and Word2vec probing results according to the four
embedding-aggregation strategies.

[CLS] token, although considered as a summariza-
tion of the entire input sequence, achieve results
comparable to those obtained with Max- and Min-
pooling methods. Moreover, it can be noticed that,
unlike Max- and Min-pooling, the representations
computed with Mean and Sum methods tend to
lose their average precision in encoding our set of
linguistic properties across the 12 layers.

114

Figure 2: Differences between BERT and Word2vec scores (multiplied by 100) for all the 68 probing features
(ranked by correlation with sentence length), obtained with the Mean aggregation strategy. BERT scores are
reported for all the 12 layers. Positive (red) and negative (blue) cells correspond to scores for which BERT outper-
forms Word2vec and vice versa.

In order to investigate more in depth how the
linguistic knowledge encoded by BERT across its
layers differs from that learned by Word2vec, we
report in Table 4 average ρ differences between
the two models according to the four combining
strategies. As a general remark, we can notice
that, regardless of the aggregation strategy taken
into account, BERT and Word2vec sentence repre-
sentations achieve quite similar results on average.
Hence, although BERT is capable of understanding
the full context of each word in an input sequence,
the amount of linguistic knowledge implicitly en-
coded in its aggregated sentence representations is
still comparable to that which can be achieved with
a non-contextual language model.

In Figure 2 we report instead the differences be-
tween BERT and Word2vec scores for all the 68
probing features (ordered by correlation with sen-
tence length). For the comparison, we used the
representations obtained with the Mean combining
method. As a first remark, we notice that there
is a clear distinction in terms of ρ scores between
features better predicted by BERT and Word2vec.
In fact, features most related to syntactic properties
(left heatmap) are those for which BERT results are
generally higher with respect to those obtained with
Word2vec. This result demonstrates that BERT, un-
like a non-contextual language model as Word2vec,
is able to encode information within its representa-

tions that involves the entire input sequence, thus
making more simple to solve probing tasks that
refer to syntatic characteristics.

Focusing instead on the right heatmap, we ob-
serve that Word2vec non-contextual representa-
tions are still capable of encoding a wide spec-
trum of linguistic properties with higher ρ values
compared to BERT ones, especially if we consider
scores closer to BERT’s output layers (from -4 to
-1). This is particularly evident for morphosyn-
tactic features related to the distribution of POS
categories (xpos dist *, upos dist *), most likely
because non-contextual representations tend to en-
code properties related to single tokens rather than
syntactic relations between them.

5 Evaluating Word Representations

Once we have probed the linguistic knowledge
encoded by BERT and Word2vec using different
strategies for computing sentence embeddings, we
investigated how much information about the struc-
ture of a sentence is encoded within single-word
contextual representations. For doing so, we per-
formed our sentence-level probing tasks using a
single BERT word embedding for each sentence
in the UD dataset. We tested four different words,
corresponding to the first, the last and two inter-
nal tokens for each sentence in the UD dataset. In

115

Figure 3: Probing scores obtained by BERT word (tok *) and sentence (mean) representations extracted from
layers -1 and -8. Sentence embeddings are computed using the Mean method.

Embeddings Raw Morphoyntax Syntax All
BERT-1 (-8) 0.62 0.57 0.55 0.57
BERT-2 (-8) 0.59 0.53 0.53 0.53
BERT-3 (-8) 0.59 0.52 0.52 0.53
BERT-4 (-8) 0.65 0.66 0.62 0.64
BERT-1 (-1) 0.55 0.55 0.51 0.53
BERT-2 (-1) 0.54 0.51 0.49 0.50
BERT-3 (-1) 0.54 0.51 0.49 0.50
BERT-4 (-1) 0.59 0.57 0.53 0.55
[CLS] (-8) 0.66 0.47 0.52 0.51
[CLS] (-1) 0.61 0.45 0.49 0.48
Word2vec-1 0.26 0.26 0.22 0.24
Word2vec-2 0.17 0.21 0.18 0.19
Word2vec-3 0.17 0.19 0.17 0.18
Word2vec-4 0.13 0.15 0.12 0.13

Table 5: Average ρ scores obtained by BERT and
Word2vec according to word representations corre-
sponding to the first, the last and two internal tokens of
each input sentence. Results are computed according to
the three linguistic levels of annotation and considering
all the probing features (All). Average scores obtained
with the [CLS] token are also reported.

particular, we extracted the embeddings from the
output layer (-1) and from the layer that achieved
best results in the previous experiments (-8). We
used probing scores obtained with Word2vec em-
beddings for the same tokens as baseline. In Table
5 we report average ρ scores obtained by BERT
(BERT-*) and Word2vec (Word2vec-*) according to
word-level representations extracted from the four
tokens mentioned above. Results were computed
aggregating all probing results (All) and according

to raw text (Raw), morphosyntactic (Morphosyn-
tax) and syntatic (Syntax) levels of annotation. For
comparison, we also report average scores obtained
with the [CLS] token.

As a first remark, we can clearly notice that even
with a single-word embedding BERT is able to
encode a wide spectrum of sentence-level linguis-
tic properties. This result allows us to highlight
the main potential of contextual representations,
i.e. the capability of capturing linguistic phenom-
ena that refer to the entire input sequence within
single-word representations. An interesting obser-
vation is that, except for the raw text features, for
which the best scores are achieved using [CLS],
higher performance are obtained with the embed-
dings corresponding to BERT-4, i.e. the last token
of each sentence. This result seems to indicate
that [CLS], although being used for classification
predictions, does not necessarily correspond to the
most linguistically informative token within each
input sequence.

Comparing the results with those achieved us-
ing Word2vec word embeddings, we notice that
BERT scores greatly outperform Word2vec for all
the probing tasks. This is a straightforward re-
sult and can be easily explained by the fact that the
lack of contextual knowledge does not allow single-
word representations to encode information that are
related to the structure of the whole sentence.

116

Since the latter results demonstrated that BERT
is capable of encoding many sentence-level proper-
ties within its single word representations, as a last
analysis, we decided to compare these results with
the ones obtained using sentence embeddings. In
particular, Figure 3 reports probing scores obtained
by BERT single word (tok *) and Mean sentence
representations (sent) extracted from the output
layer (-1) and from the layer that achieved best
results in average (-8).

As already mentioned, for many of these probing
tasks, word embeddings performance is compara-
ble to that obtained with the aggregated sentence
representations. Nevertheless, there are several
cases in which the difference between performance
is particularly significant. Interestingly, we can no-
tice that aggregated sentence representations are
generally better for predicting properties belong-
ing to the left heatmap, i.e. to the group of fea-
tures more related to syntactic properties. This
is particularly noticeable for the average number
of tokens per clause (avg token per clause) or the
distribution of subordinate chains by length (sub-
ord dist), for which we observe an improvement
from word-level to sentence-level representations
of more than .10 ρ points. On the contrary, probing
features belonging to the right heatmap, therefore
more close to raw text and morphosyntactic prop-
erties, are generally better predicted using single
word embeddings, especially when considering the
inner representations corresponding to the last to-
ken in each sentence (tok 4). The property most
affected by the difference in scores between word-
and sentence-level embeddings is the the distribu-
tion of periods (xpos dist .).

Focusing instead on differences in performance
between the two considered layers, we can notice
that regardless of the method used to predict each
feature, the representations learned by BERT tend
to lose their precision in encoding our set of lin-
guistic properties, most likely because the model
is storing task-specific information (Masked Lan-
guage Modeling task) at the expense of its ability
to encode general knowledge about the language.

6 Conclusion

In this paper we studied the linguistic knowledge
implicitly encoded in the internal representations
of a contextual Language Model (BERT) and a
contextual-independent one (Word2vec). Using
a suite of 68 probing tasks and testing different

methods for combining word embeddings into sen-
tence representations, we showed that BERT and
Word2vec encode a wide set of sentence-level lin-
guistic properties in a similar manner. Neverthe-
less, we found that for Word2vec the best method
for obtaining sentence representations is the Sum,
while BERT is more effective when averaging all
the single-word representations (Mean method).
Moreover, we showed that BERT is able in stor-
ing features that are mainly related to raw text and
syntactic properties, while Word2vec is good at
predicting morphosyntactic characteristics.

Finally, we showed that BERT is able to encode
sentence-level linguistic phenomena even within
single-word embeddings, exhibiting comparable or
even superior performance than those obtained with
aggregated sentence representations. Moreover,
we found that, at least for morphosyntactic and
syntactic characteristics, the most informative word
representation is the one that correspond to the last
token of each input sequence and not, as might be
expected, to the [CLS] special token.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. arXiv preprint arXiv:1608.04207.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Yonatan Belinkov, Lluı́s Màrquez, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James Glass. 2017.
Evaluating layers of representation in neural ma-
chine translation on part-of-speech and semantic tag-
ging tasks. In Proceedings of the Eighth Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1–10.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. 2018.
Deep rnns encode soft hierarchical syntax. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 14–19.

Dominique Brunato, Andrea Cimino, Felice
Dell’Orletta, Giulia Venturi, and Simonetta
Montemagni. 2020. Profiling-ud: a tool for linguis-
tic profiling of texts. In Proceedings of The 12th
Language Resources and Evaluation Conference,
pages 7147–7153, Marseille, France. European
Language Resources Association.

Alexis Conneau, Germán Kruszewski, Guillaume Lam-
ple, Loı̈c Barrault, and Marco Baroni. 2018. What

117

you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Ganesh Jawahar, Benoı̂t Sagot, Djamé Seddah, Samuel
Unicomb, Gerardo Iñiguez, Márton Karsai, Yannick
Léo, Márton Karsai, Carlos Sarraute, Éric Fleury,
et al. 2019. What does bert learn about the structure
of language? In 57th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL), Florence,
Italy.

Aditya Joshi, Sarvnaz Karimi, Ross Sparks, Cecile
Paris, and C Raina MacIntyre. 2019. A comparison
of word-based and context-based representations for
classification problems in health informatics. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 135–141, Florence, Italy. Association
for Computational Linguistics.

Akos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. Computational
Linguistics, 43(4):761–780.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for
Computational Linguistics.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in nlp. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 681–691.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019.
Open sesame: Getting inside BERT’s linguistic
knowledge. In Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 241–253, Florence,
Italy. Association for Computational Linguistics.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659–1666.

Christian S Perone, Roberto Silveira, and Thomas S
Paula. 2018. Evaluation of sentence embeddings
in downstream and linguistic probing tasks. arXiv
preprint arXiv:1806.06259.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference

118

of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237.

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. Associa-
tion for Computational Linguistics.

Manuela Sanguinetti and Cristina Bosco. 2015. Parttut:
The turin university parallel treebank. In Harmo-
nization and Development of Resources and Tools
for Italian Natural Language Processing within the
PARLI Project, pages 51–69. Springer.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Mar-
tin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin.
2018. Baseline needs more love: On simple
word-embedding-based models and associated pool-
ing mechanisms. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 440–
450, Melbourne, Australia. Association for Compu-
tational Linguistics.

Natalia Silveira, Timothy Dozat, Marie-Catherine
De Marneffe, Samuel R Bowman, Miriam Connor,
John Bauer, and Christopher D Manning. 2014. A
gold standard dependency corpus for english. In
LREC, pages 2897–2904.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R Bowman, Dipan-
jan Das, et al. 2019b. What do you learn from
context? probing for sentence structure in con-
textualized word representations. arXiv preprint
arXiv:1905.06316.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Ha-
gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, et al. 2019. Investi-
gating bert’s knowledge of language: Five analysis
methods with npis. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2870–2880.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

Kelly Zhang and Samuel Bowman. 2018. Language
modeling teaches you more than translation does:
Lessons learned through auxiliary syntactic task
analysis. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 359–361.

119

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 120–130
July 9, 2020. c©2020 Association for Computational Linguistics

Are All Languages Created Equal in Multilingual BERT?

Shijie Wu and Mark Dredze
Department of Computer Science

Johns Hopkins University
shijie.wu@jhu.edu, mdredze@cs.jhu.edu

Abstract

Multilingual BERT (mBERT) (Devlin, 2018)
trained on 104 languages has shown surpris-
ingly good cross-lingual performance on sev-
eral NLP tasks, even without explicit cross-
lingual signals (Wu and Dredze, 2019; Pires
et al., 2019). However, these evaluations have
focused on cross-lingual transfer with high-
resource languages, covering only a third of
the languages covered by mBERT. We explore
how mBERT performs on a much wider set
of languages, focusing on the quality of rep-
resentation for low-resource languages, mea-
sured by within-language performance. We
consider three tasks: Named Entity Recogni-
tion (99 languages), Part-of-speech Tagging,
and Dependency Parsing (54 languages each).
mBERT does better than or comparable to
baselines on high resource languages but does
much worse for low resource languages. Fur-
thermore, monolingual BERT models for these
languages do even worse. Paired with simi-
lar languages, the performance gap between
monolingual BERT and mBERT can be nar-
rowed. We find that better models for low
resource languages require more efficient pre-
training techniques or more data.

1 Introduction

Pretrained contextual representation models trained
with language modeling (Peters et al., 2018; Yang
et al., 2019) or the cloze task objectives (Devlin
et al., 2019; Liu et al., 2019) have quickly set a new
standard for NLP tasks. These models have also
been trained in multilingual settings. As the authors
of BERT say “[...] (they) do not plan to release
more single-language models”, they instead train
a single BERT model with Wikipedia to serve 104
languages, without any explicit cross-lingual links,
yielding a multilingual BERT (mBERT) (Devlin,
2018). Surprisingly, mBERT learn high-quality
cross-lingual representation and show strong zero-

shot cross-lingual transfer performance (Wu and
Dredze, 2019; Pires et al., 2019). However, evalu-
ations have focused on high resource languages,
with cross-lingual transfer using English as a
source language or within language performance.
As Wu and Dredze (2019) evaluated mBERT on
39 languages, this leaves the majority of mBERT’s
104 languages, most of which are low resource
languages, untested.

Does mBERT learn equally high-quality repre-
sentation for its 104 languages? If not, which lan-
guages are hurt by its massively multilingual style
pretraining? While it has been observed that for
high resource languages like English, mBERT per-
forms worse than monolingual BERT on English
with the same capacity (Devlin, 2018). It is unclear
that for low resource languages (in terms of mono-
lingual corpus size), how does mBERT compare to
a monolingual BERT? And, does multilingual joint
training help mBERT learn better representation
for low resource languages?

We evaluate the representation quality of
mBERT on 99 languages for NER, and 54 for part-
of-speech tagging and dependency parsing. In this
paper, we show mBERT does not have equally high-
quality representation for all of the 104 languages,
with the bottom 30% languages performing much
worse than a non-BERT model on NER. Addition-
ally, by training various monolingual BERT for
low-resource languages with the same data size,
we show the low representation quality of low-
resource languages is not the result of the hyper-
parameters of BERT or sharing the model with a
large number of languages, as monolingual BERT
performs worse than mBERT. On the contrary, by
pairing low-resource languages with linguistically-
related languages, we show low-resource languages
benefit from multilingual joint training, as bilingual
BERT outperforms monolingual BERT while still
lacking behind mBERT,

120

Our findings suggest, with small monolingual
corpus, BERT does not learn high-quality represen-
tation for low resource languages. To learn better
representation for low resource languages, we sug-
gest either collect more data to make low resource
language high resource (Conneau et al., 2019), or
consider more data-efficient pretraining techniques
like Clark et al. (2020). We leave exploring more
data-efficient pretraining techniques as future work.

2 Related Work

Multilingual Contextual Representations
Deep contextualized representation models such
as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) have set a new standard for NLP
systems. Their application to multilingual settings,
pretraining one model on text from multiple
languages with a single vocabulary, has driven
forward work in cross-language learning and
transfer (Wu and Dredze, 2019; Pires et al., 2019;
Mulcaire et al., 2019). BERT-based pretraining
also benefits language generation tasks like
machine translation (Conneau and Lample, 2019).
BERT can be further improve with explicit
cross-language signals including: bitext (Conneau
and Lample, 2019; Huang et al., 2019) and word
translation pairs from a dictionary (Wu et al., 2019)
or induced from a bitext (Ji et al., 2019).

Several factors need to be considered in under-
standing mBERT. First, the 104 most common
Wikipedia languages vary considerably in size (Ta-
ble 1). Therefore, mBERT training attempted to
equalize languages by up-sampling words from
low resource languages and down-sampling words
from high resource languages. Previous work has
found that shared strings across languages provide
sufficient signal for inducing cross-lingual word
representations (Lample et al., 2018; Artetxe et al.,
2017). While Wu and Dredze (2019) finds the num-
ber of shared subwords across languages correlates
with cross-lingual performance, multilingual BERT
can still learn cross-lingual representation without
any vocabulary overlap across languages (Wu et al.,
2019; K et al., 2020). Additionally, Wu et al. (2019)
find bilingual BERT can still achieve decent cross-
lingual transfer by sharing only the transformer
layer across languages. Artetxe et al. (2019) shows
learning the embedding layer alone while using a
fixed transformer encoder from English monolin-
gual BERT can also produce decent cross-lingual
transfer performance. Second, while each language

may be similarly represented in the training data,
subwords are not evenly distributed among the lan-
guages. Many languages share common characters
and cognates, biasing subword learning to some
languages over others. Both of these factors may
influence how well mBERT learns representations
for low resource languages.

Finally, Baevski et al. (2019) show that in gen-
eral larger pretraining data for English leads to
better downstream performance, yet increasing
the size of pretraining data exponentially only in-
creases downstream performance linearly. For a
low resource language with limited pretraining
data, it is unclear whether contextual representa-
tions outperform previous methods.

Representations for Low Resource Languages
Embeddings with subword information, a non-
contextual representation, like fastText (Bo-
janowski et al., 2017) and BPEmb (Heinzerling
and Strube, 2018) are more data-efficient compared
to contextual representation like ELMo and BERT
when a limited amount of text is available. For
low resource languages, there are usually limits
on monolingual corpora and task specific super-
vision. When task-specific supervision is limited,
e.g. sequence labeling in low resource languages,
mBERT performs better than fastText while un-
derperforming a single BPEmb trained on all lan-
guages (Heinzerling and Strube, 2019). Contrary to
this work, we focus on mBERT from the perspec-
tive of representation learning for each language in
terms of monolingual corpora resources and ana-
lyze how to improve BERT for low resource lan-
guages. We also consider parsing in addition to
sequence labeling tasks.

Concurrently, Conneau et al. (2019) train a mul-
tilingual masked language model (Devlin et al.,
2019) on 2.5TB of CommonCrawl filtered data
covering 100 languages and show it outperforms
a Wikipedia-based model on low resource lan-
guages (Urdu and Swahili) for XNLI (Conneau
et al., 2018). Using CommonCrawl greatly in-
creases monolingual resource especially for low
resource languages, and makes low resource lan-
guages in terms of Wikipedia size high resource.
For example, Mongolian has 6 million and 248 mil-
lion tokens in Wikipedia and CommonCrawl, re-
spectively. Indeed, a 40-fold data increase of Mon-
golian (mn) increases its WikiSize, a measure of
monolingual corpus size introduced in §3.1, from
5 to roughly 10, as shown in Tab. 1, making it

121

relatively high resource with respect to mBERT.

3 Experimental Setup

We begin by defining high and low resource lan-
guages in mBERT, a description of the models and
downstream tasks we use for evaluation, followed
by a description of the masked language model
pretraining.

3.1 High/Low Resource Languages

Since mBERT was trained on articles from
Wikipedia, a language is considered a high or low
resource for mBERT based on the size of Wikipedia
in that language. Size can be measured in many
ways (articles, tokens, characters); we use the size
of the raw dump archive file;1 for convenience we
use log2 of the size in MB (WikiSize). English is
the highest resource language (15.5GB) and Yoruba
the lowest (10MB).2 Tab. 1 shows languages and
their relative resources.

3.2 Downstream Tasks

mBERT supports 104 languages, and we seek to
evaluate the learned representations for as many of
these as possible. We consider three NLP tasks for
which annotated task data exists in a large number
of languages: named entity recognition (NER), uni-
versal part-of-speech (POS) tagging and universal
dependency parsing. For each task, we train a task-
specific model using within-language supervised
data on top of the mBERT representation with fine-
tuning.

For NER we use data created by Pan et al. (2017)
automatically built from Wikipedia, which covers
99 of the 104 languages supported by mBERT. We
evaluate NER with entity-level F1. This data is
in-domain as mBERT is pretrained on Wikipedia.
For POS tagging and dependency parsing, we use
Universal Dependencies (UD) v2.3 (Nivre et al.,
2018), which covers 54 languages (101 treebanks)
supported by mBERT. We evaluate POS with accu-
racy (ACC) and Parsing with label attachment score
(LAS) and unlabeled attachment score (UAS). For
POS, we consider UPOS within the treebank. For
parsing, we only consider universal dependency
labels. The domain is treebank-specific so we use
all treebanks of a language for completeness.

1The size of English (en) is the size of this file: https:
//dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

2The ordering does not necessarily match the number of
speakers for a language.

Task Models For sequence labeling tasks (NER
and POS), we add a linear function with a soft-
max on top of mBERT. For NER, at test time, we
adopt a simple post-processing heuristic as a struc-
tured decoder to obtain valid named entity spans.
Specifically, we rewrite stand-alone prediction of
I-X to B-X and inconsistent prediction of B-X
I-Y to B-Y I-Y, following the final entity. For
dependency parsing, we replace the LSTM in the
graph-based parser of Dozat and Manning (2017)
with mBERT. For the parser, we use the original
hyperparameters. Note we do not use universal
part-of-speech tags as input for dependency pars-
ing. We fine-tune all parameters of mBERT for a
specific task. We use a maximum sequence length
of 128 for sequence labeling tasks. For sentences
longer than 128, we use a sliding window with 64
previous tokens as context. For dependency pars-
ing, we use sequence length 128 due to memory
constraints and drop sentences with more than 128
subwords. We also adopt the same treatment for
the baseline (Che et al., 2018) to obtain comparable
results. Since mBERT operates on the subword-
level, we select the first subword of each word for
the task-specific layer with masking.

Task Optimization We train all models with
Adam (Kingma and Ba, 2014). We warm up the
learning rate linearly in the first 10% steps then
decrease linearly to 0. We select the hyperparame-
ters based on dev set performance by grid search,
as recommended by Devlin et al. (2019). The
search includes a learning rate (2e-5, 3e-5, and
5e-5), batch size (16 and 32). As task-specific
supervision size differs by language or treebank,
we fine-tune the model for 10k gradient steps and
evaluate the model every 200 steps. We select the
best model and hyperparameters for a language or
treebank by the corresponding dev set.

Task Baselines We compare our mBERT mod-
els with previously published methods: Pan et al.
(2017) for NER; For POS and dependency pars-
ing the best performing system ranked by LAS in
the 2018 universal parsing shared task (Che et al.,
2018) 3, which use ELMo as well as word embed-
dings. Additionally, Che et al. (2018) is trained
on POS and dependency parsing jointly while we
trained mBERT to perform each task separately.
As a result, the dependency parsing with mBERT

3The shared task uses UD v2.2 while we use v2.3. How-
ever, treebanks contain minor changes from version to version.

122

WikiSize Languages # Languages Size Range (GB)

3 io, pms, scn, yo 4 [0.006, 0.011]
4 cv, lmo, mg, min, su, vo 6 [0.011, 0.022]
5 an, bar, br, ce, fy, ga, gu, is, jv, ky, lb, mn, my, nds, ne, pa, pnb, sw, tg 19 [0.022, 0.044]
6 af, ba, cy, kn, la, mr, oc, sco, sq, tl, tt, uz 12 [0.044, 0.088]
7 az, bn, bs, eu, hi, ka, kk, lt, lv, mk, ml, nn, ta, te, ur 15 [0.088, 0.177]
8 ast, be, bg, da, el, et, gl, hr, hy, ms, sh, sk, sl, th, war 15 [0.177, 0.354]
9 fa, fi, he, id, ko, no, ro, sr, tr, vi 10 [0.354, 0.707]
10 ar, ca, cs, hu, nl, sv, uk 7 [0.707, 1.414]
11 ceb, it, ja, pl, pt, zh 6 [1.414, 2.828]
12 de, es, fr, ru 4 [2.828, 5.657]
14 en 1 [11.314, 22.627]

Table 1: List of 99 languages we consider in mBERT and its pretraining corpus size. Languages in bold are the
languages we consider in §5.

does not have access to POS tags. By comparing
mBERT to these baselines, we control for task and
language-specific supervised training set size.

3.3 Masked Language Model Pretraining

We include several experiments in which we pre-
train BERT from scratch. We use the PyTorch
(Paszke et al., 2019) implementation by Conneau
and Lample (2019).4 All sentences in the corpus
are concatenated. For each language, we sample a
batch of N sequence and each sequence contains
M tokens, ignoring sentence boundaries. When
considering two languages, we sample each lan-
guage uniformly. We then randomly select 15% of
the input tokens for masking, proportionally to the
exponentiated token count of power -0.5, favoring
rare tokens. We replace selected masked token with
<MASK> 80% of the time, the original token 10%
of the time, and uniform random token within the
vocabulary 10% of the time. The model is trained
to recover the original token (Devlin et al., 2019).
We drop the next sentence prediction task as Liu
et al. (2019) find it does not improve downstream
performance.

Data Processing We extract text from a
Wikipedia dump with Gensim (Řehůřek and So-
jka, 2010). We learn vocabulary for the corpus
using SentencePiece (Kudo and Richardson, 2018)
with the unigram language model (Kudo, 2018).
When considering two languages, we concatenate
the corpora for the two languages while sampling
the same number of sentences from both corpora
when learning vocabulary. We learn a vocabulary

4https://github.com/facebookresearch/
XLM

of size V , excluding special tokens. Finally, we tok-
enized the corpora using the learned SentencePiece
model and did not apply any further preprocessing.

BERT Models Following mBERT, We use 12
Transformer layers (Vaswani et al., 2017) with 12
heads, embedding dimensions of 768, hidden di-
mension of the feed-forward layer of 3072, dropout
of 0.1 and GELU activation (Hendrycks and Gim-
pel, 2016). We tied the output softmax layer and
input embeddings (Press and Wolf, 2017). We con-
sider both a 12 layer model (base) and a smaller 6
layer model (small).

BERT Optimization We train BERT with Adam
and an inverse square root learning rate scheduler
with warmup (Vaswani et al., 2017). We warm up
linearly for 10k steps and the learning rate is 0.0001.
We use batch size N = 88 and mixed-precision
training. We trained the model for roughly 115k
steps and save a checkpoint every 23k steps, which
correspond to 10 epochs. We select the best out of
five checkpoints with a task-specific dev set. We
train each model on a single NVIDIA RTX Titan
with 24GB of memory for roughly 20 hours.

4 Are All Languages Created Equal in
mBERT?

Fig. 1 shows the performance of mBERT and
the baseline averaged across all languages by
Wikipedia size (see Tab. 1 for groupings). For
WikiSize over 6, mBERT is comparable or better
than baselines in all three tasks, with the exception
of NER. For NER in very high resource languages
(WikiSize over 11, i.e. top 10%) mBERT performs
worse than baseline, suggesting high resource lan-
guages could benefit from monolingual pretraining.

123

3 4 5 6 7 8 9 10 11 12 14
WikiSize

50

60

70

80

90

100
F1

NER

mBERT
Baseline

3 4 5 6 7 8 9 10 11 12 14
WikiSize

60

70

80

90

100

A
C

C

POS

mBERT
Baseline

3 4 5 6 7 8 9 10 11 12 14
WikiSize

50

60

70

80

90

100

U
A

S

Parsing

mBERT
Baseline

3 4 5 6 7 8 9 10 11 12 14
WikiSize

30

40

50

60

70

80

90

L
A

S

Parsing

mBERT
Baseline

Figure 1: mBERT vs baseline grouped by WikiSize. mBERT performance drops much more than baseline models
on languages lower than WikiSize 6 – the bottom 30% languages supported by mBERT – especially in NER, which
covers nearly all mBERT supported languages.

Note mBERT has strong UAS on parsing but weak
LAS compared to the baseline; Wu and Dredze
(2019) finds adding POS to mBERT improve LAS
significantly. We expect multitask learning on POS
and parsing could further improve LAS. While POS
and Parsing only cover half (54) of the languages,
NER covers 99 of 104 languages, extending the
curve to the lowest resource languages. mBERT
performance drops significantly for languages with
WikiSize less than 6 (bottom 30% languages). For
the smallest size, mBERT goes from being competi-
tive with state-of-the-art to being over 10 points be-
hind. Readers may find this surprising since while
these are very low resource languages, mBERT
training up-weighted these languages to counter
this effect.

Fig. 2 shows the performance of mBERT (only)

for NER over languages with different resources,
where we show how much task-specific supervised
training data was available for each language. For
languages with only 100 labeled sentences, the per-
formance of mBERT drops significantly as these
languages also had less pretraining data. While we
may expect that pretraining representations with
mBERT would be most beneficial for languages
with only 100 labels, as Howard and Ruder (2018)
show pretraining improve data-efficiency for En-
glish on text classification, our results show that
on low resource languages this strategy performs
much worse than a model trained directly on the
available task data. Clearly, mBERT provides vari-
able quality representations depending on the lan-
guage. While we confirm the finding of others that
mBERT is excellent for high resource languages, it

124

3 4 5 6 7 8 9 10 11 12 14
WikiSize

60

70

80

90

F1

Training Size
100
1000
5000
10000
15000
20000

Figure 2: NER with mBERT on 99 languages, ordered
by size of pretraining corpus (WikiSize). Task-specific
supervised training size differs by language. Perfor-
mance drops dramatically with less pretraining and su-
pervised training data.

Coefficient p-value CI

Univariate

Training Size 0.035 <0.001 [0.029, 0.041]
Training Vocab 0.021 <0.001 [0.017, 0.025]

WikiSize 0.015 <0.001 [0.007, 0.023]

Multivariate

Training Size 0.029 <0.001 [0.023, 0.035]
WikiSize -0.014 <0.001 [-0.022, -0.006]

Table 2: Statistical analysis on what factors predict
downstream performance. We fit two types of linear
models, which consider either single factor or multiple
factors.

is much worse for low resource languages. Our re-
sults suggest caution for those expecting a reliable
model for all 104 mBERT languages.

5 Why Are All Languages Not Created
Equal in mBERT?

5.1 Statistical Analysis

We present a statistical analysis to understand why
mBERT does so poorly on some languages. We
consider three factors that might affect the down-
stream task performance: pretraining Wikipedia
size (WikiSize), task-specific supervision size, and
vocabulary size in task-specific data. Note we take
log2 of training size and training vocab following
WikiSize. We consider NER because it covers
nearly all languages of mBERT.

We fit a linear model to predict task performance
(F1) using a single factor. Tab. 2 shows that each

factor has a statistically significant positive cor-
relation. One unit increase of training size leads
to the biggest performance increase, then training
vocabulary followed by WikiSize, all in log scale.
Intuitively, training size and training vocab corre-
late with each other. We confirm this with a log-
likelihood ratio test; adding training vocabulary to a
linear model with training size yields a statistically
insignificant improvement. As a result, when con-
sidering multiple factors, we consider training size
and WikiSize. Interestingly, Tab. 2 shows training
size still has a positive but slightly smaller slope,
but the slope of WikiSize change sign, which sug-
gests WikiSize might correlate with training size.
We confirm this by fitting a linear model with train-
ing size as x and WikiSize as y and the slope is
over 0.5 with p < 0.001. This finding is unsurpris-
ing as the NER dataset is built from Wikipedia so
larger Wikipedia size means larger training size.

In conclusion, the larger the task-specific super-
vised dataset, the better the downstream perfor-
mance on NER. Unsurprisingly, while pretraining
improve data-efficiency (Howard and Ruder, 2018),
it still cannot solve a task with limited supervision.
Training vocabulary and Wikipedia size correlate
with training size, and increasing either one factor
leads to better performance. A similar conclusion
could be found when we try to predict the perfor-
mance ratio of mBERT and the baseline instead.
Statistical analysis shows a correlation between re-
source and mBERT performance but can not give
a causal answer on why low resource languages
within mBERT perform poorly.

5.2 mBERT vs monolingual BERT

We have established that mBERT does not perform
well in low-resource languages. Is this because
we are relying on a multilingual model that favors
high-resource over low-resource languages? To
answer this question we train mono-lingual BERT
models on several low resource languages with dif-
ferent hyperparameters. Since pretraining a BERT
model from scratch is computationally intensive,
we select four low resource languages: Latvian (lv),
Afrikaans (af), Mongolian (mn), and Yoruba (yo).
These four languages (bold font in Tab. 3) reflect
varying amounts of monolingual training data.

It turns out that these low resource languages
are reasonably covered by mBERT’s vocabulary:
25% to 50% of the subword types within the
mBERT 115K vocabulary appear in these lan-

125

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Count (log2)

0

20

40

60

80

100
Pe

rc
en

ta
ge

lv
Vocab
raw
mBERT
single-10K
single-30K
pair-30K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Count (log2)

af
Vocab
raw
mBERT
single-10K
single-30K
pair-30K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Count (log2)

mn
Vocab
raw
mBERT
single-10K
single-30K

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Count (log2)

yo
Vocab
raw
mBERT
single-10K
single-30K

Figure 3: Percentage of vocabulary containing word count larger than a threshold. “Raw” is the vocabulary seg-
mented by space. Single-30K and Single-10K are 30K/10K vocabularies learned from single languages. Pair-30K
is 30K vocabulary learned from the selected language and a closely related language, described in §5.3.

lv af mn yo

Genus Baltic Germanic Mongolic Defoid
Family Indo-Eur Indo-Eur Altaic Niger-Congo

WikiSize 7 6 5 3
Sentences (M) 2.9 2.3 0.8 0.1

Tokens (M) 21.8 28.8 6.4 0.9
mBERT vocab (K) 56.6 59.0 42.3 29.3
mBERT vocab (%) 49.2 51.3 36.8 25.5

Table 3: Statistic of four low resource languages.

guages’ Wikipedia. However, the mBERT vocab-
ulary is by no means optimal for these languages.
Fig. 3 shows that a large amount of the mBERT
vocabulary that appears in these languages is low
frequency while the language-specific Sentence-
Piece vocabulary has a much higher frequency. In
other words, the vocabulary of mBERT is not dis-
tributed uniformly.

To train the monolingual BERTs properly for
low resource languages, we consider four different
sets of hyperparameters. In base, we follow En-
glish monolingual BERT on learning vocabulary
size V = 30K, 12 layers of transformer (base). To
ensure we have a reasonable batch size for train-
ing using our GPU, we set the training sequence
length to M = 256. Since a smaller model can
prevent overfitting smaller datasets, we consider 6
transformer layers (small). We do not change the
batch size as a larger batch is observed to improve
performance (Liu et al., 2019). As low resource lan-
guages have small corpora, 30K vocabulary items
might not be optimal. We consider smaller vocab-
ulary with V = 10K. Finally, since in fine-tuning
we only use a maximum sequence length of 128,
in smaller sequence length, we match the fine-
tuning phrase with M = 128. As a benefit of half
the self-attention range, we can increase the batch

size over 2.5 times to N = 220.

Tab. 4 shows the performance of monolingual
BERT in four settings. The model with smaller
sequence length performs best for monolingual
BERT and outperforms the base model in 5 out
of 8 tasks and languages combination. The model
with smaller vocabulary has mixed performance in
the low resource languages (mn, yo) but falls short
for (relatively) higher resource languages (lv, af).
Finally, the smaller model underperforms the base
model in 5 out of 8 cases. In conclusion, the best
way to pretrain BERT with a limited amount of
computation for low resource languages is to use a
smaller sequence length to allow a larger batch size.
Future work could look into a smaller self-attention
span with a restricted transformer (Vaswani et al.,
2017) to improve training efficiency.

Despite these insights, no monolingual BERT
outperforms mBERT (except Latvian POS). For
higher resource languages (lv, af) we hypothesize
that training longer with larger batch size could
further improve the downstream performance as the
cloze task dev perplexity was still improving. Fig. 4
supports this hypothesis showing downstream dev
performance of lv and af improves as pretraining
continues. Yet for lower resource languages (mn,
yo), the cloze task dev perplexity is stuck and we
began to overfit the training set. At the same time,
Fig. 4 shows the downstream performance of mn
fluctuates. It suggests the cloze task dev perplexity
correlates with downstream performance when dev
perplexity is not decreasing.

The fact that monolingual BERT underperforms
mBERT on four low resource languages suggests
that mBERT style multilingual training benefits
low resource languages by transferring from other

126

Model Size Vocabulary Max Length
lv af mn yo

NER POS Parsing (LAS/UAS) NER POS Parsing (LAS/UAS) NER NER

Baseline

Baseline 92.10 96.19 84.47/88.28 94.00 97.50 85.69/88.67 76.40 94.00
mBERT 93.88 95.69 77.78/88.69 93.36 98.26 83.18/89.69 64.71 80.54

Monolingual BERT (§5.2)

base 30k 256 93.02 95.76 74.18/85.35 90.90 97.76 80.08/86.92 56.20 72.57

small - - 92.75 95.41 71.67/83.34 90.67 98.02 80.60/87.40 58.92 70.80
- 10k - 92.68 95.65 73.94/85.20 89.55 97.66 79.91/86.93 41.70 80.18
- - 128 93.38 95.57 73.21/84.53 91.84 97.87 80.83/87.59 55.91 73.45

Bilingual BERT (§5.3) lv + lt af + nl

base 30k 256 93.22 96.03 74.42/85.60 91.85 97.98 81.73/88.55 n/a n/a

Table 4: Monolingual BERT on four languages with different hyperparameters. Underscore denotes best within
monolingual BERT and bold denotes best among all models. Monolingual BERT underperforms mBERT in most
cases. “-” denotes same as base case.

10 20 30 40 50
Pretraining Epoch

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

LA
S

lv-Parsing

Model
mBERT
base
smaller model
smaller vocab.
smaller seq. len.
base pair

10 20 30 40 50
Pretraining Epoch

96.50

96.75

97.00

97.25

97.50

97.75

98.00

98.25

98.50

AC
C

af-POS

Model
mBERT
base
smaller model
smaller vocab.
smaller seq. len.
base pair

10 20 30 40 50
Pretraining Epoch

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

F1

mn-NER

Model
mBERT
base
smaller model
smaller vocab.
smaller seq. len.

Figure 4: Dev performance with different pretraining epochs on three languages and tasks. Dev performance on
higher resources languages (lv, af) improves as training continues, while lower resource languages (mn) fluctuate.

languages; monolingual training produces worse
representations due to small corpus size. Addi-
tionally, the poor performance of mBERT on low
resource languages does not emerge from balanc-
ing between languages. Instead, it appears that
we do not have sufficient data, or the model is not
sufficiently data-efficient.

5.3 mBERT vs Bilingual BERT

Finally, we consider a middle ground between
monolingual training and massively multilingual
training. We train a BERT model on a low resource
language (lv and af) paired with a related higher
resource language. We pair Lithuanian (lt) with
Latvian and Dutch (nl) with Afrikaans.5 Lithua-
nian has a similar size to Latvian while Dutch is
over 10 times bigger. Lithuanian belong to the
same Genus as Latvian while Afrikaans is a daugh-
ter language of Dutch. The base pair model has
the same hyperparameters as the base model.

5We did not consider mn and yo since neither has a closely
related language in mBERT.

Tab. 4 shows that pairing low resource languages
with closely related languages improves down-
stream performance. The Afrikaans-Dutch BERT
improves more compared to Latvian-Lithuanian,
possibly because Dutch is much larger than
Afrikaans, as compared to Latvian and Lithua-
nian. These experiments suggest that pairing lin-
guistically related languages can benefit represen-
tation learning and adding extra languages can fur-
ther improve the performance as demonstrated by
mBERT. It echos the finding of Conneau and Lam-
ple (2019) where multilingual training improves
uni-directional language model perplexity for low
resource languages. Concurrent work shows sim-
ilar findings as the performance of low resource
languages (Urdu and Swahili) improves on XNLI
when more languages are trained jointly then de-
crease with an increasing number of languages
(Conneau et al., 2019). However, they do not con-
sider the effect of language similarity.

127

6 Discussion

While mBERT covers 104 languages, the 30% lan-
guages with least pretraining resources perform
worse than using no pretrained language model at
all. Therefore, we caution against using mBERT
alone for low resource languages. Furthermore,
training a monolingual model on low resource lan-
guages does no better. Training on pairs of closely
related low resource languages helps but still lags
behind mBERT. On the other end of the spectrum,
the highest resource languages (top 10%) are hurt
by massively multilingual joint training. While
mBERT has access to numerous languages, the re-
sulting model is worse than a monolingual model
when sufficient training data exists.

Developing pretrained language models for low-
resource languages remains an open challenge. Fu-
ture work should consider more efficient pretrain-
ing techniques, how to obtain more data for low
resource languages, and how to best make use of
multilingual corpora.

Acknowledgments

This research is supported in part by ODNI,
IARPA, via the BETTER Program contract #2019-
19051600005. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwith-
standing any copyright annotation therein.

References

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.
Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 451–462,
Vancouver, Canada. Association for Computational
Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yo-
gatama. 2019. On the cross-lingual transferabil-
ity of monolingual representations. arXiv preprint
arXiv:1910.11856.

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke
Zettlemoyer, and Michael Auli. 2019. Cloze-driven
pretraining of self-attention networks. In Proceed-
ings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5359–5368, Hong
Kong, China. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems, pages
7057–7067.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Ad-
ina Williams, Samuel Bowman, Holger Schwenk,
and Veselin Stoyanov. 2018. XNLI: Evaluating
cross-lingual sentence representations. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2475–2485,
Brussels, Belgium. Association for Computational
Linguistics.

Jacob Devlin. 2018. Multilingual bert readme docu-
ment.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learning Rep-
resentations.

128

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free pre-trained subword em-
beddings in 275 languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Benjamin Heinzerling and Michael Strube. 2019. Se-
quence tagging with contextual and non-contextual
subword representations: A multilingual evaluation.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 273–
291, Florence, Italy. Association for Computational
Linguistics.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and Ming Zhou. 2019.
Unicoder: A universal language encoder by pre-
training with multiple cross-lingual tasks. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2485–2494,
Hong Kong, China. Association for Computational
Linguistics.

Baijun Ji, Zhirui Zhang, Xiangyu Duan, Min Zhang,
Boxing Chen, and Weihua Luo. 2019. Cross-lingual
pre-training based transfer for zero-shot neural ma-
chine translation. arXiv preprint arXiv:1912.01214.

Karthikeyan K, Zihan Wang, Stephen Mayhew, and
Dan Roth. 2020. Cross-lingual ability of multilin-
gual bert: An empirical study. In International Con-
ference on Learning Representations.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 66–75, Mel-
bourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System

Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Herv Jgou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Phoebe Mulcaire, Jungo Kasai, and Noah A. Smith.
2019. Polyglot contextual representations improve
crosslingual transfer. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3912–3918, Minneapolis, Minnesota.
Association for Computational Linguistics.

Joakim Nivre, Manying Zhang, and Hanzhi Zhu. 2018.
Universal dependencies 2.3. LINDAT/CLARIN dig-
ital library at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1946–1958, Vancouver,
Canada. Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems,
pages 8024–8035.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:

129

Volume 2, Short Papers, pages 157–163, Valencia,
Spain. Association for Computational Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Shijie Wu, Alexis Conneau, Haoran Li, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Emerging
cross-lingual structure in pretrained language mod-
els. arXiv preprint arXiv:1911.01464.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754–5764.

130

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 131–142
July 9, 2020. c©2020 Association for Computational Linguistics

Staying True to Your Word: (How) Can Attention Become Explanation?

Martin Tutek and Jan Šnajder
Text Analysis and Knowledge Engineering Lab

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia

{martin.tutek,jan.snajder}@fer.hr

Abstract

The attention mechanism has quickly become
ubiquitous in NLP. In addition to improving
performance of models, attention has been
widely used as a glimpse into the inner work-
ings of NLP models. The latter aspect
has in the recent years become a common
topic of discussion, most notably in work of
Jain and Wallace, 2019; Wiegreffe and Pin-
ter, 2019. With the shortcomings of using
attention weights as a tool of transparency
revealed, the attention mechanism has been
stuck in a limbo without concrete proof when
and whether it can be used as an explanation.
In this paper, we provide an explanation as to
why attention has seen rightful critique when
used with recurrent networks in sequence clas-
sification tasks. We propose a remedy to these
issues in the form of a word level objective
and our findings give credibility for attention
to provide faithful interpretations of recurrent
models.

1 Introduction

Not long since its introduction, the attention mech-
anism (Bahdanau et al., 2014) has become a sta-
ple of many NLP models. Apart from enhancing
prediction performance of models and starting the
trend of fully attentional networks (Vaswani et al.,
2017), attention weights have been widely used
as a method for interpreting decisions of neural
models.

Recently, the validity of interpreting the deci-
sion making process of a model through its atten-
tion weights came under question. Jain and Wal-
lace (2019) introduced a set of experiments on En-
glish language sequence classification tasks which
demonstrated that attention weights do not corre-
late with feature importance measures, and that
attention weights generated by a trained model can
be substituted and modified without detriment to

model performance. While it is natural to assume
that multiple plausible explanations for a model’s
decision can coexist, the authors show the exis-
tence of attention distributions that assign most of
their mass to words seemingly irrelevant to the task,
while still not affecting neither the decision nor the
confidence of the model. In the follow-up work,
Wiegreffe and Pinter (2019) find that, while such
adversarial attention distributions do exist, they are
seldom converged to in the training process, even
when one introduces a training signal with the sole
purpose of guiding the model to such distributions.

In this paper, we aim to tackle the difficult ques-
tion of the relationship between attention and ex-
planation from a different angle – is there any mod-
ification we can make to the existing models so
that attention could be reliably used as a tool of
model transparency? For the sake of consistency,
we follow previous work (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019) and limit our scope to
single-sequence binary classification tasks, where
we consider models from the RNN + self-attention
family. Concretely, we analyse single-layer bidi-
rectional LSTM-s (Hochreiter and Schmidhuber,
1997) equipped with the additive (Bahdanau et al.,
2014) and dot-product (Vaswani et al., 2017) self-
attention mechanisms.

Inspired by the recent results (Voita et al., 2019),
which show that optimizing the masked language
modelling (MLM) (Devlin et al., 2019) objective
results in high mutual information between the in-
put and output layers of models, we ask ourselves
whether such a trait is beneficial for interpretabil-
ity. The task of sequence classification in no way
incentivizes a model to retain information from the
input, and the model is likely to filter out informa-
tion irrelevant to the task.1 We believe this lack

1The LSTM cell even has an inductive bias towards forget-
ting information, as we cannot expect the cell gates to always
be saturated on the positive side.

131

of enforced information retention causes a discrep-
ancy between the input and hidden vectors, which
results in reduced model interpretability. To en-
force information retention, we propose a number
of techniques to keep the hidden representations
closer to their input representations, improving the
faithfulness of interpreting models through inspect-
ing their attention weights.

The contributions of this paper are as follows:
we (1) investigate whether the lack of a word-level
objective causes attention not to be a faithful inter-
pretation, (2) propose various regularization meth-
ods in order to improve interpretability through
inspecting attention weights, and (3) quantitatively
and qualitatively evaluate whether and how these
methods help model interpretability.

The rest of the paper is organized as follows.
Firstly (§2), we position ourselves within current
work and discuss the use of attention as interpreta-
tion in NLP,. We then (§3) present our experimen-
tal setup, introduce various regularization methods,
and briefly describe the experiments we use to eval-
uate our regularized models. In §4, we offer a quan-
titative evaluation of the effect of regularizes on
the trained models across a number of datasets. We
then (§5) qualitatively and quantitatively inspect
the effect of regularization on a trained model, iden-
tifying what we believe to be the cause of negative
results reported in previous work. Finally (§6), we
summarize our findings and propose possible lines
of future work.

2 Attention and Interpretability in NLP

Preliminaries: Let the input sequence of word em-
beddings be denoted as {wt}Tt=1, where T is the
length of the sequence. The sequence of hidden
states produced by the encoder is then {ht}Tt=1,
where each ht = rnn(xt, h(t−1)). The RNN used
is a bidirectional LSTM. When discussing a hid-
den state ht, we refer only to xt as its input for
convenience. The attention mechanism produces a
probability distribution over the hidden states, the
elements of which we denote {αt}Tt=1, and refer to
as attention weights.

2.1 Attention as Interpretation

When interpreting models through the attention
mechanism, we assume that the attention weight
on the t-th word, αt, is a faithful measure of impor-
tance of the input word xt for the classifier decision.
This assumption allows us to interpret the decision

of the classifier by retrieving the highest attention
weights assigned by the model, and then identify-
ing the input words in these timesteps. Thus, in the
terminology of Doshi-Velez and Kim (2017), our
cognitive chunk (a basic unit of explanation) is a
single word. However, we are using a BiLSTM as
an encoder, and every hidden state is contextualized
by virtue of observing the entire input sequence, so
the attention weights actually pertain to the input
word in context. A faithful measure of importance
should by definition accurately represent the true
reasoning behind the final decision of the model.2

So, if attention weights are a faithful measure of
importance of word inputs, they will assign large
weights to words relevant for the classifier decision.

To define faithfulness more clearly, we can as-
sume the existence of an oracle method which
can partition each input sequence of words3 into
decision-relevant and decision-irrelevant words,
where relevance is defined by the judgment of a hu-
man reading the text with respect to a task. By this
definition, a faithful attention distribution would
consistently attribute all or at least most of its prob-
ability mass to the decision-relevant words, mak-
ing it a plausible explanation for humans. In con-
trast, a counterfactual attention distribution (Jain
and Wallace, 2019) attributes most (or a significant
amount) of its probability mass to task-irrelevant
words. Obviously, infinitely many plausible and
counterfactual explanations exist for a given input
instance – merely by redistributing the original at-
tention mass within the same set of words we can
obtain infinitely many alternative interpretations
that are still either plausible or counterfactual.

Jain and Wallace (2019) and Vashishth et al.
(2019) demonstrate that, if we permute or substi-
tute the weights of a learned attention distribution,
our model can still retain high (and in some cases,
unchanged) classification performance and predic-
tion confidence. Even more worryingly, some of
the modified attention distributions assign high at-
tention weights to task-irrelevant words while not
affecting the instance classification. The existence
of such counterfactual attention distributions raises
doubts whether inspecting attention weights can
be used as a faithful interpretation of the model’s
decision making process at all.

2For an excellent discussion on interpretation faithful-
ness, see Alon Jacovi’s post on https://tinyurl.com/
y92rskfr

3The instance-level definition is important here, as the
same word can bear different meanings in different contexts.

132

Wiegreffe and Pinter (2019) provide two counter-
arguments – (1) Existence does not entail exclusiv-
ity, suggesting that, just because our model has
converged to an attention distribution (a base atten-
tion distribution), that distribution is not necessar-
ily unique, and alternative attention distributions
can still be faithful; (2) while models which pro-
duce counterfactual distributions do exist and can
be found by post-hoc modifications, these distribu-
tions are difficult to converge to naturally through
the optimization process of a neural network. This
is demonstrated by the authors in experiments
where they specifically optimize for a distribution
significantly different from the base one.

In contrast, Rudin (2019) states that even if a
small fraction of explanations produced by the
model is counterfactual, one cannot trust other ex-
planations produced by the same model. Lipton
(2016) is more forgiving, and allows that models
can still be trusted if they make mistakes, provided
humans would also make mistakes on the same
instances. The work of Pruthi et al. (2019) empha-
sizes the threat of interpreting models through atten-
tion weights, as they show a regularization term can
be introduced to guide the attention weights away
from focusing on subsets of words while retaining
model accuracy, implying that models which ex-
ploit bias in data can be trained to hide the true
reasoning behind their decisions.

Among other work, Serrano and Smith (2019)
apply an array of tests to analyse whether atten-
tion weights correlate with impact on model pre-
diction, concluding again that attention is not a
fail-safe (faithful) indicator of importance. The
experiments of Vashishth et al. (2019) show that
for single-sequence classification, learned attention
distributions can be replaced without affecting per-
formance – indicating that attention might not be
all we need, after all.

3 Experimental Setup

The base model used in (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019) is a single-layer bidi-
rectional LSTM augmented with either a dot-
product or an additive attention mechanism, the
output of which is then fed into a linear classifier
(decoder). We use the same base model as a base-
line throughout our experiments.

3.1 Regularizing Models

As mentioned before, we suspect that the lack of
a word-level objective weakens the relationship
between ht and xt, and, consequently, the faith-
fulness of interpreting attention weights αt as an
explanation of the decision making process of the
model diminishes. We will now present a number
of methods constructed with the goal of improv-
ing information retention between the inputs and
hidden states.

Our self-attention augmented LSTM encoder
with inputs xt is defined as:

et = emb(xt)

ht = rnn(et)

αt = attn(ht)

s =
∑

αihi
(1)

where attn is either the dot-product or additive
attention mechanism. The sequence representation
s is then fed into a linear decoder.

The simplest way to retain information from in-
put is to include it explicitly in the hidden repre-
sentations. This can be done by concatenating the
embeddings to the hidden representation:

hcatt = [rnn(et); et] (2)

where [·; ·] is the concatenation operator. Another
method is to incorporate a residual connection:

hrest = et + rnn(et) (3)

We use these two methods as our regularized
baselines (concat, residual), along with the unre-
guralized base model.

Our next proposed method is to add a regulariza-
tion term constraining the L2 norm of the difference
between a word embedding and its corresponding
hidden representation. As we suspect that the base
model discards a lot of word information it deems
task-irrelevant, we wish to penalize it for doing so
where this information filtering is not crucial.

Ltying =
δ

T

T∑

i

‖ht − et‖22 (4)

where δ is the regularization scale hyperparameter,
and we minimize the average across all tokens in
the batch. We consider values [1, 10, 20, 30] for δ
and perform ablation for these values. Further on,
we only report results of the model with the best-
performing results due to space limitations. We
further refer to this method as tying.

133

The last model we propose is inspired by re-
sults in (Voita et al., 2019), where we introduce
the masked language modelling objective (Devlin
et al., 2019), in which input tokens from a sequence
are masked at random.4 The task of the model is
then to correctly predict the masked tokens based
on contextual cues from the unmasked tokens in
the sequence.

In addition to the standard model in (1), the
MLM model also performs the following:

x̂t = mask(xt)

êt = emb(x̂t) (5)

ĥt = rnn(êt)

The hidden states ĥt for the corresponding masked
tokens are then fed into a linear decoder which
predicts the masked word. The encoder and em-
bedding matrix are shared between the MLM and
classification tasks.

The MLM linear decoder also introduces no new
parameters as we tie the weights (Inan et al., 2016)
of the MLM decoder and the input embedding ma-
trix and keep them frozen during training. Both
of these choices are motivated by the fact that the
model might converge to a solution which does not
require retention of information from inputs. In
order to apply weight tying, we have to ensure that
the dimension of the BiLSTM hidden state equal to
the input embedding, and therefore we increase the
LSTM hidden state size to 150, compared to 128
in (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). We also use the new hidden state size for
all experiments with the base model.

The MLM setup introduces two hyperparame-
ters: pmlm , denoting the probability of masking a
token in a sequence, and η, denoting the weight
of the MLM loss. We keep pmlm fixed at 0.15
throughout the experiments, as in (Devlin et al.,
2019), and adjust η with respect to the average se-
quence length in various datasets so that the MLM
loss would not dominate the optimization process.5

3.2 Post-hoc Modification of Attention
Distributions

As suggested by Jain and Wallace (2019), robust-
ness of classifier confidence with respect to atten-

4To be precise, either masked, replaced by a random word,
or left unchanged. We direct the reader to (Devlin et al., 2019)
for a detailed explanation of the MLM task.

5As due to keeping pmlm fixed, the longer the sequence is,
the more masked predictions we are expected to make.

tion weight modifications is not a desirable prop-
erty of interpretable models. Ideally, if a model
produces the same decision for an alternative set
of attention weights, we would like to be sure that
the alternative explanation is faithful. This is not
the case in practice as Jain and Wallace (2019) and
Vashishth et al. (2019) show that a trained network
is surprisingly robust to changes to the attention
weights and produces nearly unchanged classifica-
tion scores even for adversarial distributions. So,
while attention is an integral part of training the net-
work, the weights it produces do not greatly affect
the classifier decision once trained.

While we agree with the observation of Wiegr-
effe and Pinter (2019) that robustness of model
decisions with respect to attention weights is not
necessarily bad as the model is unlikely to natu-
rally converge to such a solution, we believe that
fragility of model decisions is an argument in favor
of interpretability as it indicates that the number
of explanations plausible to the model has been
reduced, and we perform experiments with that in
mind.

3.3 Training an Adversary

In the experiment introduced by Jain and Wallace
(2019), for a trained model we attempt to find
an adversarial attention distribution which max-
imizes the Jensen-Shannon divergence (JSD) from
the base distribution produced by the trained model,
while at the same time minimizing the total vari-
ation distance (TVD) from the confidence of the
predictions of the base model. The authors demon-
strate that it is possible to find an attention distribu-
tion that obtains a high JSD while still producing
the same prediction confidence consistently across
multiple tasks.

As these adversarial distributions were found in
an artificial setting, Wiegreffe and Pinter (2019)
explore a more realistic scenario and construct an
optimization task where, given a fixed (original)
model, they train an adversary to minimize TVD
from per-instance prediction confidences, while
maximizing JSD between per-instance attention
distributions of the original model and the adver-
sary. The optimization objective for our adversarial
model a given a base model b is defined as follows:

L = TVD(ŷa, ŷb)− λJSD(αa, αb) (6)

This training setup introduces another hyperparam-
eter λ, which weighs the JSD component of the

134

optimization objective. TVD and JSD are defined
as follows:

TVD(ŷa, ŷb) =
1

2

|Y|∑

i=1

|yai − ybi| (7)

JSD(αa, αb) =
1

2
(KL[αa||ᾱ] + KL[αb||ᾱ]) (8)

where ᾱ = αa+αb
2 .

Initially, we were enthusiastic about this setup
and conducted the same experiments with our
model variants, but drawing any conclusions from
the analysis proved to be hard. Firstly, by optimiz-
ing for TVD from a trained model instead of on
the raw labels, we bias our new model to make
the exact same mistakes as the trained model. We
believe this severely limits the search space of the
adversarial model, as repeating the same mistakes
will also bias the model towards exploiting sim-
ilar patterns in data and, consequently, a similar
attention distribution. Secondly, without knowing
what the plausible explanations are for the dataset,
it is impossible to determine whether a high JSD is
a symptom of the model finding an alternative or
adversarial explanation. Thus, we do not attempt
to draw many conclusions from this experiment,
but we reproduce it for completeness with previous
work.

3.4 Mutual Information
To quantitatively evaluate whether the regulariza-
tion has strengthened the relationship between
the hidden states and input representations of our
model, we look into a recent method of Voita et al.
(2019) inspired by the “Information Bottleneck”
(IB) theory (Tishby, 1999), where the authors mea-
sure an estimate of mutual information (MI). Origi-
nally applied to transformers (Devlin et al., 2018),
this method is straightforward to adapt to the bidi-
rectional LSTM.

Similarly to our point of view, the IB theory
states that neural networks, in general, aim to ex-
tract a compressed representation of input in which
information relevant for the output is retained while
irrelevant is discarded. Mutual information is used
as a method of measuring how much information
is lost between the input and hidden representa-
tion of a certain network. Voita et al. (2019) show
transformer networks discard progressively more
information in deeper layers. This phenomenon
is different for the case of MLM in transformers,
where MI is higher in the uppermost layers, likely

due to the task of reconstructing corresponding in-
put tokens.

The strength of the relationship between et and
ht can be quantified by estimating MI. As MI is
intractable to compute in the continuous form, we
first discretize the vector representations and esti-
mate MI in the discrete form. Following Voita et al.
(2019) and Sajjadi et al. (2018), we perform this
discretization by clustering the embedding and hid-
den representations to a large number of clusters
and using the obtained cluster labels in place of the
continuous vectors to estimate MI.

Concretely, we select a subset of 1000 words
from the vocabulary and gather at most 1M rep-
resentations of these tokens at input and hidden
level. We then cluster the obtained representations
into k = 1000 clusters with mini-batch k−means
with batch size of 100. We obtain the vocabulary
sample in two ways: as the top 1k most frequent
words (MF), as in (Voita et al., 2019), but also as
a random sample (RS) of from the scaled unigram
distribution.6

3.5 Datasets

We experiment on the following English language
datasets for binary classification tasks, which were
either originally built for this task or were adapted
for it by Jain and Wallace (2019):

(1) The Stanford Sentiment Treebank (SST)
(Socher et al., 2013), a collection of sentences
tagged with sentiment on a discrete scale from 1
to 5, where 1 is the most negative and 5 the most
positive. We omit the neutral class (3) and conflate
scores 1 and 2 as well as 4 and 5 into negative and
positive class, respectively;

(2) IMDB Large Movie Reviews Corpus (IMDB)
(Maas et al., 2011), a binary sentiment classifica-
tion dataset of movie reviews;

(3) AG News Corpus, a categorized set of news
articles from various sources. We limit ourselves
to binary classification between articles labelled as
world (0) and business (1);

(4) 20 Newsgroups similarly, we consider the
task of discriminating between baseball (0) and
hockey (1) in this dataset of newsgroup correspon-
dences labelled with 20 categories;

(5,6) MIMIC ICD9 (Johnson et al., 2016), a
dataset of patient discharge summaries from a
database of electronic health records. Here, we

6The sample is drawn from the unigram distribution raised
to the power of 3

4
.

135

analyse two classification tasks on different subsets
of the data: whether a summary is labelled with the
ICD9 code for diabetes (1) or not (0) (henceforth
Diabetes) and whether a summary corresponds to
a patient with acute (0) or chronic anemie (hence-
forth Anemia);

For consistency, we use the train/test/dev splits
produced by Jain and Wallace (2019).7

4 Results

4.1 Attention is Fragile

We report the average F1-scores of five runs for the
base model and the following regularization vari-
ants: concat, tying, and MLM. We omit results
on residual due to space, but they are consistently
comparable to concat due to their similar nature.
For each model variant we report results of exper-
iments with the dot-product (•) and additive (+)
attention mechanism. Due to space constraints, we
omit the full results and refer the reader to Ap-
pendix for more details.

We report the performance of each model in
scenarios where we use trained attention (Tr.), a
random permutation of the trained attention (Pm.)
or substitute the attention distribution with the uni-
form (Un.). For the uniform and permutation set-
tings, we report the drop in F1-score when com-
pared to trained attention performance.

We omit the results on the Diabetes dataset, as ev-
ery modification of attention weights on this dataset
results with an F1-score of 0, due to a very small
number of tokens being a high-precision indicator
of the positive class, as noted by Jain and Wallace
(2019). As shown in Table 1, regularization setups
increase fragility of model performance with re-
spect to modifications of the attention distribution,
while retaining similar classification scores to the
base model. These results indicate that we have
successfully reduced the space of possible alterna-
tive explanations for the model by tying the input
and hidden representations closer together. By do-
ing this, we show that lateral information leakage
(between hidden states) is reduced when proper reg-
ularization is applied, and that, as a consequence,
alternative explanations are also plausible. Having
shown this, we still need to determine whether a
high attention weight on a hidden state is a faithful
measure of importance of a corresponding input.

7https://github.com/successar/
AttentionExplanation

Figure 1: Averaged per-instance test set JSD (x-axis)
and TVD (y-axis)

4.2 Mutual Information is Higher

In Table 3 we report mutual information scores
across datasets for the most frequent words (MF)
and a random sample drawn from the scaled uni-
gram distribution of the vocabulary (RS).

The increase in mutual information scores be-
tween inputs xt and hidden states ht implies that
more information from the inputs is retained during
encoding. While retention of input information is
not a desirable trait of a model performing pure
sequence classification, as the only goal the model
optimizes is producing the correct class label with
high confidence, it is beneficial for interpretability.
If we wish to interpret classifier decisions through
inspecting attention weights on hidden states, we
have to ensure that a hidden state preserves a sig-
nificant degree of information from the input. A
significant increase in mutual information suggests
that the base model was filtering or overwriting a
large amount of information from the input, making
attention inspection less credible. It is not possible
to report mutual information for the concat setup
as the dimensionality of the hidden vector is larger
than the input embedding, so we report the results
for Residual. The results for the Residual setup
can be considered close to the best realistically ob-
tainable MI score as the model explicitly includes
the input embedding in the hidden state.

4.3 Adversarial Attention Distributions are
Harder to Find

In Fig. 1 we report results where for a fixed ora-
cle model we train an adversary with the objective

136

Base Concat Tying MLM
α ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm.

SST + 84.2 −2.8 −5.0 83.7 −1.9 −4.7 83.5 −7.0 −18.0 82.8 −5.9 −15.6
• 84.3 −2.6 −6.5 84.1 −3.4 −7.4 83.5 −9.9 −20.0 82.7 −3.0 −5.4

AG + 95.9 −2.3 −3.9 95.9 −1.5 −2.6 95.0 −3.3 −14.6 95.2 −1.5 −6.6
• 95.9 −2.3 −3.8 96.1 −1.9 −3.0 95.4 −3.0 −12.2 95.4 −2.0 −5.3

NG + 90.9 −9.8 −14.1 91.3 −25.0 −28.2 91.4 −39.7 −43.2 91.5 −76.3 −66.0
• 91.1 −35.2 −36.8 91.0 −40.4 −37.1 90.9 −37.0 −42.8 89.1 −79.6 −72.8

IM + 88.3 −10.0 −13.4 88.3 −10.2 −14.0 87.1 −56.2 −43.3 87.5 −22.8 −26.5
• 88.2 −18.6 −22.9 87.9 −17.2 −20.8 87.2 −57.7 −45.3 87.8 −15.3 −18.5

ANM + 92.4 −21.6 −22.4 92.8 −19.3 −22.2 91.3 −31.4 −27.6 89.7 −35.0 −37.7
• 92.7 −10.2 −14.4 92.4 −15.2 −17.2 91.0 −91.0 −59.7 90.7 −37.8 −33.9

Table 1: % F1-scores for trained models (higher is better) and drops in performance (∆ F1) when applying regu-
larization (lower is better). Scores reported are averages over five runs.

∼ Base Resid Tying MLM

SST
MF 2.324 5.062 4.870 3.662
RS 2.435 4.289 4.216 3.808

AG
MF 1.940 5.467 4.075 3.845
RS 2.078 4.518 4.177 3.980

NG
MF 1.566 4.345 3.985 3.677
RS 1.828 3.843 3.784 3.458

IM
MF 2.455 4.998 5.186 3.728
RS 2.682 4.366 4.434 3.885

ANM
MF 3.711 5.253 4.239 4.016
RS 3.780 4.477 3.950 3.921

Table 2: Mutual information scores between the input
and hidden representations. Higher is better. Due to
space limitations, results are only reported on additive
attention.

of minimizing the TVD between the predictions
of the model and, at the same time, maximizing
JSD between per-instance averaged attention distri-
butions. Due to space limitations, we only report
results for the MLM regularised model, while the
others fare comparably. The red dotted line indi-
cates the imitation setup of the base model, and the
green dotted line indicates imitation setup for the
MLM model. Consistently, except for an outlier
point in the Diabetes dataset, the imitation setup
of the MLM model produces larger drops of TVD
in order to increase the JSD between attention dis-
tributions, corroborating the claim that attention
distribution of the MLM model is more fragile.

5 Understanding the Effect of Model
Regularization

To visually demonstrate the undesired effect of at-
tention mechanisms when trained in the base set-
ting, as well as to illustrate the effect of regulariza-
tions we applied, we first analyse how we obtain

the classifier prediction. The output of the classifier
is an affine transformation of the attention output:

plogit = Wd(

T∑

i=1

αihi) + bd

=

T∑

i=1

αi(Wdhi + bd)

=
T∑

i=1

αip̂t

(9)

We can reformulate this as a convex attention-
weighted sum of logits (p̂t) obtained by running
each individual hidden state through the decoder.
Once we scale the logits for individual timesteps,
we obtain the prediction probability as if the whole
attention mass was on that hidden representation.
For attention weights to be a faithful measure of
interpretability, this probability should be high only
on tokens which are decision-relevant.

In Fig. 2, we plot these token-level probabilities
for a single example to demonstrate that in the base
model, this is not the case. We can see that for the
base model, the probabilities for most tokens have
nearly the same probability as the final prediction,
while the regularization keeps the representations
for neutral words grounded closer to the decision
boundary. As a direct result of this, the model
predictions are much more fragile to change of
attention weights, as only a small number of hidden
states are far enough from the decision boundary
to produce an equally confident classification.

We now quantitatively formulate and measure
this criterion – if the accuracy of a regularized clas-
sifier isn’t hurt by the regularization, when opti-
mizing for interpretability we should prefer models
that have a lower per-token average prediction prob-
ability (given that the prediction for that instance is
correct).

137

Figure 2: Per-token prediction probability for an example from the SST dataset for the base model (red) and a
regularized (tying) model (green). The dotted lines indicate the classification probability of the model. More
instances and examples of other regularization techniques can be found in the Appendix.

Base Resid Tying MLM

SST
+ 0.712 0.685 0.586 0.630
• 0.693 0.701 0.600 0.664

AG
+ 0.887 0.822 0.615 0.695
• 0.862 0.876 0.646 0.698

NG
+ 0.811 0.551 0.577 0.514
• 0.687 0.755 0.516 0.482

IM
+ 0.625 0.609 0.533 0.562
• 0.590 0.608 0.539 0.553

AN
+ 0.568 0.547 0.531 0.515
• 0.542 0.534 0.515 0.519

Table 3: Average per-token prediction probability
across models and tasks. From the perspective of in-
terpretability, lower is better, given the classifier perfor-
mance is not significantly affected.

6 Conclusion

We have identified the lack of a word-level ob-
jective as the likely cause of attention weights not
being a faithful tool of interpretability in the case of
sequence classification with attention mechanism
augmented recurrent networks. We experimentally
establish that we can add regularization methods
to sequence classification which strengthen the
relationship between the input and hidden states
while not being a detriment to classification per-
formance. If one wishes to interpret classifier de-
cisions through inspecting attention weights, we
strongly suggest inclusion of a technique such as

weight tying or adding masked language modelling
as an auxiliary. Adding such methods causes the
model to become more susceptible to attacks modi-
fying the attention weights of a trained model, and
increases faithfulness of explanations produced by
attention weights.

While we believe our work is a step forward
towards using attention weights as a faithful expla-
nation, by no means do we claim that the modifi-
cation is sufficient. As was our primary concern,
the risk with using attention weights as a tool of in-
terpretability is that a single bad explanation could
have consequences in decision-making scenarios,
and while our methods improve the faithfulness of
such interpretability, it is by no means foolproof.
We have only scratched the surface of faithful in-
terpretability, and most of the datasets in our and
previous work do not have human annotated ra-
tionales. In order to fully understand the cases
in which attention provides a reliable explanation,
we believe that datasets with annotated rationales
or decision-relevant tokens should be used. This
analysis should also be extended to more complex
models which better capture the nuances of lan-
guage. We believe that the experiments we pre-
sented demonstrate the shortcomings of interpret-
ing model decisions through inspecting attention
weights, however we acknowledge that this branch
of research sorely lacks evaluation methods that
include humans in the loop.

138

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Finale Doshi-Velez and Been Kim. 2017. Towards a
rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers:
A loss framework for language modeling. arXiv
preprint arXiv:1611.01462.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543–3556, Minneapolis, Minnesota.
Association for Computational Linguistics.

Alistair EW Johnson, Tom J Pollard, Lu Shen,
H Lehman Li-wei, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits,
Leo Anthony Celi, and Roger G Mark. 2016. Mimic-
iii, a freely accessible critical care database. Scien-
tific data, 3:160035.

Zachary C Lipton. 2016. The mythos of model inter-
pretability. arXiv preprint arXiv:1606.03490.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Gra-
ham Neubig, and Zachary C Lipton. 2019. Learning
to deceive with attention-based explanations. arXiv
preprint arXiv:1909.07913.

Cynthia Rudin. 2019. Stop explaining black box ma-
chine learning models for high stakes decisions and
use interpretable models instead. Nature Machine
Intelligence, 1(5):206–215.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic,
Olivier Bousquet, and Sylvain Gelly. 2018. Assess-
ing generative models via precision and recall. In
Advances in Neural Information Processing Systems,
pages 5228–5237.

Sofia Serrano and Noah A. Smith. 2019. Is attention
interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2931–2951, Florence, Italy. Associa-
tion for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

N Tishby. 1999. The information bottleneck method.
In Proc. 37th Annual Allerton Conference on Com-
munications, Control and Computing, 1999, pages
368–377.

Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh
Tomar, and Manaal Faruqui. 2019. Attention in-
terpretability across NLP tasks. arXiv preprint
arXiv:1909.11218.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4387–4397.

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is
not not explanation. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 11–20, Hong Kong, China. Associ-
ation for Computational Linguistics.

139

General parameters
Embedding dim 300
RNN hidden dim 150
Learning rate 1e−3
Grad. clipping 5
Batch size 32
Weight decay 1e−5

Regularization parameters
Masking prob. 0.15
Masking weight η {0.1, 0.3, 1, 3, 5}
Tying weight δ {10, 20, 30}

Table 4: Model hyperparameters

A Model Hyperparameters

Since we analyse a number of models and regular-
ization techniques, we naturally also have a large
number of hyperparameters. We do not tune any
of them except for regularization-specific ones and
we inherit others them from previous work (Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019).
A notable change is the dimension of the hidden
state, which we increase from 128 to 150 due to the
nature of the MLM regularization. We, however,
repeat the experiments for the base model with this
increased dimensionality.

We report our parameters in Table 4. While we
have considered other values in a brief search for η
and δ, but we have only ablated over the mentioned
ones as they have proven to be (locally) optimal.

Dataset Avg. len. Vocabulary
SST 17 17310
AG News 31 15286
20NG 164 15590
IMDB 234 41919
Diabetes 1700 23778
Anemia 1927 20290

Table 5: Statistics of datasets used in experiments

We also report the statistics of datasets used
in experiments in Table 5. The average instance
length had a significant impact on the experiments
as datasets with longer instances were naturally
more fragile to attention distribution modifications.

B Experiments on Multilayer LSTMs

All of the experiments performed in the paper
used single-layer LSTMs. Even though the consid-
ered binary classification tasks could be considered

some of the simplest NLP problems, one still won-
ders what would the effect be if a more complex
encoder was used. To this end, we perform a pre-
liminary set of experiments where we use the best
hyperparameters used for training of the single-
layer networks and increase the number of layers
of the LSTM network.

The results in Table 6, while far from conclu-
sive, show that (1) among all tasks, the base model
consistently becomes more robust to attention per-
turbation the more layers we add. Inconsistently,
we further observe a (2) diminishing return of
regularization techniques among tasks as the num-
ber of layers increases. In some cases, the 3-layer
results do not follow this trend (but, curiously, the
regularization seems to have a stronger effect). We
believe that these results should be taken with a
grain of salt prior to a careful ablation study, but
still might interest the reader.

C Importance of Initialisation in
Dot-Product Attention

Initially, the experiments we conducted worked
well for additive attention but not for scaled dot-
product attention. While the various regulariza-
tion techniques produced significant changes in
F1-scores when the additive attention distribution
was modified post-hoc, this was not the case for dot-
product attention and the F1-scores remained con-
stant no matter the modification. This was caused
by the fact that the attention distribution of the
model consistently converged to a uniform one.

After exhaustive experimenting, the only change
that fixed this behavior was changing the default
initialization scheme for the query parameter. The
dot-product self-attention mechanism for a single
instance (for illustrative purposes) is generally de-
fined as follows:

Attention(q,K, V) = softmax(
qKT

√
dk

)V (10)

where q is the query vector, while K and V are
stacked representations for each timestep. In prac-
tice, when using self-attention for single-sequence
classification, the query is a model parameter,8

while the keys and values are functions of RNN hid-
den states. In our case concretely (following Jain
and Wallace (2019); Wiegreffe and Pinter (2019)),

8This independence of the query vector from the instance
is not intuitive in our perspective (it seems natural to us that
different information is relevant for different instances), but in
practice we find that both approaches work equally well.

140

Base Concat Tying MLM
#L ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm. ↑ Tr. ↓ Un. ↓ Pm.

SST
1 84.2 −2.8 −5.0 83.7 −1.9 −4.7 83.5 −7.0 −18.0 82.8 −5.9 −15.6
2 84.2 −1.0 −1.2 84.5 −0.8 −4.6 84.1 −3.7 −14.5 84.4 −3.8 −5.9
3 84.2 −0.7 −0.7 83.3 −1.3 −1.3 84.6 −2.7 −13.9 82.3 −7.3 −18.0

AG
1 95.9 −2.3 −3.9 95.9 −1.5 −2.6 95.0 −3.3 −14.6 95.2 −1.5 −6.6
2 95.7 −0.3 −0.3 95.9 −1.4 −2.0 95.5 −3.7 −14.8 95.6 −1.6 −3.8
3 95.9 −0.0 −0.1 95.7 −1.0 −1.6 95.4 −2.0 −12.8 95.8 −13.2 −62.5

NG
1 90.9 −9.8 −14.1 91.3 −25.0 −28.2 91.4 −39.7 −43.2 91.5 −76.3 −66.0
2 93.7 −0.9 −5.6 94.0 −6.3 −11.9 92.8 −17.5 −25.5 89.8 −31.6 −35.0
3 92.0 0.0 0.0 91.5 −30.2 −35.7 89.0 −30.3 −39.3 88.5 −17.9 −17.4

IM
1 88.3 −10.0 −13.4 88.3 −10.2 −14.0 87.1 −56.2 −43.3 87.5 −22.8 −26.5
2 88.4 −3.1 −3.8 88.9 −7.2 −9.1 87.6 −51.2 −41.1 87.4 −14.5 −21.7
3 88.5 −1.2 −1.4 88.8 −5.7 −7.8 87.9 −7.6 −21.3 87.1 −87.1 −84.5

Table 6: % F1-scores for trained models (higher is better) and drops in performance (∆ F1) for LSTM models with
multiple layers. The number of layers is indicated in the second column.

the keys and values are the hidden states them-
selves.

With this in mind, Eq. 10 can be written as fol-
lows:

Attention(H) = softmax(
Lq(H)√

dk
)H (11)

where Lq is the trainable query parameter. In our
Pytorch implementation, Lq is a Linear layer,
which is initialised from the Kaiming uniform9 dis-
tribution with the scale parameter

√
5. With this

initialisation, the dot-product attention distribution
in our experiments has always converged to a uni-
form one. When we changed the initialisation to
instead sample from a standard normal distribution,
the dot-product attention converges to a sensible
distribution. We suspect this problem occurs be-
cause the small initial weights of the linear trans-
form scale down the difference norm between the
attention probabilities too much to be distinguished
from the uniform distribution.

D Additional Visualisations of
Regularization Effects

To expand on Fig. 2, we now plot per-token predic-
tion probabilities for multiple models. We some-
times omit the model classification probabilities
not to clutter the plots too much. We select diverse
examples (Figs. 3–7) from the first three batches of
the SST validation split.

9https://github.com/pytorch/pytorch/
blob/master/torch/nn/modules/linear.py#
L79

Figure 3: A negative example: perhaps the analysed
single-layer LSTM is unable to understand even the
simple nuances of language. Here the instance is classi-
fied as negative across all models only due to presence
of the word “difficult”. Note that these models obtain a
near 0.9 F1-score on this dataset.

Figure 4: A clear-cut instance

141

Figure 5: A long example which further demonstrates lateral information leakage

Figure 6: We observe that for instances where the
model is not clear about the classification, the per-word
probabilities are pretty similar between regularizations.
We believe that lateral information leakage happens
only when the model is confident in its prediction. Base
model prediction confidence is indicated in this exam-
ple (it overlaps with the 0.5 line).

Figure 7: A rare example where the regularised models
are more confident in the correct prediction than the
base model

142

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 143–155
July 9, 2020. c©2020 Association for Computational Linguistics

Compressing BERT: Studying the Effects
of Weight Pruning on Transfer Learning

Mitchell A. Gordon & Kevin Duh & Nicholas Andrews
Johns Hopkins University

mitchg@jhu.edu, kevinduh@cs.jhu.edu, noa@jhu.edu

Abstract

Pre-trained feature extractors, such as BERT
for natural language processing and VGG for
computer vision, have become effective meth-
ods for improving deep learning models with-
out requiring more labeled data. While ef-
fective, these feature extractors may be pro-
hibitively large for some deployment scenar-
ios. We explore weight pruning for BERT
and ask: how does compression during pre-
training affect transfer learning? We find that
pruning affects transfer learning in three broad
regimes. Low levels of pruning (30-40%) do
not affect pre-training loss or transfer to down-
stream tasks at all. Medium levels of pruning
increase the pre-training loss and prevent use-
ful pre-training information from being trans-
ferred to downstream tasks. High levels of
pruning additionally prevent models from fit-
ting downstream datasets, leading to further
degradation. Finally, we observe that fine-
tuning BERT on a specific task does not im-
prove its prunability. We conclude that BERT
can be pruned once during pre-training rather
than separately for each task without affecting
performance.

1 Introduction

Pre-trained feature extractors, such as BERT (De-
vlin et al., 2018) for natural language processing
and VGG (Simonyan and Zisserman, 2014) for
computer vision, have become effective methods
for improving the performance of deep learning
models. In the last year, models similar to BERT
have become state-of-the-art in many NLP tasks,
including natural language inference (NLI), named
entity recognition (NER), sentiment analysis, etc.
These models follow a pre-training paradigm: they
are trained on a large amount of unlabeled text via a
task that resembles language modeling (Yang et al.,
2019; Chan et al., 2019) and are then fine-tuned
on a smaller amount of “downstream” data, which

is labeled for a specific task. Pre-trained models
usually achieve higher accuracy than any model
trained on downstream data alone.

The pre-training paradigm, while effective, still
has some problems. While some claim that lan-
guage model pre-training is a “universal language
learning task” (Radford et al., 2019), there is no
theoretical justification for this, only empirical evi-
dence. Second, due to the size of the pre-training
dataset, BERT models tend to be slow and re-
quire impractically large amounts of GPU memory.
BERT-Large can only be used with access to a
Google TPU, and BERT-Base requires some opti-
mization tricks such as gradient checkpointing or
gradient accumulation to be trained effectively on
consumer hardware (Sohoni et al., 2019). Train-
ing BERT-Base from scratch costs ∼$7k and emits
∼1438 pounds of CO2 (Strubell et al., 2019).

Model compression (Bucila et al., 2006), which
attempts to shrink a model without losing accuracy,
is a viable approach to decreasing GPU usage. It
might also be used to trade accuracy for memory
in some low-resource cases, such as deploying to
smartphones for real-time prediction. The main
questions this paper attempts to answer are: Does
compressing BERT impede it’s ability to trans-
fer to new tasks? And does fine-tuning make
BERT more or less compressible?

To explore these questions, we compressed En-
glish BERT using magnitude weight pruning (Han
et al., 2015) and observed the results on transfer
learning to the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2019),
a diverse set of natural language understanding
tasks including sentiment analysis, NLI, and tex-
tual similarity evaluation. We chose magnitude
weight pruning, which compresses models by re-
moving weights close to 0, because it is one of the
most fine-grained and effective compression meth-
ods and because there are many interesting ways to

143

view pruning, which we explore in the next section.
Our findings are as follows: Low levels of prun-

ing (30-40%) do not increase pre-training loss or
affect transfer to downstream tasks at all. Medium
levels of pruning increase the pre-training loss and
prevent useful pre-training information from be-
ing transferred to downstream tasks. This infor-
mation is not equally useful to each task; tasks
degrade linearly with pre-train loss, but at different
rates. High levels of pruning, depending on the
size of the downstream dataset, may additionally
degrade performance by preventing models from
fitting downstream datasets. Finally, we observe
that fine-tuning BERT on a specific task does not
improve its prunability or change the order of prun-
ing by a meaningful amount.

To our knowledge, prior work had not shown
whether BERT could be compressed in a task-
generic way, keeping the benefits of pre-training
while avoiding costly experimentation associated
with compressing and re-training BERT multiple
times. Nor had it shown whether BERT could be
over-pruned for a memory / accuracy trade-off for
deployment to low-resource devices. In this work,
we conclude that BERT can be pruned prior to dis-
tribution without affecting it’s universality, and that
BERT may be over-pruned during pre-training for
a reasonable accuracy trade-off for certain tasks.

2 Pruning: Compression, Regularization,
Architecture Search

Neural network pruning involves examining a
trained network and removing parts deemed to
be unnecessary by some heuristic saliency crite-
rion. One might remove weights, neurons, layers,
channels, attention heads, etc. depending on which
heuristic is used. Below, we describe three different
lenses through which we might interpret pruning.

Compression Pruning a neural network de-
creases the number of parameters required to spec-
ify the model, which decreases the disk space re-
quired to store it. This allows large models to be
deployed on edge computing devices like smart-
phones. Pruning can also increase inference speed
if whole neurons or convolutional channels are
pruned, which reduces GPU usage.1

Regularization Pruning a neural network also
regularizes it. We might consider pruning to be

1If weights are pruned, however, the weight matrices be-
come sparse. Sparse matrix multiplication is difficult to opti-
mize on current GPU architectures (Han et al., 2016), although
progress is being made.

a form of permanent dropout (Molchanov et al.,
2017) or a heuristic-based L0 regularizer (Louizos
et al., 2018). Through this lens, pruning decreases
the complexity of the network and therefore nar-
rows the range of possible functions it can express.2

The main difference between L0 or L1 regulariza-
tion and weight pruning is that the former induce
sparsity via a penalty on the loss function, which
is learned during gradient descent via stochastic
relaxation. It’s not clear which approach is more
principled or preferred. (Gale et al., 2019)

Sparse Architecture Search Finally, we can
view neural network pruning as a type of sparse
architecture search. Liu et al. (2019b) and Frankle
and Carbin (2019) show that they can train care-
fully re-initialized pruned architectures to similar
performance levels as dense networks. Under this
lens, stochastic gradient descent (SGD) induces
network sparsity, and pruning simply makes that
sparsity explicit. These sparse architectures, along
with the appropriate initializations, are sometimes
referred to as “lottery tickets.”3

2.1 Magnitude Weight Pruning
In this work, we focus on weight magnitude prun-
ing because it is one of the most fine-grained and
effective pruning methods. It also has a compelling
saliency criterion (Han et al., 2015): if a weight is
close to zero, then its input is effectively ignored,
which means the weight can be pruned.

Magnitude weight pruning itself is a simple pro-
cedure: 1. Pick a target percentage of weights to be
pruned, say 50%. 2. Calculate a threshold such that
50% of weight magnitudes are under that threshold.
3. Remove those weights. 4. Continue training the
network to recover any lost accuracy. 5. Option-
ally, return to step 1 and increase the percentage
of weights pruned. This procedure is conveniently
implemented in a Tensorflow (Abadi et al., 2016)
package4, which we use (Zhu and Gupta, 2017).

Calculating a threshold and pruning can be done
for all network parameters holistically (global prun-
ing) or for each weight matrix individually (matrix-

2Interestingly, recent work used compression not to induce
simplicity but to measure it (Arora et al., 2018).

3Sparse networks are difficult to train from scratch (Evci
et al., 2019). However, Dettmers and Zettlemoyer (2019) and
Mostafa and Wang (2019) present methods to do this by al-
lowing SGD to search over the space of possible subnetworks.
Our findings suggest that these methods might be used to train
sparse BERT from scratch.

4https://www.tensorflow.org/versions/
r1.15/api_docs/python/tf/contrib/model_
pruning

144

local pruning). Both methods will prune to the
same sparsity, but in global pruning the sparsity
might be unevenly distributed across weight ma-
trices. We use matrix-local pruning because it is
more popular in the community.5 For information
on other pruning techniques, we recommend Gale
et al. (2019) and Liu et al. (2019b).

3 Experimental Setup

BERT is a large Transformer encoder; for back-
ground, we refer readers to Vaswani et al. (2017)
or one of these excellent tutorials (Alammar, 2018;
Klein et al., 2017).

3.1 Implementing BERT Pruning

BERT-Base consists of 12 encoder layers, each of
which contains 6 prunable matrices: 4 for the multi-
headed self-attention and 2 for the layer’s output
feed-forward network.

Recall that self-attention first projects layer in-
puts into key, query, and value embeddings via
linear projections. While there is a separate key,
query, and value projection matrix for each atten-
tion head, implementations typically “stack” ma-
trices from each attention head, resulting in only 3
parameter matrices: one for key projections, one
for value projections, and one for query projections.
We prune each of these matrices separately, calcu-
lating a threshold for each. We also prune the linear
output projection, which combines outputs from
each attention head into a single embedding.6

We prune word embeddings in the same way we
prune feed-foward networks and self-attention pa-
rameters.7 The justification is similar: if a word
embedding value is close to zero, we can assume
it’s zero and store the rest in a sparse matrix. This
is useful because token / subword embeddings tend
to account for a large portion of a natural lan-
guage model’s memory. In BERT-Base specifically,

5The weights in almost every matrix in BERT-Base are
approximately normally distributed with mean 0 and variance
between 0.03 and 0.05 (Table A). This similarity may imply
that global pruning would perform similarly to matrix-local
pruning.

6We could have calculated a single threshold for the entire
self-attention layer or for each attention head separately. Sim-
ilar to global pruning vs. matrix-local pruning, it’s not clear
which one should be preferred.

7Interestingly, pruning word embeddings is slightly more
interpretable that pruning other matrices. See Figure ?? for a
heatmap of embedding magnitudes, which shows that shorter
subwords tend to be pruned more than longer subwords and
that certain dimensions are almost never pruned in any sub-
word.

the embeddings account for ∼21% of the model’s
memory.

Our experimental code for pruning BERT, based
on the public BERT repository, is available here.8

3.2 Pruning During Pre-Training
We perform weight magnitude pruning on a pre-
trained BERT-Base model.9 We select sparsities
from 0% to 90% in increments of 10% and gradu-
ally prune BERT to this sparsity over the first 10k
steps of training. We continue pre-training on En-
glish Wikipedia and BookCorpus for another 90k
steps to regain any lost accuracy.10 The resulting
pre-training losses are shown in Table 1.

We then fine-tune these pruned models on tasks
from the General Language Understanding Evalu-
ation (GLUE) benchmark, which is a standard set
of 9 tasks that include sentiment analysis, natural
language inference, etc. We avoid WNLI, which
is known to be problematic.11 We also avoid tasks
with less than 5k training examples because the
results tend to be noisy (RTE, MRPC, STS-B). We
fine-tune a separate model on each of the remaining
5 GLUE tasks for 3 epochs and try 4 learning rates:
[2, 3, 4, 5]× 10−5. The best evaluation accuracies
are averaged and plotted in Figure 1. Individual
task results are in Table 1.

BERT can be used as a static feature-extractor
or as a pre-trained model which is fine-tuned end-
to-end. In all experiments, we fine-tune weights in
all layers of BERT on downstream tasks.

3.3 Disentangling Complexity Restriction
and Information Deletion

Pruning involves two steps: it deletes the informa-
tion stored in a weight by setting it to 0 and then
regularizes the model by preventing that weight
from changing during further training.

To disentangle these two effects (model complex-
ity restriction and information deletion), we repeat
the experiments from Section 3.2 with an identical
pre-training setup, but instead of pruning we simply
set the weights to 0 and allow them to vary during
downstream training. This deletes the pre-training
information associated with the weight but does not
prevent the model from fitting downstream datasets
by keeping the weight at zero during downstream
training. We also fine-tune on downstream tasks

8https://github.com/mitchellgordon95/bert-prune
9https://github.com/google-research/bert

10Evaluation curves leveled out at 20k steps.
11https://gluebenchmark.com/faq

145

until training loss becomes comparable to models
with no pruning. We trained most models for 13
epochs rather than 3. Models with 70-90% informa-
tion deletion required 15 epochs to fit the training
data. The results are also included in Figure 1 and
Table 1.

3.4 Pruning After Downstream Fine-tuning

We might expect that BERT would be more com-
pressible after downstream fine-tuning. Intuitively,
the information needed for downstream tasks is
a subset of the information learned during pre-
training; some tasks require more semantic infor-
mation than syntactic, and vice-versa. We should
be able to discard the “extra” information and only
keep what we need for, say, parsing (Li and Eisner,
2019).

For magnitude weight pruning specifically, we
might expect downstream training to change the
distribution of weights in the parameter matrices.
This, in turn, changes the sort-order of the abso-
lute values of those weights, which changes the
order that we prune them in. This new pruning
order, hypothetically, would be less degrading to
our specific downstream task.

To test this, we fine-tuned pre-trained BERT-
Base on downstream data for 3 epochs. We then
pruned at various sparsity levels and continued
training for 5 more epochs (7 for 80/90% spar-
sity), at which point the training losses became
comparable to those of models pruned during pre-
training. We repeat this for learning rates in
[2, 3, 4, 5]×10−5 and show the results with the best
development accuracy in Figure 1 / Table 1. We
also measure the difference in which weights are
selected for pruning during pre-training vs. down-
stream fine-tuning and plot the results in Figure
3.

4 Pruning Regimes

4.1 30-40% of Weights Are Discardable

Figure 1 shows that the first 30-40% of weights
pruned by magnitude weight pruning do not impact
pre-training loss or inference on any downstream
task. These weights can be pruned either before
or after fine-tuning. This makes sense from the
perspective of pruning as sparse architecture search:
when we initialize BERT-Base, we initialize many
possible subnetworks. SGD selects the best one for
pre-training and pushes the rest of the weights to 0.
We can then prune those weights without affecting

the output of the network.12

4.2 Medium Pruning Levels Prevent
Information Transfer

Past 40% pruning, performance starts to degrade.
Pre-training loss increases as we prune weights
necessary for fitting the pre-training data (Table
1). Feature activations of the hidden layers start
to diverge from models with low levels of pruning
(Figure 2).13 Downstream accuracy also begins to
degrade at this point.

Why does pruning at these levels hurt down-
stream performance? On one hand, pruning deletes
pre-training information by setting weights to 0,
preventing the transfer of the useful inductive bi-
ases learned during pre-training. On the other hand,
pruning regularizes the model by keeping certain
weights at zero, which might prevent fitting down-
stream datasets.

Figure 1 and Table 1 show information deletion
is the main cause of performance degradation be-
tween 40 - 60% sparsity, since pruning and informa-
tion deletion degrade models by the same amount.
Information deletion would not be a problem if pre-
training and downstream datasets contained simi-
lar information. However, pre-training is effective
precisely because the pre-training dataset is much
larger than the labeled downstream dataset, which
allows learning of more robust representations.

We see that the main obstacle to compressing
pre-trained models is maintaining the inductive bias
of the model learned during pre-training. Encoding
this bias requires many more weights than fitting
downstream datasets, and it cannot be recovered
due to a fundamental information gap between pre-
training and downstream datasets.14 This leads us
to believe that the amount a model can be pruned

12We know, however, that increasing the size of BERT to
BERT-Large improves performance. This view does not fully
explain why even an obviously under-parameterized model
should become sparse. This may be caused by dropout, or it
may be a general property of our training regime (SGD). Per-
haps an extension of Tian et al. (2019) to under-parameterized
models would provide some insight.

13We believe this observation may point towards a more
principled stopping criterion for pruning. Currently, the only
way to know how much to prune is by trial and (dev-set) error.
Predictors of performance degradation while pruning might
help us decide which level of sparsity is appropriate for a
given trained network without trying many at once.

14We might consider finding a lottery ticket for BERT,
which we would expect to fit the GLUE training data just
as well as pre-trained BERT (Morcos et al., 2019; Yu et al.,
2019). However, we predict that the lottery-ticket will not
reach similar generalization levels unless the lottery ticket
encodes enough information to close the information gap.

146

Figure 1: (Blue) The best GLUE dev accuracy and training losses for models pruned during pre-training, averaged
over 5 tasks. Also shown are models with information deletion during pre-training (orange), models pruned after
downstream fine-tuning (green), and models pruned randomly during pre-training instead of by lowest magnitude
(red). 30-40% of weights can be pruned using magnitude weight pruning without decreasing dowsntream accuracy.
Notice that information deletion fits the training data better than un-pruned models at all sparsity levels but does
not fully recover evaluation accuracy. Also, models pruned after downstream fine-tuning have the same or worse
development accuracy, despite achieving lower training losses. Note: none of the pruned models are overfitting
because un-pruned models have the lowest training loss and the highest development accuracy. While the results for
individual tasks are in Table 1, each task does not vary much from the average trend, with an exception discussed
in Section 4.3.

Figure 2: (Left) Pre-training loss predicts information deletion GLUE accuracy linearly as sparsity increases. We
believe the slope of each line tells us how much a bit of BERT is worth to each task. (CoLA at 90% is excluded
from the line of best fit.) (Right) The cosine similarities of features extracted for a subset of the pre-training
development data before and after pruning. Features are extracted from activations of all 12 layers of BERT and
compared layer-wise to a model that has not been pruned. As performance degrades, cosine similarities of features
decreases.

147

is limited by the largest dataset the model has been
trained on: in this case, the pre-training dataset. 15

4.3 High Pruning Levels Also Prevent Fitting
Downstream Datasets

At 70% sparsity and above, models with informa-
tion deletion recover some accuracy w.r.t. pruned
models, so complexity restriction is a secondary
cause of performance degradation. However, these
models do not recover all evaluation accuracy, de-
spite matching un-pruned model’s training loss.

Table 1 shows that on the MNLI and QQP tasks,
which have the largest amount of training data, in-
formation deletion performs much better than prun-
ing. In contrast, models do not recover as well on
SST-2 and CoLA, which have less data. We believe
this is because the larger datasets require larger
models to fit, so complexity restriction becomes an
issue earlier.

We might be concerned that poorly performing
models are over-fitting, since they have lower train-
ing losses than unpruned models. But the best
performing information-deleted models have the
lowest training error of all, so overfitting seems
unlikely.16

4.4 How Much Is A Bit Of BERT Worth?
We’ve seen that over-pruning BERT deletes infor-
mation useful for downstream tasks. Is this in-
formation equally useful to all tasks? We might
consider the pre-training loss as a proxy for how
much pre-training information we’ve deleted in
total. Similarly, the performance of information-
deletion models is a proxy for how much of that
information was useful for each task. Figure 2
shows that the pre-training loss linearly predicts
the effects of information deletion on downstream
accuracy.

For every bit of information we delete from
BERT, it appears only a fraction is useful for CoLA,
and an even smaller fraction useful for QQP.17 This
relationship should be taken into account when con-
sidering the memory / accuracy trade-off of over-
pruning. Pruning an extra 30% of BERT’s weights

15We would have more confidence in this supposition if we
had experiments where the pre-training data is much smaller
than the downstream data. It would also be useful to have a
more information-theoretic analysis of how data complexity
influences model compressibility. This is may be an interesting
direction for future work.

16We are reminded of the double-descent risk curve pro-
posed by Belkin et al. (2018).

17We can’t quantify this now, but perhaps compression will
help quantify the “universality” of the LM task.

Figure 3: (Top) The measured difference in pruning
masks between models pruned during pre-training and
models pruned during downstream fine-tuning. As pre-
dicted, the differences are less than 6%, since fine-
tuning only changes the magnitude sorting order of
weights locally, not globally. (Bottom) The average
GLUE development accuracy and pruning mask differ-
ence for models trained on downstream datasets before
pruning 60% at learning rate 5e-5. After pruning, mod-
els are trained for an additional 2 epochs to regain accu-
racy. We see that training between 3 and 12 epochs be-
fore pruning does not change which weights are pruned
or improve performance.

is worth only one accuracy point on QQP but 10
points on CoLA. It’s unclear, however, whether this
is because the pre-training task is less relevant to
QQP or whether QQP simply has a bigger dataset
with more information content.18

5 Downstream Fine-tuning Does Not
Improve Prunability

Since pre-training information deletion plays a cen-
tral role in performance degradation while over-
pruning, we might expect that downstream fine-

18Hendrycks et al. (2019) suggest that pruning these
weights might have a hidden cost: decreasing model robust-
ness.

148

Figure 4: (Left) The average, min, and max percentage of individual attention heads pruned at each sparsity
level. We see at 60% sparsity, each attention head individually is pruned strictly between 55% and 65%. (Right)
We compute the magnitude sorting order of each weight before and after downstream fine-tuning. If a weight’s
original position is 59 / 100 before fine-tuning and 63 / 100 after fine-tuning, then that weight moved 4% in the
sorting order. After even an epoch of downstream fine-tuning, weights quickly stabilize in a new sorting order
which is not far from the original sorting order. Variances level out similarly.

tuning would improve prunability by making im-
portant weights more salient (increasing their mag-
nitude). However, Figure 1 shows that models
pruned after downstream fine-tuning do not sur-
pass the development accuracies of models pruned
during pre-training, despite achieving similar train-
ing losses. Figure 3 shows fine-tuning changes
which weights are pruned by less than 6%.

Why doesn’t fine-tuning change which weights
are pruned much? Table 2 shows that the magni-
tude sorting order of weights is mostly preserved;
weights move on average 0-4% away from their
starting positions in the sort order. We also see that
high magnitude weights are more stable than lower
ones (Figure 6).

Our experiments suggest that training on down-
stream data before pruning is too blunt an instru-
ment to improve prunability. Even so, we might
consider simply training on the downstream tasks
for much longer, which would increase the differ-
ence in weights pruned. However, Figure 4 shows
that even after an epoch of downstream fine-tuning,
weights quickly re-stabilize in a new sorting order,
meaning longer downstream training will have only
a marginal effect on which weights are pruned. In-
deed, Figure 3 shows that the weights selected for
60% pruning quickly stabilize and evaluation accu-
racy does not improve with more training before
pruning.

6 Related Work

Compressing BERT for Specific Tasks Section 5
showed that downstream fine-tuning does not in-
crease prunability. However, several alternative
compression approaches have been proposed to dis-
card non-task-specific information. Li and Eisner
(2019) used an information bottleneck to discard
non-syntactic information. Tang et al. (2019) used
BERT as a knowledge distillation teacher to com-
press relevant information into smaller Bi-LSTMs,
while Kuncoro et al. (2019) took a similar distilla-
tion approach. While fine-tuning does not increase
prunability, task-specific knowledge might be ex-
tracted from BERT with other methods.

Attention Head Pruning previously showed
redundancy in transformer models by pruning en-
tire attention heads. Michel et al. (2019) showed
that after fine-tuning on MNLI, up to 40% of at-
tention heads can be pruned from BERT without
affecting test accuracy. They show redundancy in
BERT after fine-tuning on a single downstream
task; in contrast, our work emphasizes the inter-
play between compression and transfer learning
to many tasks, pruning both before and after fine-
tuning. Also, magnitude weight pruning allows
us to additionally prune the feed-foward networks
and sub-word embeddings in BERT (not just self-
attention), which account for ∼72% of BERT’s
total memory usage.

We suspect that attention head pruning and
weight pruning remove different redundancies from

149

BERT. Figure 4 shows that weight pruning does
not prune any specific attention head much more
than the pruning rate for the whole model. It is not
clear, however, whether weight pruning and recov-
ery training makes attention heads less prunable by
distributing functionality to unused heads.

7 Conclusion And Future Work

We’ve shown that encoding BERT’s inductive bias
requires many more weights than are required to
fit downstream data. Future work on compressing
pre-trained models should focus on maintaining
that inductive bias and quantifying its relevance to
various tasks during accuracy/memory trade-offs.

For magnitude weight pruning, we’ve shown that
30-40% of the weights do not encode any useful in-
ductive bias and can be discarded without affecting
BERT’s universality. The relevance of the rest of
the weights vary from task to task, and fine-tuning
on downstream tasks does not change the nature
of this trade-off by changing which weights are
pruned. In future work, we will investigate the fac-
tors that influence language modeling’s relevance
to downstream tasks and how to improve compres-
sion in a task-general way.

It’s reasonable to believe that these conclusions
will generalize to other pre-trained language mod-
els such as Kermit (Chan et al., 2019), XLNet
(Yang et al., 2019), GPT-2 (Radford et al., 2019),
RoBERTa (Liu et al., 2019a) or ELMO (Peters
et al., 2018). All of these learn some variant of
language modeling, and most use Transformer ar-
chitectures. While it remains to be shown in fu-
ture work, viewing pruning as architecture search
implies these models will be prunable due to the
training dynamics inherent to neural networks.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Gregory S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. Tensorflow:
Large-scale machine learning on heterogeneous dis-
tributed systems. CoRR, abs/1603.04467.

Jay Alammar. 2018. The illustrated transformer.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and
Yi Zhang. 2018. Stronger generalization bounds
for deep nets via a compression approach. CoRR,
abs/1802.05296.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik
Mand al. 2018. Reconciling modern machine learn-
ing practice and the bias-variance trade-off. arXiv
e-prints, page arXiv:1812.11118.

Cristian Bucila, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In Pro-
ceedings of the Twelfth ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, Philadelphia, PA, USA, August 20-23, 2006,
pages 535–541.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell
Stern, and Jakob Uszkoreit. 2019. KERMIT: genera-
tive insertion-based modeling for sequences. CoRR,
abs/1906.01604.

Tim Dettmers and Luke S. Zettlemoyer. 2019. Sparse
networks from scratch: Faster training without los-
ing performance. ArXiv, abs/1907.04840.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. CoRR, abs/1810.04805.

Utku Evci, Fabian Pedregosa, Aidan N. Gomez, and
Erich Elsen. 2019. The difficulty of training sparse
neural networks. CoRR, abs/1906.10732.

Jonathan Frankle and Michael Carbin. 2019. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In International Conference on Learn-
ing Representations.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. CoRR,
abs/1902.09574.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A. Horowitz, and William J. Dally.
2016. Eie: Efficient inference engine on compressed
deep neural network. In Proceedings of the 43rd
International Symposium on Computer Architecture,
ISCA ’16, pages 243–254, Piscataway, NJ, USA.
IEEE Press.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections
for efficient neural network. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 1135–1143. Curran Asso-
ciates, Inc.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika.
2019. Using pre-training can improve model robust-
ness and uncertainty. In ICML, pages 2712–2721.

150

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Proc. ACL.

Adhiguna Kuncoro, Chris Dyer, Laura Rimell, Stephen
Clark, and Phil Blunsom. 2019. Scalable syntax-
aware language models using knowledge distillation.
CoRR, abs/1906.06438.

Xiang Lisa Li and Jason Eisner. 2019. Specializing
word embeddings (for parsing) by information bot-
tleneck. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and 9th International Joint Conference on Natural
Language Processing, Hong Kong.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019a.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2019b. Rethinking the value of
network pruning. In International Conference on
Learning Representations.

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning sparse neural networks
through l-0 regularization. In International Confer-
ence on Learning Representations.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? ArXiv,
abs/1905.10650.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry
Vetrov. 2017. Variational dropout sparsifies deep
neural networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning - Volume
70, ICML’17, pages 2498–2507. JMLR.org.

Ari S. Morcos, Haonan Yu, Michela Paganini, and
Yuand ong Tian. 2019. One ticket to win them
all: generalizing lottery ticket initializations across
datasets and optimizers. arXiv e-prints, page
arXiv:1906.02773.

Hesham Mostafa and Xin Wang. 2019. Parameter effi-
cient training of deep convolutional neural networks
by dynamic sparse reparameterization.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. CoRR, abs/1802.05365.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Karen Simonyan and Andrew Zisserman. 2014.
Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv e-prints, page
arXiv:1409.1556.

Nimit Sharad Sohoni, Christopher Richard Aberger,
Megan Leszczynski, Jian Zhang, and Christopher
Ré. 2019. Low-memory neural network training: A
technical report. CoRR, abs/1904.10631.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. CoRR, abs/1906.02243.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from BERT into simple neural
networks. CoRR, abs/1903.12136.

Yuandong Tian, Tina Jiang, Qucheng Gong, and
Ari S. Morcos. 2019. Luck matters: Understand-
ing training dynamics of deep relu networks. CoRR,
abs/1905.13405.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. CoRR, abs/1906.08237.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S.
Morcos. 2019. Playing the lottery with rewards and
multiple languages: lottery tickets in RL and NLP.
arXiv e-prints, page arXiv:1906.02768.

Michael Zhu and Suyog Gupta. 2017. To prune,
or not to prune: exploring the efficacy of prun-
ing for model compression. arXiv e-prints, page
arXiv:1710.01878.

A Appendix

151

Pruned Pre-train
Loss

MNLI
392k

QQP
363k

QNLI
108k

SST-2
67k

CoLA
8.5k AVG

0 1.82 83.1|0.25 90.5|0.10 91.1|0.12 92.1|0.06 79.1|0.26 87.2|15.7

10 1.82 83.3|0.21 90.4|0.10 91.0|0.12 91.6|0.07 79.4|0.30 87.2|16.0

20 1.83 83.3|0.24 90.5|0.11 91.1|0.11 91.6|0.05 79.1|0.30 87.1|16.0

30 1.86 83.3|0.23 90.2|0.12 90.7|0.12 91.9|0.06 79.5|0.31 87.1|16.9

40 1.93 83.0|0.25 90.1|0.12 90.4|0.12 91.5|0.06 78.4|0.23 86.7|15.6

50 2.03 82.6|0.27 89.8|0.13 90.2|0.13 90.9|0.07 77.4|0.30 86.2|18.0

60 2.25 81.8|0.32 89.4|0.16 89.3|0.16 91.4|0.07 75.9|0.44 85.6|23.0

70 2.62 79.5|0.40 88.6|0.18 88.4|0.21 90.1|0.10 72.7|0.47 83.9|27.1

80 3.44 75.9|0.49 86.9|0.24 85.3|0.29 88.1|0.12 69.1|0.61 81.1|34.8

90 5.83 64.8|0.76 81.1|0.36 71.7|0.52 80.3|0.25 69.1|0.61 73.4|49.8

Information Deletion
0 1.82 83.0|0.20 90.6|0.06 90.0|0.10 92.1|0.03 80.6|0.18 87.3|11.6

10 1.82 82.8|0.01 90.5|0.05 90.5|0.09 92.2|0.05 80.8|0.16 87.4|07.2

20 1.83 82.9|0.01 90.5|0.05 90.5|0.09 91.5|0.05 80.3|0.16 87.2|07.3

30 1.86 82.3|0.01 90.6|0.04 90.5|0.10 90.8|0.05 80.0|0.18 86.9|07.7

40 1.93 82.2|0.19 90.5|0.05 90.1|0.10 92.0|0.05 79.0|0.17 86.7|11.1

50 2.03 82.5|0.19 90.3|0.05 90.2|0.10 91.2|0.05 77.9|0.19 86.4|11.6

60 2.25 81.9|0.20 90.1|0.05 89.5|0.10 90.8|0.05 76.4|0.23 85.7|12.6

70 2.62 80.8|0.01 90.2|0.01 88.7|0.10 90.3|0.06 74.4|0.28 84.9|09.3

80 3.44 78.6|0.01 89.3|0.02 86.0|0.02 88.8|0.07 70.0|0.45 82.5|11.5

90 5.83 72.9|0.01 87.5|0.02 76.8|0.06 83.0|0.09 69.1|0.61 77.9|15.7

Pruned after Downstream Fine-tuning
0 - 82.6|0.15 90.6|0.06 90.1|0.10 92.1|0.04 78.7|0.25 86.8|12.0

10 - 82.9|0.19 90.6|0.06 90.3|0.10 91.6|0.05 79.0|0.11 86.9|10.3

20 - 82.7|0.15 90.6|0.07 90.2|0.07 92.0|0.04 79.0|0.22 86.9|10.7

30 - 82.7|0.23 90.4|0.07 89.7|0.07 91.6|0.04 78.5|0.23 86.6|12.8

40 - 82.7|0.25 90.5|0.11 89.9|0.12 91.7|0.05 78.8|0.17 86.7|13.9

50 - 82.6|0.19 90.3|0.08 89.7|0.11 90.8|0.06 78.0|0.22 86.3|13.0

60 - 81.8|0.22 90.2|0.10 89.3|0.12 90.6|0.06 76.1|0.31 85.6|16.4

70 - 80.5|0.30 89.4|0.14 86.2|0.19 88.2|0.07 69.5|0.58 82.7|25.8

80 - 73.7|0.53 87.8|0.12 80.4|0.21 86.4|0.07 69.1|0.59 79.5|30.5

90 - 58.7|0.86 82.5|0.26 65.2|0.52 81.5|0.16 69.1|0.61 71.4|47.9

Random Pruning
0 1.82 83.3|0.26 90.5|0.10 90.6|0.15 92.4|0.07 78.7|0.18 87.1|15.3

10 2.09 82.0|0.27 90.1|0.12 90.3|0.13 92.3|0.05 77.0|0.32 86.3|18.0

20 2.46 80.6|0.32 89.8|0.12 88.5|0.14 91.1|0.07 73.5|0.39 84.7|20.8

30 2.98 79.1|0.36 89.2|0.14 86.9|0.23 89.3|0.10 71.8|0.47 83.3|25.9

40 3.76 75.4|0.45 88.2|0.16 84.5|0.23 88.6|0.09 69.3|0.57 81.2|30.3

50 4.73 71.6|0.60 86.6|0.20 81.5|0.28 85.0|0.10 69.1|0.61 78.8|35.8

60 5.63 70.4|0.60 85.2|0.24 71.7|0.45 81.5|0.21 69.1|0.61 75.6|42.3

70 6.22 64.1|0.76 81.4|0.34 63.0|0.62 80.6|0.20 69.1|0.61 71.6|50.3

80 6.87 58.8|0.84 76.6|0.46 61.1|0.64 80.6|0.23 69.1|0.61 69.3|55.6

90 7.37 49.8|0.98 74.3|0.51 60.2|0.65 75.1|0.33 69.1|0.61 65.7|61.4

Table 1: Pre-training development losses and GLUE task development accuracies for various levels of pruning.
Each development accuracy is accompanied on its right by the achieved training loss, evaluated on the entire train-
ing set. Averages are summarized in Figure 1. Pre-training losses are omitted for models pruned after downstream
fine-tuning because it is not clear how to measure their performance on the pre-training task in a fair way.

152

Figure 5: The sum of weights pruned at each sparsity level for one shot pruning of BERT. Given the motivation for
our saliency criterion, it seems strange that such a large magnitude of weights can be pruned without decreasing
accuracy.

LR MNLI QQP QNL SST-2 CoLA
2e-5 1.91 ± 1.81 1.82 ± 1.72 1.27 ± 1.22 1.06 ± 1.03 0.79 ± 0.77
3e-5 2.68 ± 2.51 2.56 ± 2.40 1.79 ± 1.69 1.54 ± 1.47 1.06 ± 1.03
4e-5 3.41 ± 3.18 3.30 ± 3.10 2.31 ± 2.19 1.99 ± 1.89 1.11 ± 1.09
5e-5 4.12 ± 3.83 4.02 ± 3.74 2.77 ± 2.62 2.38 ± 2.29 1.47 ± 1.43

Table 2: We compute the magnitude sorting order of each weight before and after downstream fine-tuning. If a
weight’s original position is 59 / 100 before fine-tuning and 63 / 100 after fine-tuning, then that weight moved
4% in the sorting order. We then list the average movement of weights in each model, along with the standard
deviation. Sorting order changes mostly locally across tasks: a weight moves, on average, 0-4% away from its
starting position. As expected, larger datasets and larger learning rates have more movement (per epoch). We also
see that higher magnitude weights are more stable than lower weights, see Figure 6.

Figure 6: We show how weight sort order movements are distributed during fine-tuning, given a weight’s starting
magnitude. We see that higher magnitude weights are more stable than lower magnitude weights and do not move
as much in the sort order. This plot is nearly identical for every model and learning rate, so we only show it once.

153

Figure 7: A heatmap of the weight magnitudes of the 12 horizontally stacked self-attention key projection matrices
for layer 1. A banding pattern can be seen: the highest values of the matrix tend to cluster in certain attention
heads. This pattern appears in most of the self-attention parameter matrices, but it does not cause pruning to
prune one head more than another. However, it may prove to be a useful heuristic for attention head pruning,
which would not require making many passes over the training data. (Right) A heatmap of the weight magnitudes
of BERT’s subword embeddings. Interestingly, pruning BERT embeddings are more interpretable; we can see
shorter subwords (top rows) have smaller magnitude values and thus will be pruned earlier than other subword
embeddings.

Weight Matrix Weight Mean Weight STD
embeddings word embeddings -0.0282 0.042

layer 0 attention output FC -0.0000 0.029
layer 0 self attn key 0.0000 0.043

layer 0 self attn query 0.0000 0.043
layer 0 self attn value -0.0000 0.029

layer 0 intermediate FC -0.0000 0.037
layer 0 output FC -0.0012 0.036

layer 1 attention output FC 0.0001 0.028
layer 1 self attn key 0.0000 0.043

layer 1 self attn query -0.0003 0.043
layer 1 self attn value -0.0000 0.029

layer 1 intermediate FC 0.0001 0.039
layer 1 output FC -0.0014 0.038

layer 10 attention output FC -0.0000 0.033
layer 10 self attn key -0.0000 0.046

layer 10 self attn query 0.0002 0.046
layer 10 self attn value -0.0000 0.036

layer 10 intermediate FC 0.0000 0.039
layer 10 output FC -0.0011 0.038

layer 11 attention output FC -0.0000 0.037
layer 11 self attn key 0.0002 0.044

layer 11 self attn query -0.0001 0.045
layer 11 self attn value -0.0000 0.039

layer 11 intermediate FC 0.0004 0.039
layer 11 output FC -0.0008 0.036

154

layer 2 attention output FC 0.0000 0.027
layer 2 self attn key 0.0000 0.047

layer 2 self attn query 0.0000 0.048
layer 2 self attn value -0.0000 0.028

layer 2 intermediate FC 0.0001 0.040
layer 2 output FC -0.0015 0.038

layer 3 attention output FC 0.0001 0.029
layer 3 self attn key 0.0000 0.043

layer 3 self attn query 0.0003 0.043
layer 3 self attn value -0.0001 0.031

layer 3 intermediate FC -0.0001 0.040
layer 3 output FC -0.0014 0.039

layer 4 attention output FC 0.0000 0.033
layer 4 self attn key 0.0000 0.042

layer 4 self attn query -0.0001 0.042
layer 4 self attn value 0.0001 0.035

layer 4 intermediate FC 0.0001 0.041
layer 4 output FC -0.0014 0.040

layer 5 attention output FC -0.0000 0.033
layer 5 self attn key -0.0001 0.043

layer 5 self attn query -0.0000 0.043
layer 5 self attn value -0.0000 0.035

layer 5 intermediate FC 0.0000 0.041
layer 5 output FC -0.0014 0.039

layer 6 attention output FC 0.0001 0.032
layer 6 self attn key -0.0000 0.043

layer 6 self attn query 0.0001 0.043
layer 6 self attn value 0.0000 0.034

layer 6 intermediate FC -0.0000 0.041
layer 6 output FC -0.0014 0.039

layer 7 attention output FC 0.0000 0.032
layer 7 self attn key -0.0000 0.044

layer 7 self attn query -0.0000 0.044
layer 7 self attn value 0.0001 0.033

layer 7 intermediate FC 0.0003 0.039
layer 7 output FC -0.0013 0.038

layer 8 attention output FC 0.0000 0.034
layer 8 self attn key -0.0000 0.044

layer 8 self attn query 0.0001 0.044
layer 8 self attn value 0.0000 0.035

layer 8 intermediate FC 0.0004 0.039
layer 8 output FC -0.0013 0.037

layer 9 attention output FC 0.0001 0.033
layer 9 self attn key 0.0000 0.046

layer 9 self attn query -0.0001 0.046
layer 9 self attn value 0.0000 0.035

layer 9 intermediate FC 0.0005 0.040
layer 9 output FC -0.0012 0.039

pooler FC 0.0000 0.029

Table 3: The values of BERT’s weights are normally distributed in each weight matrix. The means and variances
are listed for each.

155

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 156–165
July 9, 2020. c©2020 Association for Computational Linguistics

On Dimensional Linguistic Properties of the Word Embedding Space

Vikas Raunak∗

Carnegie Mellon University
vraunak@cs.cmu.edu

Vaibhav Kumar∗
Carnegie Mellon University
vaibhav2@cs.cmu.edu

Vivek Gupta
University of Utah

vgupta@cs.utah.edu

Florian Metze
Carnegie Mellon University
fmetze@cs.cmu.edu

Abstract

Word embeddings have become a staple of
several natural language processing tasks, yet
much remains to be understood about their
properties. In this work, we analyze word
embeddings in terms of their principal com-
ponents and arrive at a number of novel and
counterintuitive observations. In particular,
we characterize the utility of variance ex-
plained by the principal components as a proxy
for downstream performance. Furthermore,
through syntactic probing of the principal em-
bedding space, we show that the syntactic in-
formation captured by a principal component
does not correlate with the amount of vari-
ance it explains. Consequently, we investi-
gate the limitations of variance based embed-
ding post-processing, used in a few algorithms
such as (Mu and Viswanath, 2018; Raunak
et al., 2019) and demonstrate that such post-
processing is counter-productive in sentence
classification and machine translation tasks.
Finally, we offer a few precautionary guide-
lines on applying variance based embedding
post-processing and explain why non-isotropic
geometry might be integral to word embed-
ding performance.

1 Introduction

Word embeddings have revolutionized natural lan-
guage processing by representing words as dense
real-valued vectors in a low dimensional space.
Pre-trained word embeddings such as Glove (Pen-
nington et al., 2014), word2vec (Mikolov et al.,
2013) and fastText (Bojanowski et al., 2017),
trained on large corpora are readily available for
use in a variety of tasks. Subsequently, there has
been emphasis on post-processing the embeddings
to improve their performance on downstream tasks
(Mu and Viswanath, 2018) or to induce linguis-
tic properties (Mrkšic et al.; Faruqui et al., 2015).
∗equal contribution

In particular, the Principal Component Analysis
(PCA) based post-processing algorithm proposed
by (Mu and Viswanath, 2018) has led to significant
gains in word and sentence similarity tasks, and
has also proved useful in dimensionality reduction
(Raunak et al., 2019). Similarly, understanding the
geometry of word embeddings is another area of
active research (Mimno and Thompson, 2017). In
contrast to previous work such as (Yin and Shen,
2018), which focuses on optimal dimensionality
selection for word embeddings, we explore the di-
mensional properties of existing pre-trained word
embeddings through their principal components.
Specifically, our contributions are as follows:

1. We analyze the word embeddings in terms of
their principal components and demonstrate
that their performance on both word similar-
ity and sentence classification tasks saturates
well before the full dimensionality.

2. We demonstrate that the amount of variance
captured by the principal components is a
poor representative for the downstream per-
formance of the embeddings constructed us-
ing the very same principal components.

3. We investigate the reasons behind the afore-
mentioned result through syntactic informa-
tion based dimensional linguistic probing
tasks (Conneau et al., 2018) and demonstrate
that the syntactic information captured by a
principal component is independent of the
amount of variance it explains.

4. We point out the limitations of variance based
post-processing used in a few algorithms (Mu
and Viswanath, 2018; Raunak et al., 2019)
and demonstrate that it leads to a decrease
in performance in sentence classification and
machine translation tasks, restricting its effi-
cacy mainly to semantic similarity tasks.

156

Figure 1: Rho x 100 on Word Similarity Tasks

Figure 2: Accuracy on Sentence Classification Tasks

In Section 1, we provide an introduction to the
problem statement. In Section 2, we discuss the
dimensional properties of word embeddings. In
Section 3, we conduct a variance based analy-
sis by evaluating the word embeddings on sev-
eral downstream tasks. In Section 4, we move on
to dimensional linguistic probing tasks followed
by Section 5, where we discuss variance based
post-processing algorithms, and finally conclude
in Section 7. To foster reproducibility, we have
released the source code along with paper 1.

2 Dimensional Properties of the Word
Embedding Space

Principal components provide a natural basis for
studying the properties of an embedding space.
In this work, we refer to the properties pertain-
ing to the principal components of the embedding
space as dimensional properties and the embed-
ding space obtained by projecting the embeddings
on the principal components as the principal em-
bedding space. We study the principal embedding
space and the dimensional properties in a number
of different contexts such as word similarity, sen-

1 https://github.com/vyraun/dlp

tence classification. We provide a brief introduc-
tions to the both evaluation tasks of our experi-
ment in the sub-sections. For details on the bench-
marks, please refer to Conneau and Kiela (2018)
for sentence classification and Faruqui and Dyer
(2014) for word similarity.

For experiments in this section, we use 300
dimensional a) Glove embeddings (trained on
Wikipedia 201 + Gigaword 5 2), b) fastText em-
beddings (trained on Wikipedia, UBMC web-
base corpus and statmt.org news dataset 3) and
c) Word2vec embeddings (trained on the Google-
News dataset 4. We use Glove embeddings for
the word similarity tasks. For the sentence clas-
sification tasks, we show results for fasttext and
word2vec as well, in addition to Glove embed-
dings. For the sentence classification tasks we use
Logistic Regression as the classifier, since it is the
simplest classification model and we are only in-
terested in evaluating performance variation due
the changes in representations. Thus, the con-
vex objective used in the classifier avoids any op-
timizer instability, making our entire evaluation
pipeline deterministic and exactly reproducible.

2.1 Word Similarity Tasks
The word similarity benchmarks (Faruqui and
Dyer, 2014) have word pairs (WP) that have been
assigned similarity rating by humans. While eval-
uating word embeddings, the similarity between
the words is calculated by the cosine similarity
of their vector representations. Then, Spearman’s
rank correlation co-efficient (Rho) between the
ranks produced using the cosine similarities and
the given human rankings is used for the perfor-
mance evaluation. Hence, for better word similar-
ity, the evaluation metric (Rho) will be higher.

Figure 1 shows the performance (Rho x 100)
of word embeddings (Glove) on 13 word similar-
ity benchmarks w.r.t varying word embedding di-
mensions. The similarities are computed by pro-
jecting the embeddings in the principal component
space. Each new evaluation cumulatively adds 10
more principal components to the earlier embed-
dings, i.e. the units on the X-axis vary in the incre-
ments of 10. Thus, we obtain 30 measurements for
each dataset, ranging from word embeddings con-
structed using the first 10 principal components to
orignal 300 principal components. From Figure
2 https://stanford.io/2Gdv8uo
3 https://bit.ly/2FMTB4N
4 https://bit.ly/2esteWf

157

Table 1: Test accuracy of embeddings composed of Top-100 (T), Middle-100 (M) and Bottom-100 (B) principal
components on sentence classification datasets. The highlighted cells correspond to one of the three cases - M
outperforms T (orange), B outperforms T (red) and B outperforms M (yellow)

.
Split MR CR SUBJ MPQA SST2 SST5 TREC SICK-E MRPC

Random-Embeddings 61.65 71.6 78.9 73.79 60.57 31.09 70.0 77.07 69.91
Glove-Full 75.7 77.48 91.76 86.66 78.03 41.0 68.0 78.49 70.61

Glove-T 70.74 73.67 90.1 81.58 72.49 37.24 61.8 75.71 71.94
Glove-M 72.98 75.04 87.76 84.07 75.34 40.5 57.6 76.5 71.42
Glove-B 67.62 73.01 83.68 81.61 69.52 36.11 57.0 72.82 70.96

Word2vec-Full 77.65 79.26 90.76 88.3 79.68 42.44 83.0 78.24 72.58
Word2vec-T 74.34 76.29 89.88 85.07 77.16 40.36 70.0 75.46 71.48
Word2vec-M 72.91 73.43 82.39 82.76 72.65 38.69 66.0 70.53 71.36
Word2vec-B 71.42 74.25 82.47 81.05 73.48 38.46 72.2 74.3 71.01
fastText-Full 67.85 75.39 85.87 79.85 70.57 35.97 68.0 76.66 70.84

fastText-T 69.42 67.76 87.69 84.64 74.35 36.83 74.8 66.04 70.61
fastText-M 68.88 65.3 81.74 81.45 72.1 35.57 65.2 65.01 68.29
fastText-B 66.45 64.21 79.89 79.83 69.96 31.22 69.4 63.77 67.94

1, it is evident that the performance saturates con-
sistently at around 200 dimensions for all of the
tasks, after which adding new principal compo-
nents does not lead to much gain in performance.

2.2 Sentence Classification Tasks

The sentence classification tasks (Conneau and
Kiela, 2018) include binary classification tasks
(MR, CR, SUBJ, MPQA), multiclass classifica-
tion tasks (SST-FG, TREC), entailment (SICK-E),
semantic relatedness (STS-B) and Paraphrase de-
tection (MRPC) tasks. As usual, the evaluation is
done by computing the classification accuracy on
the test set.

Figure 2 shows the performance (Test accu-
racy) on 9 standard downstream sentence classi-
fication tasks (Conneau and Kiela, 2018) using
the same procedure for constructing word embed-
dings (Glove) as in 2.1. Further, sentence vec-
tors were constructed using an average of the con-
tained word embeddings, which has been demon-
strated to be a very strong baseline for downstream
tasks (Arora et al., 2017). From Figure 2, we can
observe that, similar to the previous word simi-
larity tasks, the performance saturates consistently
at around 200 dimensions for all of the tasks, af-
ter which incrementing the embeddings with addi-
tional principal components does not lead to much
gains in performance. We also report results for
original (300D) and post processed PCA reduced
(200D) word embeddings for other types (fast-
Text, Glove) in Table 2. In Table 2, we also report

results with pretrained 200D Glove embedding. 5

Analysis: To conclude, observations from both
word similarity and sentence classification tasks,
of saturation in performance around 200, much
before the original 300 dimensions implies redun-
dancy among the dimensions (in section 3 we will
clarify why it doesn’t imply noise). Furthermore,
this observation is consistent across various em-
bedding types (Glove, fastText and word2vec) for
the sentence classification tasks, as demonstrated
in Table 2. This also suggests a simple strategy
to reduce the embedding size wherein one third of
the components could be reliably removed with-
out affecting the performance on word similarity
or sentence classification tasks, leading to 33%
memory reduction.

3 Variance Based Analysis

In this section, we characterize the redundancy
observed in Section 2, in terms of variance of
the principal components. Specifically, we mea-
sure downstream performance (on the sentence
classification tasks of Section 2.2) of word em-
beddings against the amount of variance captured
by the principal components (the variance ex-
plained or captured by a principal component is
the variance of the embeddings when projected
onto that principal component; hereon, we refer
to the fraction of variance explained by a princi-
pal component simply as variance explained by
that component). Similar to the previous sec-
5 word embeddings for 200D for other embedding types
(fasttext, word2vec) are not publicly available.

158

Table 2: Performance on sentence classification tasks of various embeddings (300 dimensional) and their post-
processed PCA reduced counterparts of 200 dimensions.

Embedding MR CR SUBJ MPQA SST2 SST5 TREC SICK-E MRPC
Glove 75.7 77.48 91.76 86.66 78.03 41.0 68.0 78.49 70.61

Glove-PCA 74.62 76.95 91.6 85.97 77.16 40.18 66.6 77.02 72.99
Glove-200 74.69 77.91 91.18 86.52 77.98 40.05 66.4 77.47 72.23
Word2vec 77.65 79.26 90.76 88.30 79.68 42.44 83.0 78.24 72.58

Word2vec-PCA 76.53 78.12 90.50 86.74 79.63 41.49 77.6 76.54 72.17
fastText 67.85 75.39 85.87 79.85 70.57 35.9 68.0 76.66 70.84

fastText-PCA 66.83 74.46 85.26 78.91 69.85 36.11 66.0 76.50 68.75

Table 3: The Variance for each of the T, M, B splits of the
embeddings.

Glove Word2vec fastText
T 0.529 0.628 0.745
M 0.371 0.221 0.162
B 0.100 0.151 0.093

tion, we use 300 dimensional Glove embeddings
(trained on Wikipedia 201 + Gigaword 52) for ex-
periments in this section, along with publically
released fastText (trained on Wikipedia, UBMC
webbase corpus and statmt.org news dataset3 and
Word2vec (trained on the GoogleNews dataset4)
embeddings, both of 300 dimensions.

For each of the embedding types, we first con-
struct word embeddings using only top 100 prin-
cipal components (T), the middle 100 principal
components (M) and the bottom 100 principal
components (B). Then, we compute the variance
for each split by aggregating the variance of the
100 principal components of each split for all
three embedding types. Table 3 highlights how
the total variance is divided across the three splits.
The T embeddings have the first 100 principal
components (PCs), so the highest variance ex-
plained, while the B embeddings have the bot-
tom 100 components, thereby the least variance
explained. Furthermore, the variance explained by
the principal components for the same split also
differ significantly across the different embedding
types. For example, fastText has more variance ex-
plained, when compared to Glove and Word2vec,
for the split T, while Glove has the most variance
explained, among the three embedding types, for
the split M. Lastly, Word2vec explains more vari-
ance than Glove and fastText for the split B. The
differences are expected since, the three embed-
ding types differ considerably in their training al-
gorithms. While Word2vec uses negative sam-
pling, Glove derives semantic relationships from
the word-word co-occurrence matrix and fastText

uses subword information. So, to summarize we
constructed altogether 9 embedding splits (3 from
each of the 3 embedding types), which differ sig-
nificantly in terms of the variance explained by
their constituent components.

We use the 100 dimensional embedding obtain
from the several splits (T, M, B) and types (Glove,
fastText, Word2vec) as features for downstream
sentence classification tasks, as in Section 2.2,
except that, now, each of the embedding feature
has 100 dimensions. The experiments are de-
signed to test whether the variance explained by
a split is closely correlated with the downstream
performance metric (classification accuracy) for
each of the three embedding types. Table 1 shows
the results on 9 sentence classification tasks, for
each embedding split, for all the three embedding
types. In the table, the highlighted cells represent
the cases where classification accuracy of the
lower variance split exceeds that of the corre-
sponding higher variance split. Each annotated
cell corresponds to one of the three cases - M
outperforms T (orange), B outperforms T
(red) and B outperforms M (yellow). For
the comparisons between T and M splits, in 6
out of 27 such comparisons, the M embeddings
outperform the T embeddings. Similarly, for
comparisons between M and B embeddings, the
B embeddings outperform the M embeddings in
7 out of 27 cases and for comparisons between
T and B embeddings, in 2 out of 27 cases the
B embeddings outperform the T embeddings.
Further, in a number of cases (although not
highlighted), such as on the MRPC task, the T
and M splits differ very little in performance. The
same is true for M and B splits on tasks such as
MPQA and CR. Such cases are least prominent in
fastText, probably due to the extremely large gap
in the variance explained between the T, M and T,
B splits.

159

Figure 3: Analysis of individual principal components
on the two syntactic information based linguistic prob-
ing tasks: TopConst (top) and TreeDepth (bottom). The
Y-axis represents the Test accuracy on the two tasks.

Analysis: From Table 1 it is evident that the per-
formance drop between the T, M, B splits is quite
low for a number of tasks, which is highly contrary
to the expectation, given the large differences in
the variance explained (Table 3). Further, there are
also many cases where lower variance embeddings
(B and M) outperform the emedddings (M and T)
with higher variance, for all the three embedding
types. These results demonstrate that for word
embeddings, the variance explained by the prin-
cipal components is not sufficient for explaining
their downstream performance. In other words,
the variance explained by the principal compo-
nents is a weak representative of downstream per-
formance. This is in contrast to the widely used
practice of using the variance explained by the
principal components as a fundamental tool to as-
sess the quality of the corresponding representa-
tions (Jolliffe and Cadima, 2016).

4 Dimensional Linguistic Probing Tasks

A plausible hypothesis to explain the better per-
formance of M and B embeddings (Table 1) in
the earlier section is that ‘the syntactic informa-

tion required for downstream sentence classifica-
tion tasks is distributed independently with respect
to the principal components’. To explore the va-
lidity of the proposed hypothesis, we leverage two
linguistic probing tasks, namely TreeDepth and
TopConst (Conneau et al., 2018). These probing
tasks are designed to test whether sentence embed-
dings are sensitive to the syntactic properties of the
encoded sentences. The TreeDepth task (a 8-way
classification problem) tests whether the model
can predict the depth of the hierarchical syntac-
tic structure of the sentence. For doing well on
the TreeDepth task, the embeddings have to group
sentences by the depth of the longest path from
root to any leaf. In the TopConst task (a 20-way
classification problem), a sentence must be clas-
sified in terms of the sequence of its constituents
occurring immediately below the sentence node
of its hierarchical structure. Therefore, for good
performance on the TopConst task, the embed-
dings have to capture latent syntactic structures
and cluster them by constituent types. The ran-
dom baselines for the TreeDepth and TopConst
tasks are 12.5 and 5.0 respectively, while full 300-
dimensional Glove embeddings obtain accuracies
of 37 and 68 percent respectively.

To evaluate the syntactic information contained
in each of the principal components, we first con-
struct one-dimensional word embeddings by pro-
jecting word vectors onto a single principal com-
ponent. Then we use these word embeddings
to construct sentence vectors, as in Section 2.2,
which are used as features for the two classifi-
cation tasks. For good performance, the single
component sentence vector has to distinguish be-
tween the probing task’s output classes. There-
fore, the performance on these tasks can be used
to isolate the behavior of individual components
with respect to the syntactic information captured.
The motivation here is that if the syntactically dis-
criminative components would vary considerably,
then we can isolate the behavior of the individ-
ual components and see their correspondence with
the rank of the principal component. Figure 3 de-
picts the scores (Test classification accuracy) on
TopConst and TreeDepth tasks respectively. The
average performance of the one-dimensional rep-
resentations has mean ± standard deviation of
18.38 ± 0.64 and 6.71 ± 0.72 for the TreeDepth
and TopConst tasks respectively.

Analysis: The average performance of the one-

160

dimensional representations on both tasks is much
lower than full dimension embeddings but well
above the random baseline. However, many indi-
vidual compoenents far exceed the random base-
line as well. As mentioned earlier, we wanted to
probe whether such discriminativeness is ranked
according to variance. However from Figure 3, it
is evident that the performance across the dimen-
sions does not have any particular trend (increas-
ing or decreasing) w.r.t to the rank of the princi-
pal components. In fact, the peak performance on
both the tasks is achieved by a component in the
bottom (B) split of the embeddings. This validates
the hypothesis that the syntactic information cap-
tured by a principal component is independent of
the amount of variance it explains.

Table 4: Classification Accuracy for Linguistic Prob-
ing Tasks using the T, M, B splits of the embeddings.
Here also, the highlighted cells correspond to one of
the three cases - M outperforms T (orange), B out-
performs T (red) and B outperforms M (yellow)

Embedding TopConst TreeDepth
Glove-T 28.1 28.2
Glove-M 26.0 24.8
Glove-B 27.1 26.9

Word2vec-T 23.9 42.5
Word2vec-M 24.3 43.5
Word2vec-B 23.7 44.6
fastText-T 31.2 50.7
fastText-M 29.3 51.0
fastText-B 30.6 56.8

To further validate the hypothesis, we repeat the
experiment described in Section 3 for each of the
embedding types, except on the synctatic probing
tasks of TopConst and TreeDepth in Table 4. Simi-
lar to Table 1, each annotated cell in Table 4 corre-
sponds to one of the three cases - M outperforms
T (orange), B outperforms T (red) and B out-
performs M (yellow). For the comparisons be-
tween T and M splits, in 3 out of 6 such compar-
isons, the M embeddings outperform the T embed-
dings. Similarly, for comparisons between M and
B embeddings, the B embeddings outperform the
M embeddings in 5 out of 6 cases and for compar-
isons between T and B embeddings, in 2 out of 6
cases the B embeddings outperform the T embed-
dings. In other words, table 4 shows that for the
TreeDepth task, the B embeddings significantly
outperform T and M embeddings for word2vec
and fastText, whereas for Glove, it outperforms

the M embeddings. For the TopConst task as well,
the B embeddings outperform M embeddings for
Glove and fastText, whereas for Word2vec, it out-
performs the T embeddings. Thus, the discrep-
ancy in performance on these syntactic probing
tasks is even more severe when compared to the
sentence classification tasks evaluated in Section
3. The results also validate our hypothesis that the
variance explained by the embeddings is of little
predictive strength in predicting its relative per-
formance.

5 The Post Processing Algorithm (PPA)

In this section, we briefly describe and then eval-
uate the post-processing algorithm (PPA) by (Mu
and Viswanath, 2018), which achieves high scores
on Word and Semantic textual similarity tasks
(Agirre et al., 2012). The algorithm (PPA) is listed
below as Algorithm 1. PPA removes the projec-
tions of top principal components from each of the
word vectors, making the individual word vectors
more discriminative. The algorithm could be re-
garded as pushing the word embeddings towards
a more isotropic space (Arora et al., 2016), by
eliminating the common parts (mean vector and
top principal components of the embedding space)
from the individual word embeddings. How-
ever, it is worth revisiting the assumption whether
isotropy (or angular isotropy more specifically)
of the embedding space is universally beneficial
with respect to downstream tasks. In this section,
we stress test this assumption on a range of sen-
tence classification and machine translation tasks.
Our fundamental intuition is that since these tasks
require the embedding space to capture syntac-
tic properties much more significantly than word-
similarity tasks, enforcing isotropy could lead to
worse performance.

Algorithm 1: Post Processing Algorithm PPA(X,
D)

Data: Embedding Matrix X, Threshold Parameter D
Result: Post-Processed Word Embedding Matrix X
/* Subtract Mean Embedding */

1 X = X - X ;
/* Compute PCA Components */

2 ui = PCA(X), where i = 1, 2, . . . d;
/* Remove Top-D Components */

3 for all v in X do
4 v = v −∑D

i=1(u
T
i · v)ui

5 end

161

Table 5: Performance on sentence classification tasks of various embeddings and their post-processed (PPA) coun-
terparts. The red colored cells denote the cases where the original embeddings outperformed their post-processed
(PPA) counterparts.

Embedding MR CR SUBJ MPQA SST2 SST5 TREC SICK-E MRPC
Glove (300 dim) 75.7 77.48 91.76 86.66 78.03 41.0 68.8 78.49 70.61
PPA on Glove 75.57 77.48 91.01 86.67 77.98 40.72 65.8 78.53 71.59

Word2vec (300 dim) 77.65 79.23 90.76 88.30 79.68 42.44 82.6 78.24 72.64
PPA on Word2vec 77.33 79.5 90.59 88.12 79.41 42.71 83.4 78.26 72.58
fastText (300 dim) 74.16 71.63 89.56 87.12 79.24 39.14 79.4 72.34 70.14
PPA on fastText 74.59 71.63 89.4 86.9 79.13 39.64 80.2 72.36 70.09

5.1 Sentence Classification Tasks
We compare the performance of PPA (with a con-
stant D=5 across all the embeddings) on the 9
downstream sentence classification tasks, as in
Section 3. The results are presented in Table 5.
In our work, we adhere to the linear evaluation
protocol and use a simple logistic regression clas-
sifier in evaluating word representations (Arora
et al., 2019; Gupta et al., 2020), whereas (Mu and
Viswanath, 2018) use a neural network as their
classifier. The red colored cells in Table 5 denote
the cases where the original embeddings outper-
formed their Post Processed (PPA) counterparts.
Such cases occurred in 14 out of 27 comparisons
in Table 5. The results in Table 5 show that post-
processing doesn’t always lead to accuracy gains
and can be counterproductive in a number of tasks.

Analysis: The results in Table 5 are contrary to
the expectation that pushing the word embeddings
towards isotropy would lead to better downstream
performance. This suggests that within the con-
text of downstream sentence classification tasks,
projecting word vectors away from the top com-
ponents leads to a loss of ‘useful’ information. To
explain this loss of ‘useful’ information, we could
use the analysis from Figure 3. From Figure 3,
it is evident that the top dimensions also contain
syntactic information, the loss of which adversely
impacts downstream classification tasks, which by
construction, benefit from both semantic and syn-
tactic information. Also, by just removing the
mean (no top component nullification as in PPA),
we notice almost zero change in performance for
most of the sentence classification tasks in Table 5
(the highest change was for TREC, of −0.4, still
quite low when compared to−4.4 for PPA), which
demonstrably shows that removing the mean must
be ruled out as the possible cause for the drop in
classification accuracies.

On the same tasks, we also observe a drop

in sentence classification accuracy (2.37, 1.99,
3.94 average drop on word2vec, Glove, fastText
respectively) using 150 dimensional embeddings
obtained from PPA based dimensionality reduc-
tion (Raunak et al., 2019). This shows that the
variance based post-processing algorithms such as
PPA (Mu and Viswanath, 2018) and PPA-PCA
(Raunak et al., 2019), when used in downstream
tasks have significant limitations, which could be
attributed to the loss of syntactic information.

5.2 Machine Translation

Recently, (Qi et al., 2018) have shown that pre-
trained embeddings lead to significant gains in
performance for the translation of three low re-
source languages namely, Azerbaijani (AZ), Be-
larusian (BE) and Galician (GL) into English
(EN). Here, we demonstrate the impact of the
post processing algorithm on machine translation
(MT) tasks. We replicate the experimental set-
tings of (Qi et al., 2018) and use a standard 1
layer encoder-decoder model with attention (Bah-
danau et al., 2015) and a beam size of 5. Prior
to training, we initialize the encoder with fastText
word embeddings (no other embeddings are pub-
lically available for these languages) trained on
Wikipedia6. We then use PPA on the pre-trained
embeddings and train again. The results of the ex-
periments are presented in Table 6.

Analysis: From the results, it is evident that re-
moving the top principal component(s) leads to a
consistent drop in BLEU scores across the three
language pairs. The observations are consistent
with the previous section, in that removing top
components hurts performance in non-similarity
based tasks. This can again be explained using
the analysis from earlier section i.e. instead of
strengthening the embeddings, removing the top
components leads to a loss of ‘useful’ information

6 https://bit.ly/2WkHQ0Y

162

for the Machine translation task. Further, simi-
lar to the previous section, we can specifically at-
tribute the performance drop to the loss of syn-
tactic information, since the top components are
at least as equally important for syntactic informa-
tion as the other components, thus, nullifying them
hurts performance.

Table 6: BLEU scores over three different low-resource
language pairs with pretrained emebddings and Top D
components removed using PPA. Green cells denotes
top scores.

AZ->EN BE->EN GL->EN
Pre-Trained 3.24 6.09 15.91
PPA (D = 1) 3.19 6.02 14.81
PPA (D = 2) 3.07 5.50 13.88
PPA (D = 3) 3.04 5.26 13.27
PPA (D = 4) 2.92 4.75 13.24

5.3 Summary and Discussion
To summarize our experiments on variance based
post-processing, we conclude the following:

1. We can not rely on principal components for
manipulating word embeddings as freely as
the current literature suggests. While elimi-
nating the ‘common parts’ helps improve the
discriminativeness between the word embed-
dings (thereby refining the word similarity
scores), pushing the embeddings towards an-
gular isotropy does not lead to performance
gain in downstream tasks, e.g. sentence clas-
sification and machine translation. Although,
we did not assume any generative model for
the embeddings in any of the explanations
(unlike (Arora et al., 2016), which makes use
of the isotropy assumption to explain empiri-
cal observations in factorizing the PMI ma-
trix), our work further casts doubt on the
isotropy assumption for word embeddings
and suggests that non-isotropy may be inte-
gral to performance on downstream tasks.

2. Furthermore, worse performance in non-
similarity tasks can be attributed to the loss
of syntactic information contained in the top
components, suggesting that the specific ge-
ometry created through the ‘common parts’
is integral to embeddings capturing syntactic
properties. Establishing a link between the
syntactic properties of the embedding space
and its non-isotropy would be an interesting
direction to explore for future work.

6 Related Work

Due to the widespread utility of word embeddings,
a number of recent works have explored further
improving the embeddings post-hoc, as well as
trying to better understand and manipulate the ge-
ometry of the embedding space.

Post-Processing Word Embeddings A number
of recent works have been proposed to enhance
word embedding quality post-hoc (Mrkšic et al.;
Faruqui et al., 2014; Mu and Viswanath, 2018).
Their applications range from better modeling se-
mantic similarities, improving downstream classi-
fication performance to dimensionality reduction
of the embeddings (Raunak et al., 2019).

Word Embedding Geometry The linear alge-
braic structure emergent in word embeddings
has received considerable attention (Allen and
Hospedales, 2019; Arora et al., 2018), and theo-
retical links have been established between neu-
ral embedding algorithms and factorization based
techniques (Levy and Goldberg, 2014). Another
prominent line of work has been along the direc-
tion of probing tasks (Conneau and Kiela, 2018),
which use proxy classification tasks to compar-
atively measure the presence of certain syntac-
tic/semantic properties in the embedding space.

Our work focuses on the dimensional properties
of the embedding space in the principal compo-
nent basis, and also analyzes a few post-processing
algorithms, thus contributing to the existing litera-
ture on both the areas of embedding analysis.

7 Conclusion and Future Work

To conclude, besides elucidating redundancy in
the word embedding space, we demonstrate that
the variance explained by the word embeddings’
principal components is not a reliable proxy for
the downstream utility of the corresponding repre-
sentations and that the syntactic information cap-
tured by a principal component does not depend
on the amount of variance it explains. Further,
we show that variance based post-processing al-
gorithms such as PPA is not suitable for tasks
which rely more on syntax, such as sentence clas-
sification and machine translation. Going further,
we wish to explore whether the geometric intu-
itions developed in our work could be leveraged
for contextualized embeddings such as ElMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), and
Roberta (Liu et al., 2019), etc.

163

References
Eneko Agirre, Mona Diab, Daniel Cer, and Aitor

Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
the First Joint Conference on Lexical and Computa-
tional Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation, pages 385–393. Association for
Computational Linguistics.

Carl Allen and Timothy Hospedales. 2019. Analo-
gies explained: Towards understanding word em-
beddings. In International Conference on Machine
Learning, pages 223–231.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. A latent variable model
approach to pmi-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics, 4:385–399.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2018. Linear algebraic struc-
ture of word senses, with applications to polysemy.
Transactions of the Association for Computational
Linguistics, 6:483–495.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence
embeddings. International Conference of Learning
Representation.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2019.
A simple but tough-to-beat baseline for sentence
embeddings. In 5th International Conference on
Learning Representations, ICLR 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion of Computational Linguistics, 5(1):135–146.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018).

Alexis Conneau, German Kruszewski, Guillaume
Lample, Loic Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris
Dyer, Eduard Hovy, and Noah A Smith. 2014.
Retrofitting word vectors to semantic lexicons.
arXiv preprint arXiv:1411.4166.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1606–1615.

Manaal Faruqui and Chris Dyer. 2014. Community
evaluation and exchange of word vectors at word-
vectors. org. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 19–24.

Vivek Gupta, Ankit Saw, Pegah Nokhiz, Praneeth Ne-
trapalli, Piyush Rai, and Partha Talukdar. 2020. P-
sif: Document embeddings using partition averag-
ing. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence.

Ian T Jolliffe and Jorge Cadima. 2016. Principal com-
ponent analysis: a review and recent developments.
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences,
374(2065):20150202.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in neural information processing systems,
pages 2177–2185.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

David Mimno and Laure Thompson. 2017. The strange
geometry of skip-gram with negative sampling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
2873–2878.

Nikola Mrkšic, Diarmuid OSéaghdha, Blaise Thom-
son, and pages=142–148 year=2016 Gašić, Mil-
ica and Rojas-Barahona, Lina and Su, Pei-Hao
and Vandyke, David and Wen, Tsung-Hsien and

164

Young, Steve, booktitle=Proceedings of NAACL-
HLT. Counter-fitting word vectors to linguistic con-
straints.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-
top: Simple and effective postprocessing for word
representations. In International Conference on
Learning Representations.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237.

Ye Qi, Devendra Sachan, Matthieu Felix, Sarguna Pad-
manabhan, and Graham Neubig. 2018. When and
why are pre-trained word embeddings useful for
neural machine translation? In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 529–535.

Vikas Raunak, Vivek Gupta, and Florian Metze. 2019.
Effective dimensionality reduction for word em-
beddings. In Proceedings of the 4th Workshop
on Representation Learning for NLP (RepL4NLP-
2019), pages 235–243, Florence, Italy. Association
for Computational Linguistics.

Zi Yin and Yuanyuan Shen. 2018. On the dimension-
ality of word embedding. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 895–906. Curran As-
sociates, Inc.

165

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 166–176
July 9, 2020. c©2020 Association for Computational Linguistics

A Cross-Task Analysis of Text Span Representations

Shubham Toshniwal, Haoyue Shi, Bowen Shi, Lingyu Gao, Karen Livescu, Kevin Gimpel
Toyota Technological Institute at Chicago

{shtoshni, freda, bshi, lygao, klivescu, kgimpel}@ttic.edu

Abstract

Many natural language processing (NLP) tasks
involve reasoning with textual spans, includ-
ing question answering, entity recognition,
and coreference resolution. While extensive
research has focused on functional architec-
tures for representing words and sentences,
there is less work on representing arbitrary
spans of text within sentences. In this paper,
we conduct a comprehensive empirical evalua-
tion of six span representation methods using
eight pretrained language representation mod-
els across six tasks, including two tasks that we
introduce. We find that, although some simple
span representations are fairly reliable across
tasks, in general the optimal span representa-
tion varies by task, and can also vary within
different facets of individual tasks. We also
find that the choice of span representation has
a bigger impact with a fixed pretrained encoder
than with a fine-tuned encoder.

1 Introduction

Fixed-dimensional span representations are often
used as a component in recent models for a number
of natural language processing (NLP) tasks, such
as question answering (Lee et al., 2016; Seo et al.,
2019), coreference resolution (Lee et al., 2017),
and constituency parsing (Stern et al., 2017; Kitaev
and Klein, 2018; Kitaev et al., 2019, inter alia).
Such models initialized with contextualized word
embeddings (Peters et al., 2018; Devlin et al., 2019)
have achieved new state-of-the-art results for these
tasks (Kitaev et al., 2019; Joshi et al., 2019b).

Since spans can have arbitrary length (i.e., num-
ber of tokens), fixed-dimensional span representa-
tions involve some form of (parameterized) pooling
of the token representations. Existing models typ-
ically pick a span representation method (dashed
boxes in Figure 1) that works well for the task(s) of
interest. However, a comprehensive evaluation com-

0/1

Projection	Layer

�1

Pretrained	Encoder

�1

MLP

�2

�1 �2 �3 �4 �5

�3 �4 �5

Labels

Classifier

Span
Representations

Contextual
Vectors

Input
Tokens

�2[1, 2] [4, 4]

(a) Probing model for two-
span tasks. This model
can be used to decide
whether two spans (here
[1, 2] and [4, 4]) are coref-
erent or not.

0/1

Projection	Layer

Pretrained	Encoder

�1

MLP

�2

�1 �2 �3 �4 �5

�3 �4 �5

[1, 3]�

(b) Probing model for
single-span tasks. This
model can be used to de-
cide whether a span (here
[1, 3]) refers to a con-
stituent or not.

Figure 1: Probing architectures for span representation
methods. The models are very similar to that of Ten-
ney et al. (2019b) but we explicitly separate the span
representation part into a projection step followed by a
choice among span representation methods.

paring various span representation methods across
tasks is still lacking.

In this work, we systematically compare and an-
alyze a wide range of span representations (Sec-
tion 3.2) by probing the representations via various
NLP tasks, including constituent detection, con-
stituent labeling, named entity labeling, semantic
role labeling, mention detection, and coreference
arc prediction (Section 2).1 All of the tasks we con-
sider naturally involve span representations. Simi-
lar comparisons are done by Tenney et al. (2019b),
where they use this probing approach to compare
several pretrained contextual embedding models,
while keeping the span representation method fixed
to self-attentive pooling (Lin et al., 2017; Lee et al.,
2017). Here we vary both the choice of contextu-
alized embedding models (among BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019b), XL-

1Code available at https://github.com/
shtoshni92/span-rep

166

Net (Yang et al., 2019), and SpanBERT (Joshi et al.,
2019a)) and the span representation methods. By
analyzing the performance of each span representa-
tion method for multiple tasks, we aim to uncover
the importance of choice of span representation.

We follow the “edge probing” setup of Tenney
et al. (2019b) and introduce two new tasks to this
setup, namely constituent detection and mention
detection, which complement the constituent label-
ing and coreference arc prediction tasks, respec-
tively, that are part of the original setup. For the
full-scale comparison, we follow the original setup
and keep the pretrained token representation mod-
els fixed, learning only layer weights and additional
task-specific parameters on top of the weighted pre-
trained representations. We also conduct a small-
scale study to compare the effect of fine-tuning on
different span representations in terms of their rel-
ative ordering and for comparison with their non
fine-tuned counterparts.

Overall, we find that the behavior of span rep-
resentations tends to pattern according to whether
they are based on information at the span bound-
aries versus using the entire span content. When
pretrained models are frozen, we find that the choice
of span representation is more important than the
choice of pretrained model. When fine-tuning, the
choice of span representation still has an impact on
performance though it is much less pronounced than
in the frozen case. Although the best-performing
method can vary greatly among tasks, we find in
general that a span representation that simply takes
the max over time is a reliable choice across tasks.

2 Span Probing Tasks

We borrow four probing tasks applied by Tenney
et al. (2019b), namely constituent labeling, named
entity labeling, semantic role labeling, and coref-
erence arc prediction. We also introduce two new
tasks: constituent detection and mention detection.
The specific tasks are described below.

Constituent labeling is the task of predicting the
non-terminal label (e.g., noun phrase, verb phrase,
etc.) for a span corresponding to a constituent.

Constituent detection is the task of determin-
ing whether a span of words corresponds to a
constituent (i.e., a nonterminal node) in the con-
stituency parse tree of the input sentence. We in-
troduce this task as a complement to the task of
constituent labeling, to further evaluate the syntac-

tic ability of the span representation methods.

Named entity labeling (NEL) is the task of pre-
dicting the entity type of a given span corresponding
to an entity, e.g., whether the span “German” in its
sentence context refers to people, an organization,
or a language.

Semantic role labeling (SRL) is concerned with
predicting the semantic roles of phrases in a sen-
tence. In this probing task the locations of the pred-
icate and its argument are given, and the goal is to
classify the argument into its specific semantic roles
(ARG0, ARG1, etc.).

Mention detection is the task of predicting
whether a span represents a mention of an entity
or not. For example, in the sentence “Mary goes
to the market”, the spans “Mary” and “the mar-
ket” refer to mentions while all other spans are not
mentions. The task is similar to named entity recog-
nition (Tjong Kim Sang and De Meulder, 2003),
but the mentions are not limited to named entities.
We introduce this task as it is the first step for coref-
erence resolution (Pradhan et al., 2012), if the can-
didate mentions are not explicitly given.

Coreference arc prediction is the task of predict-
ing whether a pair of spans refer to the same entity.
For example, in the sentence “John is his own en-
emy”, “John” and “his” refer to the same entity.

3 Models

In this section, we first briefly describe the prob-
ing model, which is borrowed from Tenney et al.
(2019b) with the extension to different span rep-
resentations (Figure 1), followed by details of the
various span representation methods we compare in
this work.

3.1 Probing Model
The input to the model is a sentence d =
{d1, · · · , dT } where the di are tokens (produced
by a tokenizer specific to a given choice of en-
coder). The sentence is first passed through a fixed,
pretrained encoder, such as BERT, followed by a
learned projection layer to obtain contextualized to-
ken embeddings {e1, · · · , eT }. These embeddings
are then fed to span representation modules to get
fixed-dimensional contextual span embeddings. Fi-
nally, the span embeddings are fed into a two-layer
MLP followed by a sigmoid layer to predict the la-
bels. For multiclass probing tasks with |L| labels,
the predictions are made independently with sep-

167

arate MLPs per label resulting in a [0, 1]|L| vector.
Finally, some tasks involve a single span, whereas
others (coreference, semantic role labeling) involve
two spans; in the latter case, the MLP takes as input
the concatenation of the representations correspond-
ing to the two spans.

3.2 Span Representation Methods
Given a span s = [i, j] and its corresponding con-
textualized embeddings [ei, · · · , ej], where ek ∈
Rd, a span representation module outputs a fixed-
dimensional span representation sij . Below we
describe the various span representation methods
compared in this work.

Average pooling is a simple average of the contex-
tualized embeddings in the span window:

sij =
1

j − i+ 1

j∑

k=i

ek

Attention pooling or self-attention pooling is a
learned weighted average over the contextualized
token embeddings in the span:

αk = v · ek; ak =
exp(αk)

∑j
`=i exp(α`)

sij =

j∑

k=i

ak · ek

where v is a learned parameter vector. This pool-
ing method is a popular choice for many NLP tasks
(Lee et al., 2017; Lin et al., 2017), and is the one
used by Tenney et al. (2019b).

Max pooling takes the maximum value over time
for each dimension of the contextualized embed-
dings within the span. Max pooling has been fre-
quently used to obtain fixed-dimensional sentence
representations for classification tasks (Collobert
et al., 2011; Hashimoto et al., 2017; Conneau et al.,
2017).

Endpoint is a simple concatenation of the end-
points of the span: sij = [ei; ej]. This is a popular
choice for representing answer spans (Lee et al.,
2016) in extractive question-answering tasks such
as SQuAD (Rajpurkar et al., 2016). Note that in
this case sij ∈ R2d.

Diff-Sum is a variant of endpoint where we concate-
nate the sum and difference of the span endpoints:
sij = [ej + ei; ej − ei]. Diff-sum and its close

variants have been used in parsing and SRL (Stern
et al., 2017; Ouchi et al., 2018). As in endpoint,
sij ∈ R2d.

Coherent is a span representation proposed by
Seo et al. (2019) for indexing phrases in a query-
agnostic manner for question answering. First, the
endpoints of the span are split into four parts:

ei = [e1i ; e
2
i ; e

3
i ; e

4
i]

where e1i , e
2
i ∈ Ra and e3i , e

4
i ∈ Rb, and therefore

2a+ 2b = d. The endpoints are then combined as:

sij = [e1i ; e
2
j ; e

3
i · e4j]

where the last term e3i · e4j is referred to as the co-
herence term; hence the name “coherent” (assigned
by us). In this case, sij ∈ R2a+1 where 2a+ 1 < d
since 2a+ 2b = d.2

4 Experimental Setup

4.1 Implementation details
All input strings are passed through contextual en-
coder models to obtain an embedding for each to-
ken. With frozen encoders the weighted average
of outputs from all layers is used as the token rep-
resentation ek (Tenney et al., 2019b), while for
fine-tuned encoders the last layer output is used un-
less otherwise stated. We investigate four pretrained
models: BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019b), SpanBERT (Joshi et al., 2019a), and
XLNet (Yang et al., 2019). Each has both “base”
and “large” variants, and we experiment with both.
Since some of the models, such as XLNet, only
have cased versions, we use the cased version for
all models. We use the HuggingFace (Wolf et al.,
2019) implementation of the four models, which is
based on PyTorch (Paszke et al., 2019).

Embeddings are first projected down to 256 di-
mensions.3 For each span, a representation method
(one of the methods from Section 3.2) is then ap-
plied to its sequence of projected vectors to obtain
a fixed-length representation for the span. The span
representations are concatenated (if there are more
than one) and fed into a two-layer MLP followed
by a sigmoid output layer. The two-layer MLP is a

2Seo et al. (2019) used a=480 and b=32 for 1024-
dimensional BERT-large embeddings. We use the same pro-
portions for the projected contextualized embeddings.

3For SRL we use separate projection matrices for the two
spans involved in the task, as the two spans may require dif-
ferent types of information to be extracted. For all of the other
tasks, a single projection matrix is used.

168

Task Task Type |L| #Examples (Train / Val. / Test)

Constituent labeling Syntactic 30 1.9M / 255K / 191K
Constituent detection Syntactic 2 3.1M / 426K / 318K
NEL Semantic 18 128K / 20K / 13K
SRL Semantic/Syntactic 66 599K / 83K / 62K
Mention detection Syntactic 2 387K / 49K / 48K
Coreference arc prediction Semantic 2 208K / 27K / 28K

Table 1: Dataset statistics for the six tasks.

stack of a linear layer, a non-linear layer with tanh
activations, layer normalization, dropout (0.3 ze-
roing probability), and a second linear layer. The
hidden dimension of the MLP is 256. Models are
trained by minimizing binary cross-entropy loss
against the set of true labels. Though some tasks
(e.g., SRL) are multi-class classification, we make
predictions for each label independently i.e. binary
classification, which facilitates analysis on individ-
ual labels or label groups. The binary classifica-
tion setting also allows using the micro-averaged
F-score as the evaluation metric across tasks.

In experiments with frozen encoders, we only
learn the encoder layer mixing weights, projection
parameters, and MLP parameters, keeping the en-
coder parameters themselves fixed. For optimiza-
tion we use Adam (Kingma and Ba, 2015) with an
initial learning rate of 5× 10−4 and a batch size of
64.4 The model is evaluated on the validation set
every 1000 steps and the learning rate is reduced by
a factor of 2 if no improvement is seen in the pre-
vious 5 validation evaluations. Training stops if no
improvement is seen for 20 validation evaluations.

In experiments with fine-tuning the encoders, we
focus on only a subset of the frozen-encoder con-
figurations for computational reasons. In particular,
we only experiment with the “base” versions of
BERT, RoBERTa, and SpanBERT.5 All models are
trained using Adam with an initial learning rate of
3× 10−5 and a batch size of 64. Finally, the token
embedding is either a layer-weighted combination
or just the last layer.6

4We found non-trivial gains with this choice of higher learn-
ing rate compared to 1× 10−4 used by Tenney et al. (2019b).

5We omit XLNet due to its relatively poor performance
across tasks in the frozen setting.

6Typically the last layer embeddings perform slightly better
but a few of those training runs failed and we present the layer-
weighted results for those.

4.2 Data
Table 1 shows the dataset statistics of the six tasks
evaluated in this study. For SRL, NEL, corefer-
ence arc prediction and constituent labeling, we
use the annotations in the OntoNotes 5.0 corpus
(Weischedel et al., 2013) and cast the original an-
notations into the edge probing format, following
the same procedure as Tenney et al. (2019b) for
pre-processing.

For the newly proposed constituent detection and
mention detection tasks, we create our own datasets
using the existing annotations and random nega-
tive sampling. For constituent detection, we use
the constituent labeling annotations to get actual
constituents, and for each constituent we sample
a random negative span of the same length. We
ensure that all negative spans are different and that
we don’t sample an actual constituent. We follow a
similar procedure to get mention detection annota-
tions from coreference arc prediction annotations.
To make the mention detection task harder and more
realistic, we sample 5 times more negatives than
actual mentions.

5 Results

5.1 Results without Fine-Tuning
The results across tasks and models are shown
in Figure 2. Overall we find max pooling to
be the most robust and effective choice across
tasks. Boundary-based span representations (i.e.,
ENDPOINT, DIFFSUM, COHERENT) are superior to
entire-span methods (i.e., ATTN, MAX, AVG) on
tasks which are more shallow/syntactic (e.g., con-
stituent labeling and constituent detection), though
max pooling is competitive with the boundary-
based methods.

On the other hand, entire-span representations
are good at semantic tasks like coreference arc pre-
diction. As SRL has both semantic and syntactic
characteristics, COHERENT, MAX, and ATTN show

169

Figure 2: Results with frozen encoders (no fine-tuning) for the 6 different tasks presented as separate heatmap fig-
ures. Each heatmap represents the 48 combinations resulting from 6 span representations and 8 pretrained models.
The bars at the side of the heatmap represent the max value in the row/column which is right below the bar.

similar performance with the other methods fairly
close behind. We do not find large differences be-
tween span representation methods for NEL, which
mainly contains short spans.

Model-wise, large models are usually better than
base models though there exist exceptions (e.g., con-
stituent labeling). RoBERTa shows strong perfor-
mance across tasks. We also find that SpanBERT

170

Figure 3: Results with fine-tuned encoders for four tasks, namely constituent labeling, SRL, mention detection,
and coreference arc prediction, presented as separate heatmaps.

excels for tasks where boundary-based methods
are superior, which may be because it is explic-
itly trained with an objective of predicting tokens
inside a span given the boundary tokens.

Results for each task are summarized below.

Constituent detection/labeling: Boundary-based
representations are better than entire-span ones,
though MAX is close behind. Surprisingly, in these
two tasks, large models are not as good as their
base counterparts (Goldberg (2019) found similar
exceptions for syntactic tasks).

Semantic role labeling: COHERENT is the best
method on this task with MAX and ATTN being very
close behind.

Mention detection and coreference arc predic-
tion: ATTN and MAX perform the best for corefer-
ence arc prediction since they benefit from access
to the entire span and thus to the semantic head of
the span (Lee et al., 2017). For mention detection
the trends are reversed, except for MAX, with the
boundary-based methods doing quite well. This is
not surprising since the mention detection task is
somewhat close to constituent tasks. Surprisingly,
ATTN shows high variance across models and per-
forms worse than even AVG. Since we initialize

the attention parameter vector v to all zeroes, this
result means that not learning the attention vector is
surprisingly better than learning them.7 Preliminary
investigation of the learned attention weights did
not provide any clues.

Mention detection and coreference arc prediction
together complete the pipeline for coreference reso-
lution. The preference for different forms of span
representations between the two (except for MAX)
suggests that different span representations can be
considered for different stages of the coreference
resolution task. Interestingly, one of the best per-
forming end-to-end coreference models (Lee et al.,
2017) uses a concatenation of a boundary-based
span representation, ENDPOINT, and ATTN.

Some of our observations may be confounded
with training set sizes, which vary from coreference
arc prediction on the small end (208K) up to con-
stituent tasks on the largest end (1.9M), with SRL
(599K) in the middle of the range.

5.2 Results with Fine-Tuning

State-of-the-art models almost always fine-tune the
pretrained encoders. However, the training is quite

7Stopping the gradient for the attention vector indeed per-
formed similarly to AVG.

171

Figure 4: Visualization of layerwise weights learned for all span representation methods for constituent labeling,
SRL, and coreference arc prediction for the RoBERTa-large model.

Figure 5: Visualization of layerwise weights learned for the coreference arc prediction task for three span represen-
tation methods with {BERT, RoBERTa, SpanBERT, XLNet}-large models. While BERT, SpanBERT, and XLNet
have peaked weight distributions, RoBERTa’s weights are more spread out. Oddly enough XLNet chooses to place
the most weight on the embedding layer for ATTN and MAX (the two best span representations for XLNet-large).

computationally expensive; hence, we perform the
span representation comparison for a small set of
the total configurations whose results are shown
in Figure 3. In general, fine-tuning improves the
results for all span representation methods across
tasks, with the performance of different span repre-
sentation methods now more tightly clustered. This
is best illustrated by the constituent labeling task
where without fine-tuning AVG trails by 10+ F-score
with respect to the best span representation but less
than 0.5 F-score with fine-tuning.

6 Analysis

In this section we analyze the impact of span repre-
sentation method with fixed pretrained encoders.

6.1 Layerwise Weight Analysis
Figures 4 and 5 visualize learned layer weights for
different task, span representation, and pretrained
encoder combinations. Within a model and task,
we generally found that the layer weights were
fairly consistent across span representation meth-
ods. Overall, we find similar trends to prior work in
analyzing layer weights for downstream NLP tasks,
namely that constituency parsing has higher weight
for lower layers and coreference has most weight

on higher layers, with SRL in between (Liu et al.,
2019a; Tenney et al., 2019a). For ablation analysis
of layer weights, whether to learn them or not, see
Appendix A.1.

6.2 Label-Specific Analysis of Span Groups

We seek to determine whether boundary-based span
representation methods (COHERENT, DIFFSUM, and
ENDPOINT) differ systematically from methods that
consider the entire span (ATTN, MAX, and AVG).
We pooled predictions from the three methods in
each group for RoBERTa-large and calculated the
recall for particular labels, for two tasks: SRL and
constituent labeling (analysis for NEL appears in
Appendix A.2). We found the labels with the largest
differences in recall between the two groups, and
discuss our findings below.

SRL. Table 2 shows the argument labels with the
largest differences in recall (∆R) between the two
groups, limiting our analysis to the 20 most fre-
quent argument labels. Labels with positive ∆R are
handled better by boundary-based methods. These
tend to be arguments that can be identified based
on particular words, often function words, at the
boundaries. For example, ARGM-DIS is found

172

Argument ∆R Notes Examples

C-ARG1
(continuous
argument)

10.85 often starts with to, similar to
xcomp in universal dependencies

“were granted the right earlier this year to ship sugar”, “brought
more money into a city than it took out”, “Food prices are
expected to be unchanged”

ARGM-DIS
(discourse)

3.24 mostly single-word discourse mod-
ifiers like and or but

“In addition , the government is figuring”, “But eluding”, “And
the USIA said”, “of course , there ’s that word”

ARGM-MNR
(manner)

2.03 mostly adverbs and prepositional
phrases

“...get married in a tuxedo”, “relatively respected”, “Moving
rapidly through school”, “...do n’t leave home without the
American Express card”

ARG3
(starting point,
benefactive,
attribute)

-4.28 multiple functions depending on
predicate, and thus a variety of
boundary words

“And what I had mentioned about my mother bugging me
was...”, “You should feel comfortable staying there”, “...he be-
lieves that it can bring the market back up after a plunge”, “Bi-
ologists mixed a mold element in the cells of plants with pearl
powder to produce a granulated drug”

ARGM-DIR
(direction)

-5.20 typically a word or short phrase,
mostly adverbs, prepositional
phrases, particles, and adjectives

“newspapers turning to color on their pages”, “bond prices rapidly
turned south”, “major brokerage firms rushed out ads”, “takes
the dispute to the Supreme Court”, “we have to get out of bed”,
“toss the chalk back and forth”

ARGM-EXT
(extent)

-8.14 often a short phrase like more, very
much, a lot, etc.; limited semantics,
range of surface forms

“you ’re critical to yourself too much”, “of freezing , at least
partially”, “increase of 32 %”, “life has changed a lot”, “Thank
you very much”

Table 2: Analysis of argument labels for semantic role labeling. ∆R = argument recall% with boundary-based span
representation methods minus recall% with entire-span methods. In the examples, predicates are underlined and
arguments of the given type are shown in boldface.

Label ∆R Examples

SBAR 6.1 “that are missing”, “who owned the land”
PRN 4.6 “, she says ,”, “, it turns out ,”, “(file photo

)”, “(hey , it ’s possible)”
ADJP 3.3 “liable”, “available to anyone”, “more gen-

erous”, “satisfied with where they work”,
“at least somewhat interesting”

PP 2.7 “in 1966”, “within a community”

SBARQ -6.1 “What can we do ?”, “So what should be
done .”, “and what is money for”, “how
shall I say”

SQ -6.5 “Did you see ?”, “will I do now”, “do you
make of”, “You still building”

FRAG -6.5 “Or something .”, “well below 1988 activ-
ity”, “As for Mr. Papandreou ?”

SINV -15.7 “should the Air Force order the craft”, “say
Mr. Dinkins ’s managers”, “notes Huang
frankly”, “invest they will”

Table 3: Analysis of labels for constituent labeling.
∆R = label recall% with ENDPOINT minus recall%
with MAX. We restrict this analysis to labels that appear
at least 100 times in our development set.

mostly with single-word modifiers in this dataset
(like and and but). Arguments that are handled
better by entire-span methods are more diverse in
terms of their boundary words. ARGM-EXT is used
for arguments with relatively limited semantics (as
shown in the examples) but a variety of surface
realizations.

Constituent labeling. Table 3 shows a similar
analysis for constituent labeling, though in this case
we compare only a single method from each family:
ENDPOINT and MAX. We do this because MAX is
comparable in performance to the boundary meth-
ods while ATTN and AVG are significantly worse.
We choose ENDPOINT as our single representative
of the boundary methods in order to compare only
two methods, though we found the same trends for
others in its group.

ENDPOINT has higher recall on several labels,
shown in the top part of the table. There is a 6%
difference for SBAR, which is a clause introduced
by a (possibly empty) subordinating conjunction.
About 25% of SBAR constituents begin with that,
and many others start with some other very common
subordinating conjunction, making SBAR easier
to find for methods that focus on boundary words.
Parentheticals (PRN) frequently begin and end with
commas or parentheses. ADJPs typically begin or
end with an adjective and PPs nearly always begin
with prepositions.

The lower part of Table 3 shows labels where
MAX has higher recall than ENDPOINT. The largest
difference is in SINV, which is an “inverted” declar-
ative sentence, that is, a sentence in which the sub-
ject follows the conjugated verb. These often look
like VPs based on boundary words but are more di-

173

verse syntactically; a few short examples are shown
in the table. The other labels also show syntactic
diversity. FRAG (fragment) has many realizations
that vary widely in terms of their syntax. while
SBARQ and SQ often start with wh-words and end
in question marks, they show significant variation.

7 Related Work

Many of the span representations that we consider
here were proposed previously for specific tasks,
such as the attention-weighted pooling of Lee et al.
(2017) for coreference resolution; the endpoint-
based representation of Lee et al. (2016) and the “co-
herent” endpoint-based representation of Seo et al.
(2019) for question answering; and combinations
of differences and sums of endpoint representations
for parsing and semantic role labeling (Stern et al.,
2017; Ouchi et al., 2018). These are described in
more detail in Section 3.2.

Other recent work has considered pooling ap-
proaches such as the difference between endpoint
representations (Wang and Chang, 2016; Cross and
Huang, 2016) or a concatenation of endpoint and
attention-based representations (Li et al., 2016).
Other approaches concatenate additional special-
ized feature vectors, such as the span length or po-
sition information (Lee et al., 2017; He et al., 2018;
Kuribayashi et al., 2019). Some work has also con-
sidered explicitly composing span representations
via syntactic parse trees, such as recursive neural
networks (Li et al., 2014), and some unsupervised
parsing models produce span representations as a
byproduct of training (Drozdov et al., 2019; Shi
et al., 2019).

At the same time, there has been significant effort
devoted to the related problem of learning represen-
tations for sentences or even longer texts (Kalch-
brenner et al., 2014; Iyyer et al., 2015; Kiros et al.,
2015; Wieting et al., 2016; Conneau et al., 2017;
Shen et al., 2018, inter alia). Much of this work
focuses on pooling over word representations, often
finding that simple pooling operations like averag-
ing perform surprisingly well (Wieting et al., 2016;
Shen et al., 2018). Shen et al. (2018) did a similar
empirical study to ours in spirit, comparing a vari-
ety of pooling models for sentence representations
across tasks.

In this work we are mainly focusing on the mod-
els for computing span representations given pre-
trained token embeddings, but we also include a
variety of pretrained contextual embeddings. One

in particular, SpanBERT (Joshi et al., 2019a), was
designed to enable improved span representations.
While recent work has compared across pretrained
contextual embeddings for representing spans (Ten-
ney et al., 2019b), to our knowledge there has been
no systematic comparison of methods for combin-
ing these contextual embeddings into span repre-
sentations across a variety of tasks.

8 Conclusion

We systematically compared multiple span repre-
sentation methods, combined with various base em-
bedding models, on various tasks. Our analysis in-
cludes two new tasks that we propose to tease apart
different aspects of span representations. When
using fixed, pretrained encoders, we find that, al-
though max pooling is a fairly reliable represen-
tation across tasks, the optimal span representa-
tion varies with respect to the syntactic and seman-
tic nature of the task. Finally, fine-tuning reduces
the impact of span representation choice on perfor-
mance, though it involves significant computational
expense. Our results are likely to be most useful
for those without the computational capabilities to
perform fine-tuning of large pretrained encoders, in
which case there are significant differences among
methods.

References
Ronan Collobert, Jason Weston, Léon Bottou, Michael

Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. JMLR, 12:2493–2537.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
Learning of Universal Sentence Representations
from Natural Language Inference Data. In EMNLP.

James Cross and Liang Huang. 2016. Span-Based Con-
stituency Parsing with a Structure-Label System and
Provably Optimal Dynamic Oracles. In EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL-HLT.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
Latent Tree Induction with Deep Inside-Outside Re-
cursive Auto-Encoders. In NAACL-HLT.

Yoav Goldberg. 2019. Assessing BERT’s Syntactic
Abilities. arXiv, abs/1901.05287.

174

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A Joint Many-
Task Model: Growing a Neural Network for Multi-
ple NLP Tasks. In EMNLP.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly Predicting Predicates and Ar-
guments in Neural Semantic Role Labeling. In ACL.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In ACL-IJCNLP.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2019a. Span-
BERT: Improving Pre-training by Representing and
Predicting Spans. TACL.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019b. BERT for Coreference Resolu-
tion: Baselines and Analysis. In EMNLP-IJCNLP.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A Convolutional Neural Network for
Modelling Sentences. In ACL.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
NeurIPS.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Mul-
tilingual Constituency Parsing with Self-Attention
and Pre-Training. In ACL.

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In ACL.

Tatsuki Kuribayashi, Hiroki Ouchi, Naoya Inoue, Paul
Reisert, Toshinori Miyoshi, Jun Suzuki, and Kentaro
Inui. 2019. An Empirical Study of Span Representa-
tions in Argumentation Structure Parsing. In ACL.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end Neural Coreference Reso-
lution. In EMNLP.

Kenton Lee, Tom Kwiatkowski, Ankur P. Parikh, and
Dipanjan Das. 2016. Learning Recurrent Span
Representations for Extractive Question Answering.
CoRR, abs/1611.01436.

Jiwei Li, Rumeng Li, and Eduard Hovy. 2014. Re-
cursive Deep Models for Discourse Parsing. In
EMNLP.

Qi Li, Tianshi Li, and Baobao Chang. 2016. Discourse
Parsing with Attention-based Hierarchical Neural
Networks. In EMNLP.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In ICLR.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic Knowledge and Transferability of Contextual
Representations. In NAACL-HLT.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
RoBERTa:A Robustly Optimized BERT Pretraining
Approach. arXiv preprint arXiv:1907.11692.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto.
2018. A Span Selection Model for Semantic Role
Labeling. In EMNLP.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In NeurIPS.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In EMNLP and
CoNLL - Shared Task.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. In EMNLP.

Minjoon Seo, Jinhyuk Lee, Tom Kwiatkowski, Ankur
Parikh, Ali Farhadi, and Hannaneh Hajishirzi. 2019.
Real-Time Open-Domain Question Answering with
Dense-Sparse Phrase Index. In ACL.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin
Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin. 2018.
Baseline Needs More Love: On Simple Word-
Embedding-Based Models and Associated Pooling
Mechanisms. In ACL.

Haoyue Shi, Jiayuan Mao, Kevin Gimpel, and Karen
Livescu. 2019. Visually grounded neural syntax ac-
quisition. In ACL.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A Minimal Span-Based Neural Constituency Parser.
In ACL.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT Rediscovers the Classical NLP Pipeline. In
ACL.

175

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019b. What do you
learn from context? Probing for sentence structure
in contextualized word representations. In ICLR.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In NAACL.

Wenhui Wang and Baobao Chang. 2016. Graph-based
Dependency Parsing with Bidirectional LSTM. In
ACL.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, and
Michelle Franchini et al. 2013. OntoNotes release
5.0 LDC2013T19. Linguistic Data Consortium.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards Universal Paraphrastic Sen-
tence Embeddings. In ICLR.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. HuggingFace’s Trans-
formers: State-of-the-art Natural Language Process-
ing. arXiv, abs/1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In NeurIPS.

A Appendix

A.1 Mixing Weights for Layers

Model AVG ATT MAX EP DS COH

BERT-large 90.6 92 91.4 90.5 91.1 90.5
-mix wt 90.3 91.3 91.5 90.4 90.4 90.3

RoBERTa-large 91.5 93 92.9 90.7 91.0 91.4
-mix wt 91.0 92.7 92.6 90.9 90.7 90.6

SpanBERT-large 91.6 92.6 92.4 91.1 91.2 91.3
-mix wt 90.4 91.4 91.5 90.6 90.3 90.2

XLNet-large 89.8 90.9 90.8 89.7 90.0 90.4
-mix wt 89.4 90.7 90.8 89.5 90.0 90.7

Table 4: Analysis of importance of learning mixing
weights for combination of different models and span
representations for the coreference arc prediction task.

In the table above we analyze the effect of learn-
ing the layerwise mixing weights vs simple av-
eraging over layers in context of the coreference
arc prediction task. ATTN-based models suffer the
biggest drop with a drop of 0.6% absolute on av-
erage. Among pretrained contextual embedding

models, SpanBERT-large is hurt the most with a
drop of 1% absolute on average. Surprisingly, XL-
Net drops by only 0.1% on average even though its
attention plots looked quite peaky for some of the
span representations.

A.2 Label-Specific Analysis of Span Groups
for NEL

Label ∆R Examples

ORDINAL 1.2 “first”, “second”, “First”, “6th”, “ninth”
CARDINAL 0.3 “two”, “10”, “Dozens”, “at least 37”

TIME -2.3 “seven o’clock”, “two hours”, “about
ten”, “eight fifty in the morning”

LAW -2.9 “Paragraph 14 of Article 19”, “the
Geneva Convention”, “Dru ’s Law”

LOC -3.2 “the Sierra Nevada Mountains”, “Asia”,
“Mai Po Marshes”

WORK
OF ART

-6.0 “The End of the Day”, “Carry On Trad-
ing”, “News Night Tonight”

Table 5: Analysis of labels for NEL. ∆R = label recall%
with boundary-based span representation methods mi-
nus recall% with entire-span methods.

NEL. Table 5 shows a similar analysis for entity
labeling as done in Section 6.2. The labels with
higher recall under the boundary-based methods
are limited to ORDINAL and CARDINAL num-
bers, which tend to be very short and highly regular
(nearly all ORDINAL entities are one token and ap-
proximately half are first). The entire-span methods
achieve much higher recall for the WORK OF ART
label, and also for LOC, LAW, and TIME. These
entities tend to be multi-word phrases with a variety
of syntactic forms and without consistent boundary
words.

It may be surprising that ORDINAL is better de-
tected by the boundary methods, since nearly all
ORDINAL entities are a single token, and the entire-
span methods reduce to a simple form for single
tokens. However, this may show that the entire-
span methods are being trained to abstract over the
contents of the span, thereby losing some of the sur-
face information. The boundary-based methods, by
contrast, devote particular parts of the span repre-
sentation to the boundary position representations,
thereby providing a more direct/explicit connection
between those boundary words and the downstream
classifier.

176

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 177–184
July 9, 2020. c©2020 Association for Computational Linguistics

Enhancing Transformer with Sememe Knowledge

Yuhui Zhang1∗ Chenghao Yang2∗ Zhengping Zhou1∗ Zhiyuan Liu3

1Stanford University 2Columbia University 3Tsinghua University
{yuhuiz, zpzhou}@stanford.edu chenghao.yang@columbia.edu

liuzy@tsinghua.edu.cn

Abstract

While large-scale pretraining has achieved
great success in many NLP tasks, it has not
been fully studied whether external linguistic
knowledge can improve data-driven models.
In this work, we introduce sememe knowledge
into Transformer and propose three sememe-
enhanced Transformer models. Sememes, by
linguistic definition, are the minimum seman-
tic units of language, which can well repre-
sent implicit semantic meanings behind words.
Our experiments demonstrate that introduc-
ing sememe knowledge into Transformer can
consistently improve language modeling and
downstream tasks. The adversarial test further
demonstrates that sememe knowledge can sub-
stantially improve model robustness.1

1 Introduction

Self-supervised pretraining has significantly im-
proved the performance of Transformer (Vaswani
et al., 2017) on a wide range of NLP tasks (Rad-
ford et al., 2018; Devlin et al., 2019; Yang et al.,
2019). While no explicit linguistic rules and con-
cepts are introduced, models can achieve remark-
able performances with extensive training signals
provided by large-scale data. Nonetheless, recent
works still demonstrate that external syntactic in-
formation can improve various NLP tasks, includ-
ing machine translation (Sennrich and Haddow,
2016; Aharoni and Goldberg, 2017; Bastings et al.,
2017) and semantic role labeling (Marcheggiani
and Titov, 2017; Strubell et al., 2018).

Can external semantic information benefit
the widely-adopted pretraining and fine-tuning

∗ Indicates equal contribution. Work done at Tsinghua
University. Y.Z. and C.Y. designed and evaluated the model ar-
chitecture and performed the adversarial test. Z.Z. performed
the data ablation study and case study. Z.L. supervised the
work and is the corresponding author.

1Codes are available at https://github.com/
yuhui-zh15/SememeTransformer/.

framework as well? In response, we explore
incorporating sememe knowledge into Trans-
former (Vaswani et al., 2017). Sememes are the
minimum semantic units of meaning for natural
language, as some linguists assume that a limited
closed set of sememes can be composed to repre-
sent the semantic meaning of each word (Bloom-
field, 1926). In this work, we adopt a high-
quality sememe-based lexical knowledge base,
HowNet (Dong and Dong, 2006; Qi et al., 2019),
which can provide powerful support for models
to understand Chinese word semantics (Gu et al.,
2018; Niu et al., 2017). Some examples of sememe
annotations can be found in Figure 1.

We propose to combine two simple methods
to incorporate sememe knowledge into our frame-
work: 1) based on the linguistic assumption, we
add aggregated sememe embeddings to each word
embedding to enhance its semantic representation;
2) we use sememe prediction as an auxiliary task
to help the model gain deeper understandings of
word semantics. We verify the effectiveness of
our methods on several Chinese NLP tasks that
are closely related to word-level and sentence-level
semantics. Following general settings of pretrain-
ing and fine-tuning, our experiments show consis-
tent improvements on all the tasks with sememe-
enhanced Transformer. We also find that the
sememe-enhanced model can achieve the same
performance with less fine-tuning data, which is
desirable as data annotation processes are always
time-consuming and expensive.

We further demonstrate that, by incorporating
sememe knowledge using our methods, model ro-
bustness can be significantly improved towards ad-
versarial examples, which are generated by replac-
ing nouns, adjectives and adverbs with their syn-
onyms in our experiment. Our case studies further
interpret why sememe knowledge can help model
defend adversarial attacks.

177

Masked
Multi
Self

Attention

Sememe
Prediction

Language
Modeling

Supervised
Learning

水域 ██████
water area
抢劫 ████
rob
水果 █
fruit
海盗 ██████
pirate
罪犯 ███
criminal
苹果 █
apple
新闻 ██████
news
财经 ███
finance
娱乐 █
entertain

S
P

Loss
LM

Loss

S
L

Loss

+
large 大

vast 泛

 ship 船

 transport 运送

human 人

suffer 遭受

thing 事情

country 国家

place 地方

Africa 非洲

government 政

proper noun 专

大型
large-scale

客船
passenger ship

遭遇
encounter

索马里
Somali

Layer
Norm

Feed
Forward

Layer
Norm

6x
predict sememes of

next word

predict next word

downstream task

mean

mean

mean

mean
Transformer

+ +Position
Embedding

+

+

+

+

Figure 1: Our proposed model architecture. For each word, we enhance word representation by adding aggregated
sememe embeddings. We use multitask learning with three tasks: sememe prediction (predicting sememes of
next word), language modeling (predicting next word) and supervised learning (only for downstream tasks).

2 Methodology

In this section, we propose two simple methods
to incorporate sememe knowledge into our frame-
work: aggregated sememe embeddings and se-
meme prediction auxiliary task.

2.1 Transformer
Transformer was originally proposed by Vaswani
et al. (2017) as a machine translation architec-
ture. We use a multi-layer Transformer architec-
ture similar to the setup in Radford et al. (2018),
which has been verified effectiveness on multi-
ple NLP tasks. At the input layer, a sequence
of words (w1, w2, ..., wT) are embedded as H0 =
(w1,w2, ...,wT) ∈ RT×D, where D indicates the
hidden size of the model. A positional embed-
ding is then added to inject position information
into Transformer. After L residual multi-head
self-attention layers with feed-forward connections,
we obtain the contextualized sequence embedding
HL = (hL

1 ,h
L
2 , ...,h

L
T) ∈ RT×D.

2.2 Aggregated Sememe Embeddings
Enhancing word representation is a common ap-
proach to introduce linguistic knowledge into neu-
ral networks (Sennrich and Haddow, 2016; Niu
et al., 2017; Bojanowski et al., 2017). For each
word w, Transformer-SE considers all of its
sememes and enhances word representation by
adding its average sememe embeddings to word
embedding. Formally, we have:

w̃ =
1

nw

∑

s∈S(w)

xs +w

where S(w) refers to the sememe set associated
with word w with the size nw, xs refers to the

embedding of the sememe s, w refers to the em-
bedding of word w and w̃ refers to the sememe-
enhanced word embedding. Sememe-enhanced rep-
resentation w̃ is directly fed into Transformer.

The Transformer-SE model complies with the
linguistic assumption that implicit word semantics
can be composed of a limited set of sememes. Also,
as sememe embeddings are shared among words,
latent semantic correlations between words can be
well encoded. While our method to incorporate
sememe knowledge is rather straightforward, our
main purpose is to verify the effectiveness of se-
meme knowledge. We leave more potential meth-
ods to enrich word-level semantics with sememe
knowledge such as tree LSTM (Tai et al., 2015)
and graph convolutional network (Bastings et al.,
2017) in future work.

2.3 Sememe Prediction Auxiliary Task

Sememe prediction task aims to predict sememes
for the next word and can be formulated as a multi-
label classification task. Inspired by the multitask
learning (Caruana, 1997; Collobert et al., 2011),
we add the sememe prediction task in addition to
the language modeling task for Transformer-SP.
This task challenges the model’s capability to in-
corporate sememe knowledge, and can be viewed
as a complementary task for language modeling, as
predicting the sememes of the next word is closely
related to understanding semantics and it is often
more learnable than directly modeling the proba-
bility of the next word. 2

At each time step, given current contextualized

2For example, if a sentence starts with “How to cook”, it is
much easier to predict the next word is a kind of “food” than
any specified word. It is worth noting that language modeling
has about 20 times larger vocabulary size.

178

Task Language
Modeling

Headline
Categorization

Sentiment
Classification

Semantic
Matching

Sememe
Prediction

Metric PPL ACC (%) ACC (%) ACC (%) MAP (%)

Transformer 49.01 71.5 52.7 81.2 40.1
Transformer-SE 47.37 72.6 53.7 82.6 52.1
Transformer-SP 49.14 72.3 53.0 81.8 40.3
Transformer-SEP 46.53 72.6 54.9 83.3 52.8

+ Sememe2Char 48.90 72.3 52.2 81.2 -

Table 1: Experimental results on different tasks. Transformer, Transformer-SE, Transformer-SP and
Transformer-SEP refers to the vanilla Transformer model (base), Transformer with aggregated sememe embed-
dings, Transformer with sememe prediction auxiliary task and the hybrid model, respectively. We also compare
sememe decomposition to character decomposition for our best model and demonstrate advantages of our methods.

representation hL from Transformer, we estimate
the probability of sememe s associated with next
word w as p(w, s) = σ(whL + b), where w and
b are the weight and bias associated with sememe
s, σ is the sigmoid activation function. We then
calculate the binary cross-entropy loss of sememe
prediction LSP as:

LSP = − 1

T

T∑

t=1

1

n

∑

s∈S
g(wt, s) log(p(wt, s))

+(1− g(wt, s)) log(1− p(wt, s))

where S refers to the overall sememe set with
the size n, g(w, s) is a binary variable indicating
whether sememe s is associated with word w. Fi-
nally, we formulate the loss as:

LPRE = LLM + LSP
L = LSL + ρLPRE

where LLM and LSL are the conventional neg-
ative log-likelihood language modeling loss and
downstream supervised learning loss. LPRE is the
loss optimized during pretraining, while L is the
loss optimized during supervised training for down-
stream tasks, ρ serves as a coefficient to control the
strength of LPRE during supervised learning.

2.4 Hybrid Model
Transformer-SE and Transformer-SP are designed
based on different ideas. Transformer-SE can well
inform sememe knowledge to all self-attention lay-
ers, while Transformer-SP utilizes additional train-
ing signals through the back-propagation process.
To combine the advantages of these models, we
propose a hybrid model named Transformer-SEP.
Transformer-SEP incorporates sememe knowledge

into the input layer by adding aggregated sememe
embeddings and performs the sememe prediction
auxiliary task in the output layer.

3 Experiments

We experiment across a diverse set of five bench-
mark NLP tasks and demonstrate the effectiveness
of introducing sememe knowledge.

3.1 Experimental Setup
We use 6-layer 8-head Transformer with the hidden
size of 768 and feedforward size of 2048. We set
both word embedding and sememe embedding size
as 768. We use batch size of 32 and set dropout rate
as 0.2 to alleviate overfitting. The vocabulary size
is 39,770 and the total number of sememes is 2,100.
We truncate the sequence length to 128 for pretrain-
ing and supervised learning. When performing
supervised training, we set the coefficient ρ to be
0.5. Embeddings are tied for the input layer and
output layer to speed up convergence. We clip gra-
dients less than 2 and use Adam optimizer (Kingma
and Ba, 2014) with 0.001 learning rate and 8000
warmup steps. For downstream tasks, we use the
best pretrained model from language modeling to
initialize.

3.2 Tasks and Datasets
Language Modeling Language modeling on a
large corpus provides additional training signals for
supervised downstream tasks. We use perplexity
(PPL) to measure the performance of the language
model. Lower PPL indicates better performance.
We pretrain the language model on the People’s
Daily corpus, which contains ∼ 15M words.

Headline Categorization Automatic and accu-
rate news categorization is essential for recommen-

179

Headline Categorization Sentiment Classification Semantic Matching

Figure 2: Performance of Transformer and Transformer-SEP with different amounts of training data. More sig-
nificant improvements can be achieved on tasks that depend more on word-level semantics. X-axis: Percent of
supervised training data. Y-axis: Accuracy. The error bars indicate the 95% confidence interval.

dation systems. We use NLPCC 2017 news head-
line categorization dataset (Qiu et al., 2017), which
contains 156,000 news for training and 36,000
news for validation, divided into 18 categories in-
cluding finance, society, game, etc. We use accu-
racy (ACC) to measure the performance.

Sentiment Classification Sentiment classifica-
tion is a useful task for emoticon recommendation,
depression detection, etc. We use NLPCC 2013
Weibo sentiment detection dataset and conduct ex-
periments on sentence-level sentiment classifica-
tion. The dataset includes 7 different sentiment
genres. We remove sentences without any senti-
ment and resplit the data to 8,225 / 997 / 1,020 for
training, validation, test, respectively.

Semantic Matching Semantic matching is fun-
damental for question answering, which aims to
match the input question to similar questions in
an existing database. We use LCQMC (Liu et al.,
2018) dataset for this task, which contains 238,766 /
8,802 / 12,500 training, validation, test data, respec-
tively. For each pair of questions, we concatenate
them with a special token for classification.

Sememe Prediction Predicting sememes for
given words by its definitions is important for the
HowNet extension (Xie et al., 2017). The defini-
tions are extracted from the Contemporary Chinese
Dictionary and the sememes of target words are
masked for fair comparison. We create a dataset
containing 41,081 / 5,135 / 5,136 word-definition
pairs for training, validation and test.

3.3 Overall Performance

From Table 1, we observe that simply adding se-
meme embedding (i.e., Transformer-SE) can lead
to significant improvements over all tasks. These

tasks challenge models on the capability of model-
ing word-level semantics and sentence-level seman-
tics, which demonstrates that sememe knowledge
can provide beneficial semantic information for
Transformer. The improvement of Transformer-SP
is rather less, which may due to the difficulty of
predicting new knowledge without previous knowl-
edge. Transformer-SEP achieves further improve-
ments over Transformer-SE. The additional im-
provement can be interpreted as combining the
advantages of these two models.

As characters provide strong semantics for Chi-
nese (Chen et al., 2015), we also compare sememe
decomposition with character decomposition (Se-
meme2Char) for our best model (i.e., with aggre-
gated character embedding and character prediction
auxiliary task). From Table 1, we observe clear per-
formance drops over all tasks, which demonstrates
that decomposing word into sememes are much
more effective.

3.4 Data Ablation Study

We further perform data ablation study and observe
overall consistent improvements for downstream
tasks over different amounts of training data, indi-
cating that incorporating external sememe knowl-
edge could benefit model robustness when faced
with limited training data (Figure 2). It is also
worth noting that, when training data is limited,
the more a task depends on word-level semantics
(e.g., headline categorization > sentiment classifi-
cation > semantic matching3), the larger improve-
ment can be achieved by incorporating sememe
knowledge. We hypothesize this is due to the in-
creased unseen words in the test set when faced

3For instance, the word football strongly indicates sport
for headline categorization, while what’s football? 6= is it a
football? for semantic matching.

180

Replace Semantic Matching Sentiment Classification Headline Categorization
#Count Base Ours #Count Base Ours #Count Base Ours

- 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0
Noun. 30,858 18.0 15.4(-14%) 2,313 14.1 11.8(-16%) 168,516 14.8 13.4(-10%)
Adj. 6,498 16.7 14.8(-11%) 1,143 20.4 16.9(-17%) 54,054 9.4 9.5(+1%)
Adv. 3,306 16.1 14.1(-12%) 1,803 14.0 12.3(-12%) 65,136 8.5 8.0(-6%)
ALL 40,662 17.6 15.2(-14%) 5,259 15.4 13.1(-15%) 287,706 12.4 11.4(-8%)

Table 2: Adversarial test for the base model and our best model (i.e., Transformer v.s. Transformer-SEP). We
generate adversarial examples by replacing nouns, adjectives, and adverbs for cases that both models can predict
correctly. We report error rate (lower the better) categorized by part-of-speech and the number of generated
adversarial examples.

with less training data. As semantically similar
words would share similar sememes, the sememe-
informed model would better understand semantics
and outperform the baseline by a large margin.

3.5 Adversarial Test and Case Study
Recent research has demonstrated that neural
networks are vulnerable to adversarial exam-
ples (Goodfellow et al., 2015; Jia and Liang, 2017;
Alzantot et al., 2018). To evaluate the robustness of
our models, we generate adversarial examples by
replacing similar nouns, adjectives and adverbs for
the cases that both Transformer and Transformer-
SEP can predict correctly. Intuitively, these words
are generally more informative for prediction and
models are more likely to overfit such words.

Specifically, we compute the word similarity
based on the novel Cilin metric (Tian and Zhao,
2010) and we use THULAC (Sun et al., 2016) for
part-of-speech (POS) tagging. For the semantic
matching task, we only replace words that occur in
both sentences to ensure semantic consistency.

奸奸奸商商商（（（骗骗骗子子子）））如何有工作牌在行李大厅里明目张
胆行骗？

How do the profiteers (cheaters) have staff cards and
blatantly cheat in the baggage hall?

有有有罪罪罪 guilty 人人人 human 欺欺欺骗骗骗 deceive 商商商业业业 commerce

有有有罪罪罪 guilty 人人人 human 骗骗骗 cheat

Table 3: Case study for the adversarial test. The orig-
inal word with its sememes is colored in blue, while
the replaced word with its sememes is colored in red.

We report the adversarial test error rate cate-
gorized by POS in Table 2. Sememe-enhanced
Transformer-SEP achieves consistent improvement
over the vanilla Transformer. An interesting find-

ing is that, in headline categorization and semantic
matching, the largest performance drops are ob-
served by replacing nouns while intuitively sen-
timent classification should be more sensitive to
adjectives.

We further perform the case study to get a bet-
ter interpretation of why sememe knowledge can
improve model robustness to adversarial attacks.
We show an example that Transformer-SEP can
predict correctly but get wrong for Transformer in
Table 3. As word “cheater” and “profiteer” share
the same sememes “guilty” and “human” and simi-
lar sememes “deceive” and “cheat”, this sememe
knowledge can propagate through all self-attention
layers, thus it is easy to interpret why sememe
knowledge can enhance word representation and
defend such word-replacement attack. More exam-
ples can be found in the Appendix.

4 Conclusion

In this work, we introduce sememe knowledge into
Transformer and verify the effectiveness of external
semantic knowledge for data-driven models. We
further demonstrate the robustness of our methods
via data ablation study and adversarial test. For
future work, we would like to explore more ways
to leverage semantic knowledge and generate dif-
ferent adversarial examples for evaluation.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for their many insightful comments. This
work is (jointly or partly) funded by the Natural Sci-
ence Foundation of China (NSFC) and the German
Research Foundation (DFG) in Project Crossmodal
Learning, NSFC 61621136008 / DFG TRR-169.

181

References
Roee Aharoni and Yoav Goldberg. 2017. Towards

string-to-tree neural machine translation. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 132–140.

Moustafa Alzantot, Yash Sharma Sharma, Ahmed El-
gohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei
Chang. 2018. Generating natural language adver-
sarial examples. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1957–1967.

Leonard Bloomfield. 1926. A set of postulates for the
science of language. Language, 2(3).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huanbo Luan. 2015. Joint learning of charac-
ter and word embeddings. In Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2461–
2505.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Zhendong Dong and Qiang Dong. 2006. Hownet and
the computation of meaning (with Cd-rom). World
Scientific.

Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-
ing Representations.

Yihong Gu, Jun Yan, Hao Zhu, Zhiyuan Liu, Ruobing
Xie, Maosong Sun, Fen Lin, and Leyu Lin. 2018.
Language modeling with sparse product of sememe
experts. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing,
pages 4642–4651.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Xin Liu, Qingcai Chen, Chong Deng, Huajun Zeng,
Jing Chen, Dongfang Li, and Buzhou Tang. 2018.
Lcqmc: A large-scale chinese question matching
corpus. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1952–1962.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515.

Yilin Niu, Ruobing Xie, Zhiyuan Liu, and Maosong
Sun. 2017. Improved word representation learning
with sememes. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
2049–2058.

Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Qiang
Dong, Maosong Sun, and Zhendong Dong. 2019.
Openhownet: An open sememe-based lexical knowl-
edge base. arXiv preprint arXiv:1901.09957.

Xipeng Qiu, Jingjing Gong, and Xuanjing Huang. 2017.
Overview of the nlpcc 2017 shared task: Chinese
news headline categorization. In National CCF Con-
ference on Natural Language Processing and Chi-
nese Computing, pages 948–953. Springer.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language understand-
ing paper. pdf.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation: Volume 1, Research Papers, pages 83–
91.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5027–5038.

182

Maosong Sun, Xinxiong Chen, Kaixu Zhang, Zhipeng
Guo, and Zhiyuan Liu. 2016. Thulac: An efficient
lexical analyzer for chinese. Technical report, Tech-
nical Report. Technical Report.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566.

Jiu-le Tian and Wei Zhao. 2010. Words similarity al-
gorithm based on tongyici cilin in semantic web
adaptive learning system. Journal of Jilin Univer-
sity(Information Science Edition), 28(6):602–608.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Ruobing Xie, Xingchi Yuan, Zhiyuan Liu, and
Maosong Sun. 2017. Lexical sememe prediction
via word embeddings and matrix factorization. In
IJCAI, pages 4200–4206.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754–5764.

183

Task Input Ours Base
Sentiment 奸奸奸商商商（（（骗骗骗子子子）））如何有工作牌在行李大厅里明目张胆行骗？ disgust surprise
Classification How do the profiteers (cheaters) have staff cards and blatantly

cheat in the baggage hall?
有有有罪罪罪 guilty 人人人 human 欺欺欺骗骗骗 deceive 商商商业业业 commerce

有有有罪罪罪 guilty 人人人 human 骗骗骗 cheat

吓吓吓人人人（（（可可可怕怕怕））），中药比西药更不安全。 fear disgust
Frightful (Fearful), Chinese medicine is less safe than Western
medicine.
能能能 able 促促促使使使 urge 害害害怕怕怕 fear

能能能 able 促促促使使使 urge 害害害怕怕怕 fear

Headline 转载一个成成成方方方（（（秘秘秘方方方））），主治一切骨折，据说一剂见效 regimen essay
Categorization We republish a set prescription (secret prescription) , which

mainly treats all kinds of fractures, and is said to be effective with
only one dose.
医医医 medical 药药药物物物 medicine 准准准备备备 prepare 文文文书书书 document 命命命令令令 order

医医医 medical 药药药物物物 medicine 有有有效效效 effective 医医医治治治 doctor 全全全 all
方方方法法法 method 疾疾疾病病病 disease

他是三征高句丽的强强强将将将（（（猛猛猛将将将））），最后死于一群无赖之手 history story
He was a good general (valiant general) that attacked Goguryeo
for three times, yet was killed by a group of rogues.
人人人 human 军军军 military 官官官 official

人人人 human 军军军 military 官官官 official 军军军队队队 army 勇勇勇 brave 争争争斗斗斗 fight

Semantic
Matching

A.如何选择大大大哥哥哥大大大（（（手手手机机机）））？
A. How to choose hand phone (mobile phone)? same different

B.怎么选择大大大哥哥哥大大大（（（手手手机机机）））？
B. What is the way to choose hand phone (cell phone)?
携携携带带带 bring 能能能 able 用用用具具具 tool 交交交流流流 communicate 样样样式式式值值值 PatternValue

携携携带带带 bring 能能能 able 用用用具具具 tool 交交交流流流 communicate 样样样式式式值值值 PatternValue

A.初初初中中中生生生（（（男男男生生生）））暗恋女生会有什么表现？
A. What performance will junior high school students (boy stu-
dents) have if they secretly love a girl?

same different

B.初初初中中中生生生（（（男男男生生生）））暗恋女生表现是什么？
B. What is the performance of junior high school students (boy
students) if they secretly love a girl?

学学学习习习 study 教教教 teach 场场场所所所 InstitutePlace 人人人 human 教教教育育育 education
中中中等等等 intermediate

学学学习习习 study 教教教 teach 场场场所所所 InstitutePlace 人人人 human 教教教育育育 education
初初初等等等 elementary 男男男 male

Case Study for adversarial test. The original words are shown in parenthesis and colored in blue, while the
replaced words (similar words calculated by Cilin (Tian and Zhao, 2010)) are colored in red. Both the base
model and our model (i.e. Transformer v.s. Transformer-SEP) predict correctly on sentences with the original
words, yet only ours succeed in the sentences with the replaced words. We show sememes for original words
and sememes for replaced words in blue and red color boxes respectively. Best viewed in color.

184

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 185–193
July 9, 2020. c©2020 Association for Computational Linguistics

Evaluating Compositionality of Sentence Representation Models

Hanoz Bhathena1, Angelica Willis, Nathan Dass
Stanford University

hanozbhathena@gmail.com, arwillis@stanford.edu,
ndass@stanford.edu

Abstract

We evaluate the compositionality of general-
purpose sentence encoders by proposing two
metrics to quantify compositional understand-
ing capability of sentence encoders. We in-
troduce a novel metric, Polarity Sensitivity
Scoring (PSS), which utilizes sentiment per-
turbations as a proxy for measuring composi-
tionality. We then compare results from PSS
with those obtained via our proposed exten-
sion of a metric called Tree Reconstruction
Error (TRE) (Andreas, 2019) where composi-
tionality is evaluated by measuring how well
a true representation-producing model can be
approximated by a model that explicitly com-
bines representations of its primitives.

1 Introduction

Compositionality is the principle inherent in human
language whereby the meaning of a complex, com-
pound language expression can be deduced from
the meanings of its constituent parts and how they
are combined. Compositionality can be thought of
as a key ingredient towards making artificial intel-
ligence more like general human intelligence since
it enables understanding of highly complex con-
cepts by breaking them down into simpler, more
manageable, and modular components. The last
couple of years have seen a breathtaking expan-
sion in the research around transfer learning for
natural language understanding. BERT (Devlin
et al., 2019) has proven to be a highly successful
model for learning general, task-agnostic sentence
representations that can equal or outperform task-
specific ones. Given the strong intuitive connection
between compositionality and generalization of rep-
resentation learning, but the relative difficulty in
often quantifying it, our goal is to propose evalu-
ation metrics for compositional understanding of

1 Stanford SCPD student

sentence encoders and evaluate the level of compo-
sitional understanding in the current state-of-the-art
sentence encoder models.

We propose two new methods to evaluate the
compositionality of sentence embedding models.
First, we propose a new method called Polarity
Sensitivity Scoring (PSS) which measures com-
positionality via the ability of sentence encoding
models to be sensitive to minor perturbations in
the input that would flip the sentiment polarity of
a sentence. Next, we extend Tree Reconstruction
Error (TRE) (Andreas, 2019) to work sentences.

2 Related Work

With the rapid improvement of natural language
understanding models in recent years, there has
simultaneously been a large increase in research on
the nuances and pitfalls of these models, especially
in the area of compositionality. Among other meth-
ods, measuring performance in classification tasks
targeting semantic understanding (Ettinger et al.,
2016), lexical composition (Shwartz and Dagan,
2019), synonym substitution (Hupkes et al., 2020),
and divergence (Keysers et al., 2020) have all been
proposed.

Many researchers have shown evidence that in-
ducing compositionality into deep and shallow
models have helped in generalization, data effi-
ciency, and interpretability. Fyshe et al. (2015)
evaluates compositionality at the phrase level to
make representations more interpretable. Baroni
(2020) finds that neural networks are capable of
subtle grammar-dependent generalizations, but do
not rely on systematic compositional rules. Dessı̀
and Baroni (2019) found that, perhaps counter-
intuitively, CNNs were able to significantly out-
perform LSTMs and GRUs on the more difficult
jump and around-right tasks in the SCAN chal-
lenge proposed by Lake and Baroni (2017) and

185

Loula et al. (2018). However, they still find that
CNNs also are not good at learning rule-like com-
positional generalizations as the mistakes it makes
are not systematic and they are evenly spread across
different commands.

Stone et al. (2017) explores the compositional
properties of deep CNNs for image recognition.
Their method quantifies compositionality as the dif-
ference in higher layer CNN activations between
a network which takes a normal multi-object im-
age as input and masks all activations outside the
spatial location of one of the objects and a network
which takes as input the same image as above with
all other objects except the target object zeroed out.
The intuition is that if CNNs are inherently com-
positional, then the difference in two activations
should be zero.

3 Polarity Sensitivity Scoring (PSS)

Our primary contribution is a method we propose
is called Polarity Sensitivity Scoring. Here, we
posit that a model that has strong compositional
understanding can adapt to small changes in the
constituent components of a sentence such as sen-
timent polarity. Generally, the sentiment of a sen-
tence is localized to a small fraction of the words,
which can be separated from the overall content
of the sentence that is not sentiment bearing. We
hypothesize that if a model can accurately detect
a sentiment switch when its thematic content re-
mains constant, but only its tonality changes, then
it should have a good semantic understanding of
the nuances of composition structure. We define
the equation for PSS as:

PSS =
1

N

N∑

n=1

1[ŷs = ys ∧ ẑs′ = zs′]

where ys is the ground truth label for the sentence
s and ŷs is the predicted label produced by a sen-
timent model trained using the sentence encoding
model. Similarly, zs′ and ẑs′ are the ground truth
and predicted labels, respectively, for the sentence
s′ for which the polarity has been flipped. For PSS,
we need sentence pairs which have the same con-
tent but differ only in certain sentiment specific at-
tributes. Ideally, we would want human-generated
pairs but since that can be cumbersome and expen-
sive we utilize outputs of an off the shelf model
for synthetic data generation which generates the
sentiment switched sentence. The approach we use
was proposed by Li et al. (2018) and the interested

reader is encouraged to read the paper to gain a
better understanding of the algorithm details. This
formula for PSS calculation would be sufficient if
the sentiment switching model was perfect, how-
ever, this is not the case. To account for this we
manually reviewed a subset of examples to come
up with a set of rules which removed error-prone
switches making our synthetic pairs closer to a gold
standard. Details are described in appendix B.

The perturbation-driven nature of PSS might
lead one to question whether PSS really captures
compositional understanding or is it just a test of
the robustness of sentence representations to noise.
We believe that, at least with respect to the re-
quired compositional understanding to correctly
classify sentiment (Socher et al., 2013), it does and
might also be more general than that. PSS can actu-
ally complement the consistency score proposed by
Hupkes et al. (2020) which measures substitutivity,
one of the five tests for compositionality. While
they replace words with their synonyms and ex-
pect the same classification, we replace sentiment
bearing words and expect the model to accurately
reflect this change in sentiment. Since changing a
classification label establishes a more direct causal
link between change in text and change in label,
we believe that our method is better at least for the
substitutivity test.

3.1 Experimental Results

We leverage the same dataset used in Li et al. (2018)
for our experiments: a sentiment corpus of Yelp
Business Reviews. The dataset contains 270K pos-
itive examples and 180K negative ones in the train
set and an equally balanced 4000-example devel-
opment set and 1000-example test set. Since our
end goal is evaluating compositionality and not de-
veloping the most performant sentiment model, we
use static hyperparameter configurations (learning
rate=2e-5 for BERT and 3e-3 for others) and re-
port test accuracy by combining dev and test sets.
For the sentiment switched pairs we directly uti-
lize the 500 reference test pairs released 1. After
the cleaning rules (see appendix) to remove prob-
lematic pairs we are left with 353 example pairs
for which we have a high degree of confidence that
they belong to opposite sentiments. Our PSS metric
is therefore calculated on these 353 sentence pairs.
If our models predict the correct label for both the

1https://github.com/rpryzant/delete_
retrieve_generate

186

Encocder Type Final Layers Finetune mode Test Accuracy PSS Relative
BERT Linear FB 79.2 59.5 75.1
BERT Linear FT 81.3 73.7 90.7
ELMo Linear FB 75.3 57.2 76.0
ELMo Linear FT 75.8 67.9 89.6
ELMo DNN FB 77 57.5 74.7
ELMo DNN FT 77.2 70 90.7
USE DAN DNN FB 75.3 62.3 82.8
USE DAN DNN FT 79.6 69.4 87.2
USE DAN Linear FB 69.3 49.9 71.9
USE DAN Linear FT 78.1 69.1 88.5
USE Transformer Linear FB 76.5 65.7 85.9
USE Transformer Linear FT 82.3 73.7 89.5
USE Transformer DNN FB 78.7 65.7 83.5
USE Transformer DNN FT 80.2 69.4 86.5

Table 1: Results from Polarity Sensitivity Scoring (PSS). Linear: Linear projection from sentence embedding to
labels. DNN: 2 layer deep neural network. Relative: PSS / Test Accuracy×100. Finetune mode: FT: encoder
finetuned, FB: encoder parameters frozen with final layers only trained

positive and negative versions of the sentence, an
example gets a score of 1 else 0 and these values
are averaged to get the PSS score for a model.

We compare four encoder types: BERT (Devlin
et al., 2019), ELMo (Peters et al., 2018), Universal
Sentence Encoder (USE) deep averaging network
(DAN), and USE Transformer (Cer et al., 2018).
For all encoders except BERT, we experiment with
different final layer types to isolate impact from the
classification layer to the encoding layers: single
linear layer (Linear) or 2 layer feedforward deep
neural network (DNN) with 500 and 100 units in
the first and second layers, respectively. For all
encoders, we experiment with the finetuning mode
(FT): train the all encoder and classification layers
and feature-based mode (FB): freeze the encoder
layers and only train the classification layers.

Table 1 shows the results of our polarity sen-
sitivity experiment. Since each encoder has
a different sentiment classification performance,
we also consider the relative PSS, defined as
(PSS/TestAcc.)×100, which helps us normalize
the compositional understanding capability against
its task performance.

We observe that BERT FT and USE Transformer
FT, both Transformer Vaswani et al. (2017) ar-
chitectures, are the leading models on absolute
PSS and BERT FT and ELMo in DNN FT con-
figuration are joint leaders on relative PSS. The
fact that BERT leads in both categories is no sur-
prise given its well known superior performance

on wide-ranging tasks. On absolute PSS alone,
ELMo and USE DAN are the least compositional.
Given USE DAN’s bag of words type architecture
this makes sense but is slightly surprising for the
ELMo LSTM architecture even though ELMo does
better when we normalize by the sentiment classifi-
cation accuracy. We note that the consistency score
of Hupkes et al. (2020) shows quite similar results
where the Transformer architecture outperforms
both LSTM and CNN architectures substantially.
Across the board, models that finetune the sentence
encoder decidedly do better in absolute and relative
terms than not finetuning which makes sense as en-
coders should generally be better equipped to pick
up compositional generalizations than the classi-
fication layers which are the only trainable layers
in FB mode. Additionally, comparison of the per-
formance of DNN vs linear classifier types is less
conclusive further suggesting that the difference in
compositional understanding is most dependent on
the sentence encoder versus the classifier chosen.

Since BERT FT is joint best with USE Trans-
former FT Linear on absolute PSS and they also
are both among the top-performing models on test
accuracy it validates our key motivation that good
compositional understanding contributes towards
good downstream performance. However, if we
look at when we do not finetune BERT and USE
Transformer encoders, we see that even though
BERT FB has decent test accuracy, the PSS of
BERT FB is 59.5% compared to 65.7% for USE

187

Transformer FB (linear and DNN). On the surface
one would expect that true measurement of raw
compositional understanding of a representation
must be calculated without encoder fine-tuning
however, we must remember that the pre-training
mechanism of BERT and USE is quite different.
While BERT is completely pre-trained using un-
supervised Masked LM and next sentence predic-
tion, USE is also trained using the supervised SNLI
dataset (Bowman et al., 2015) which the authors
note improves the transfer learning capability of
USE. Given that natural language inference is a task
that would be very hard to do well without some
compositional understanding, it stands to reason
that the pre-training phase of USE provides some
implicit compositional advantages. This is equally
valid for other types of models and so for accurate
comparisons across models, we must default to FT
mode.

Given that the above results correlate well with
our a priori expectations based on both theoretical
and empirical knowledge about these encoders, we
feel confident that absolute and relative PSS can be
good estimates of compositional understanding of
sentence representation models.

4 Tree Reconstruction Error (TRE)

TRE (Andreas, 2019) measures the vector space
distance between a target vector representation pro-
duced by an encoding model and a vector repre-
sentation that is generated from compositions of its
primitive units. In the case of sentences, the target
representation is produced by a sentence encoding
model and the primitives are generally the words
in the sentence. The compositions are represented
by syntactic parses of the sentences where at every
subtree, the representations of the child nodes are
composed using some composition function. The
primitive representations (word vectors) are trained
using RMSProp, fixing the sentence representation
and compositional functions, to minimize the co-
sine distance between the sentence encoding and
the output of the compositional function applied to
primitives.

We aim to extend TRE 2 from phrases to sen-
tences. Unfortunately, there are not many open
source datasets with human-labeled compositional-
ity scores for sentences that we could find. There-
fore, using the Stanford Sentiment Treebank (SST)
we propose two automated methods to generate

2https://github.com/jacobandreas/tre

ground truth compositionality labels for the SST
dataset by using phrase-level sentiment labels in
SST.

4.1 Tree Impurity

We start by traversing the constituency parsed tree
of each SST sentence and collect the labels of all
sub-components and phrases within the parse tree.
To compute the Tree Impurity, we take the absolute
difference between the root label and the average
of all phrase labels within a tree. To understand
why this metric is meaningful, let’s consider the
following example sentence from SST:

“A coda in every sense, The Pinochet Case
splits time between a minute-by-minute account
of the British court’s extradition chess game and
the regime’s talking-head survivors.”

As seen in Figure 3 (appendix), the phrase la-
bels of the two children of the root and all of their
children have a label of 2 (neutral). However, at
the top, the root level label is 4 (highly positive).
This constitutes an example of a sentence with a
high degree of compositionality i.e. the overall
meaning of a sentence is not just the meaning of
the components but also how they are composed.

4.2 Weighted Node Switching (WNS)

Tree Impurity loses crucial information regarding
the compositionality within subtrees. Weighted
node switching seeks to counteract this by introduc-
ing more local compositional information. Here,
for every subtree where both children have a sen-
timent label, we calculate the absolute difference
between the sentiment label of the root of the sub-
tree and the average sentiment labels of its children.
To introduce global information, we weight this
label difference by the height of the root node of
the subtree, wherein nodes closer to the tree root
are given higher weights than those closer to the
leaves. These weighted absolute differences are
then averaged to get a measure of the overall com-
positionality of the entire sentence.

Both methods are generalizable to subtrees
whose roots have multiple children and so can be
used with constituency and dependency parses. Go-
ing forward in our experiments we solely use WNS
as our approximation of compositionality scores
given that it is more linguistically robust than Tree
Impurity.

188

Encoder Type SST Correlation
BERT -0.1997
ELMo -0.344
USE DAN -0.485
USE Transformer -0.168

Table 2: Rank correlations.
* p-value indicated that they are uncorrelated

4.3 Experimental Results

We use SST for compositionality evaluation with
TRE. Using TRE, we evaluated the compositional-
ity of sentence representations from BERT (Devlin
et al., 2019), ELMo (Peters et al., 2018), Universal
Sentence Encoder (USE) deep averaging network
(DAN) and USE Transformer (Cer et al., 2018).
The lower the value of TRE, the more composi-
tional a given phrase or sentence is. Since we hy-
pothesize that WNS is positively correlated with
the degree of compositionality, then the more nega-
tively correlated WNS is with TRE, the more com-
positional the sentence representation is overall.
We evaluate compositionality using the rank corre-
lation between TRE and the WNS compositionality
scores.

In Table 2, we notice that the Spearman rank
correlations are all negative, indicating that all the
sentence representations encode some level of com-
positionality in their sentence representations. The
more negative the correlation, the more composi-
tional the sentence representation. By this metric,
USE Transformer seems to be the least compo-
sitional while USE DAN seems to be the most
compositional.

The under-performance of BERT, at least as mea-
sured by compositionality, is quite surprising given
the widespread success of BERT on a multitude
of downstream tasks and also the PSS metric we
proposed and tested above. Given that our results
are dependent on machine-generated ground truth
compositionality scores, more investigation is cru-
cial.

5 Discussion

Even though our observations from PSS and TRE
approaches are not directly correlated, we observe
certain consistencies and see that Transformer ar-
chitectures are different compared to others. While
they are more compositional as measured by PSS,
they appear to be less compositional according to

TRE. We believe this could be because the two
methods are quantifying different kinds of com-
positionality. Pelletier (2011) described two dif-
ferent senses of compositionality; ontological and
functional. TRE seems to measure more of the
former since it, by nature of its definition, tries to
make combination of primitives equal to the whole
while PSS measures functional compositionality
as it calculates a type of sensitivity which only
a model with good compositional understanding
can grasp. Furthermore, phrases that are similar in
vector space can have opposite sentiment. For ex-
ample, the warm and cool could be close in vector
space, but could have a high impact on WNS.

In the current state, we believe that PSS is a
more mature method to estimate compositionality
for sentences especially since our extension of TRE
to sentences depends on the efficacy of WNS as a
good estimate of sentence compositionality. Fur-
thermore, even if we did not use WNS and had
humans tag sentences with scores for composition-
ality, this would still be quite hard to quantify even
for humans given how subjective it can be. Ex-
pert labelers would be needed for such labeling
tasks. However, looking at a positive sentence and
switching its sentiment to negative or vice-versa is
a much easier task for a human, so dataset creation
and evaluation for PSS is much more practical.

6 Conclusion

We explored two approaches to measure the compo-
sitionality of sentence representations. Our primary
contribution was proposing polarity switching as a
possible measure of compositionality which corre-
lated well with empirical results and our knowledge
about inductive biases in sentence encoders. We
also extended TRE as proposed in Andreas (2019)
beyond bigram phrases to sentence representations.
To do this, we needed to come up with a heuris-
tic approximation of a compositional score for a
sentence which we did by using weighted node
switching.

7 Acknowledgments

This paper originated from our class project for
Stanford’s CS224U class. We would like to thank
our project mentor, Ignacio Cases, for his support
and guidance. This work is partly supported by the
NSF Graduate Research Fellowship under Grant
No. DGE − 1656518.

189

References
Jacob Andreas. 2019. Measuring compositionality in

representation learning. In International Confer-
ence on Learning Representations.

Marco Baroni. 2020. Linguistic generalization and
compositionality in modern artificial neural net-
works. Philosophical Transactions of the Royal So-
ciety B: Biological Sciences, 375(1791):20190307.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Brian Strope, and Ray Kurzweil. 2018. Universal
sentence encoder for English. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 169–174, Brussels, Belgium. Association for
Computational Linguistics.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing.

Roberto Dessı̀ and Marco Baroni. 2019. Cnns found
to jump around more skillfully than rnns: Compo-
sitional generalization in seq2seq convolutional net-
works. arXiv preprint arXiv:1905.08527.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceed-
ings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 134–139, Berlin,
Germany. Association for Computational Linguis-
tics.

Alona Fyshe, Leila Wehbe, Partha P Talukdar, Brian
Murphy, and Tom M Mitchell. 2015. A composi-
tional and interpretable semantic space. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 32–
41.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and
Elia Bruni. 2020. Compositionality decomposed:
How do neural networks generalise? Journal of Ar-
tificial Intelligence Research, 67:757–795.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Confer-
ence on Learning Representations.

Brenden M Lake and Marco Baroni. 2017. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
arXiv preprint arXiv:1711.00350.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Joao Loula, Marco Baroni, and Brenden M Lake. 2018.
Rearranging the familiar: Testing compositional
generalization in recurrent networks. arXiv preprint
arXiv:1807.07545.

Jeff Pelletier. 2011. Compositionality. Oxford Univer-
sity Press.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Vered Shwartz and Ido Dagan. 2019. Still a pain in the
neck: Evaluating text representations on lexical com-
position. Transactions of the Association for Com-
putational Linguistics, 7:403–419.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Austin Stone, Huayan Wang, Michael Stark, Yi Liu,
D. Scott Phoenix, and Dileep George. 2017. Teach-
ing compositionality to cnns. 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

190

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

A Encoder Models

For BERT, we use Bert as a service3 with parame-
ter weights of BERTbase from Google Research4.
For ELMo, we use AllenNLP5 for TRE and Ten-
sorflowHub 6 for PSS. For Universal Sentence En-
coder, we used TensorflowHub7

A.1 BERT

This model architecture is a multi-layer bidirec-
tional Transformer (Vaswani et al., 2017). BERT
was able to outperform the previous state-of-the-art
on the GLUE Benchmark by 7%. The input rep-
resentation can be an individual sequence or a se-
quence pair, such as a sentence or question/answer
pairs, respectively. The final embeddings are a
combination of token embeddings and special clas-
sification and segmentation tokens. For our exper-
iments, we take the average of token embeddings
to obtain the sentence embeddings. BERT was
pre-trained using two novel unsupervised learning
tasks: Masked Language Model (LM) and Next
Sentence Prediction. BERT is that it is trained in a
bidirectional manner, while other language models
can only be trained using one direction at a time
since being able to see the next word in the clas-
sical setting trivializes the task. In Masked LM, a
certain percentage of the input tokens are masked
at random, and the model is asked to predict the
masked words. This allows for the preservation
of a learning objective, because the transformer’s
encoder will not know which words it will need
to predict in the future or which words have been
replaced by random words, so it is forced to keep
a contextual representation of every word in the
vocabulary.

A.2 ELMo

ELMo (Embeddings from Language Models) vec-
tors are derived from a bidirectional LSTM that is

3https://github.com/hanxiao/
bert-as-service

4https://github.com/google-research/
bert

5https://allennlp.org/
6https://tensorflow.org/hub
7https://tensorflow.org/hub

trained with a coupled language model (LM). We
learn a weighted linear combination of the vectors
stacked above each input word for each end task.
Since ELMo generates three layers of embedding
outputs for each word, we leverage the common
pooling strategy of averaging across the layers to
create a final word-level representation. Sentence-
level embeddings are created by simply averaging
the final word-level vectors.

A.3 Universal Sentence Encoder

We use two models of the Universal Sentence En-
coder: one where the encoder is a deep averaging
network (DAN) (Conneau et al., 2017) and one
where the encoder is a Transformer (Vaswani et al.,
2017). The embeddings are trained on tasks that
demand to extract information beyond the word-
level. Both models are trained with the aim of
dynamically accommodating a wide variety of nat-
ural language understanding tasks. The input is
variable-length English text and the output is a 512-
dimensional vector.

B Synthetic data considerations

The formula for PSS calculation would be suffi-
cient if we were fully confident that our sentiment
switching model was always 100% accurate. How-
ever, as we know from Li et al. (2018), this is not
the case. The polarity switching model at times gen-
erates an exact duplicate of its provided input and at
other times only removes certain sentiment specific
words. For the former case, it is not fair to expect
any model to switch polarity, so we remove such
examples. Furthermore, we also remove examples
where the model only deletes (does not add) senti-
ment specific keywords as on manual evaluation,
the model more often would remove a word/phrase
that would not fully preserve the content and only
at times removals resulted in negative sentiment
switching to positive (e.g. removing “not”). There-
fore, we only consider examples where the model
adds some words in its generation that were not
present in its input. Given that the model adds pos-
itive words (for a negative to positive switch), it
is much more likely that if a sentiment classifier
gets such an example switch wrong (cannot detect
negative to positive switch), it is more a function of
the sentiment classifier and therefore the sentence
encoder and not an error of the data generator.

191

Figure 1: Experimental workflow design: TRE

Figure 2: Experimental workflow design: Polarity Sensitivity Scoring

C Effects of the direction of sentiment
switch

Given the way PSS is defined, it does not depend
on the direction of the sentiment switch. As long
as our ground truth sentiment label before and after
switching is accurate, PSS does not differentiate
between positive to negative or negative to posi-
tive switch. As mentioned above, the only source
of sensitivity to the polarity switching direction
comes from the sentiment switching model. Li
et al. (2018) does not highlight any major differ-
ences in the direction.

192

Original Sentence (Negative) Generated Sentence (Positive)
so , no treatment and no medication to help
me deal with my condition . failure

so good , honest treatment and easy to help me
deal with my condition .

at this location the service was terrible . at this location the service was great .
overcooked so badly that it was the consistency
of canned tuna fish .

so good that it was the best consistency of tuna
fish .

Table 3: Examples of sentences output by the Polarity Switching Model.

Figure 3: Examples of a sentence sentiment parse tree. The Tree Impurity metric for compositionality gives a
somewhat high score of 1.95 while Weighted Node Switching gives it a lower score of 0.37. The higher score TI
score is likely due to high numbers of label 1 and 2 nodes, contributing most to the overall average, which is quite
different from the root node of 4. WNS, however, considers more local compositionality information which shows
that most of the subtrees are not very compositional, that coupled with the overall large quantity of those subtrees,
leads to the lower WNS. Additionally, WNS brings in global information via its weighting scheme which more
correctly gives higher weights to when local node switches have a sentence level effect.

Sentence TI WNS
If Steven Soderbergh ’s ‘ Solaris ’ is a failure it is a glorious failure 2.51 1.65
A sober and affecting chronicle of the leveling effect of loss . 0.0 0.23
Cool ? 0.33 2.5
Nothing is black and white . 0.0 0.0

Table 4: Examples of sentences and their ground truth compositionality scores via both proposed metrics: Weighted
Node Switching (WNS) and Tree Impurity (TI) methods. Higher scores equate to higher compositionality of the
sentence. These examples represent the far ends of the spectrum on on method or the other, as 2.51 is the highest
score in TI and 2.5 is the highest score in WNS, and 0.0 is the lowest possible compositionality score for both
methods. One of the most telling examples of WNS’s superiority over TI can be show in sentence three. Adding a
”?” to ”Cool” completely changes the tone of the sentence; WNS captures that nuance where TI struggles.

193

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 194–204
July 9, 2020. c©2020 Association for Computational Linguistics

Supertagging with CCG primitives

Aditya Bhargava Gerald Penn
Department of Computer Science

University of Toronto
Toronto, ON, Canada M5S 3G4

{aditya,gpenn}@cs.toronto.edu

Abstract

In CCG and other highly lexicalized gram-
mars, supertagging a sentence’s words with
their lexical categories is a critical step for
efficient parsing. Because of the high degree
of lexicalization in these grammars, the lexi-
cal categories can be very complex. Existing
approaches to supervised CCG supertagging
treat the categories as atomic units, even when
the categories are not simple; when they en-
counter words with categories unseen during
training, their guesses are accordingly unso-
phisticated.

In this paper, we make use of the primi-
tives and operators that constitute the lexi-
cal categories of categorial grammars. Instead
of opaque labels, we treat lexical categories
themselves as linear sequences. We present
an LSTM-based model that replaces standard
word-level classification with prediction of a
sequence of primitives, similarly to LSTM
decoders. Our model obtains state-of-the-art
word accuracy for single-task English CCG su-
pertagging, increases parser coverage and F1,
and is able to produce novel categories. Anal-
ysis shows a synergistic effect between this
decomposed view and incorporation of predic-
tion history.

1 Introduction

Highly lexicalized grammars, such as lexicalized
tree-adjoining grammar (LTAG) and combinatory
categorial grammar (CCG), have very large sets
of possible lexical categories. Where most phrase-
structure and dependency grammars have lexical
category sets numbering in the tens for English
(Taylor et al., 2003), LTAG and CCG have sets
numbering in the hundreds or thousands (Joshi
and Srinivas, 1994; Clark, 2002). The large num-
ber of possible labels for each word can make the
search space for the syntactic tree of the sentence

Category Count

N 206,312
N/N 152,508
NPnb/N 83,377
(NP\NP)/NP 43,700
((S\NP)\(S\NP))/NP 22,189
conj 20,170
NP 19,749
PP/NP 17,199
(S\NP)\(S\NP) 16,146
((S\NP)\(S\NP))/((S\NP)\(S\NP)) 3,820
(((S\NP)\(S\NP))\((S\NP)\(S\NP)))/NP 325

Figure 1: Some sample CCG lexical categories from
the CCGbank training set. The first nine are the most
frequent non-punctuation categories. The final two are
in the top 100 (out of 1285) and illustrate the capacity
for syntactic richness and variety in complexity.

intractably large; narrowing the set of viable lexi-
cal categories per word is therefore an important
step in efficient parsing for such grammars (Clark
and Curran, 2007; Lewis et al., 2016). As the tags
are much more complex and informative than part-
of-speech (POS) tags, tagging the words with these
more complex categories is called supertagging.

The large number of lexical categories comes
from the high degree of complexity that the cate-
gories can have. When grammars have small tag
sets, the bulk of the work in developing or learning
a grammar comes from deciding how to combine
the tags and their words. Categorial grammars in-
stead have fewer combination rules, requiring the
lexical categories to support much greater syntactic
richness; see Figure 1 for some sample categories.

Existing approaches to supervised supertagging
operate in the same manner as POS taggers: as a
word classifiers, predicting the correct tag from a
fixed set. This is relatively straightforward for POS
tags: there are relatively few possibilities as the
tags are simple–e.g., it is not immediately apparent
if or how VBD is more complex than NNP. By con-

194

trast, CCG categories have varying complexities
and are clearly not atomic units; they are composed
from a much smaller vocabulary of primitives.

In this paper, we challenge the usual treatment
of CCG supertagging as large-tagset POS tagging,
instead treating lexical categories as the complex
units that they are. We present a model for CCG su-
pertagging that replaces traditional whole-category
prediction with the prediction of their composing
primitives. In addition to addressing the incon-
gruity between POS tags and CCG categories, this
allows for the generation of new categories that do
not occur in the training set, a necessary property
for handling the long tail of syntactic phenomena.

We treat supertags as linear sequences, enabling
us to employ LSTM decoders to autoregressively
predict CCG primitives in sequence. On CCGbank,
our model outperforms a bidirectional LSTM clas-
sification baseline on word accuracy, parser F1, and
parser coverage, establishing a new state-of-the-art
for single-task English CCG supertagging.

Analysis of our model and results shows that
our non-atomic view of CCG lexical categories en-
ables more effective incorporation of model predic-
tion history than is the case with atomic category
classification. Our model can also generate new
categories that it has not seen during training, and
even manages to correctly label some words with
such out-of-vocabulary (OOV) categories. To the
best of our knowledge, our model is the first fully-
supervised CCG supertagger that constructs lexi-
cal categories from primitive types, and the first
to be able to produce OOV categories. Our work
presents both a more appropriate view of the prob-
lem and establishes a strong baseline for CCG su-
pertagging according to this view.

2 Background and motivation

Supertagging is quite different from POS tagging.
CCG lexical categories are composed from a fixed
set of more primitive units; as a result, CCG
supertagging has a much larger set of possible
tags than does POS tagging—an open set, in fact.
Where the Penn Treebank (PTB) has 481 POS tags
(Taylor et al., 2003), CCGbank has 1322 lexical
categories (Hockenmaier and Steedman, 2007). Se-
lecting from a much larger set is more difficult,
of course, and therefore, POS tagging accuracy
is substantially higher than for CCG supertagging.
Recent POS tagging work has reached up to 98%

1Twelve of which are for punctuation.

accuracy and above, depending on the language
and corpus, without the use of pre-trained embed-
dings or other incorporation of external corpora
(Plank et al., 2016). English CCG supertagging,
meanwhile, has only recently broken past 96%, ac-
curacy and that too with a heavy dependence on
pre-trained embeddings, external corpora, and/or
multi-task training (Clark et al., 2018).

Given these substantial differences, the complex,
structured nature of CCG lexical categories war-
rants further investigation for supertagging. We see
two primary advantages in doing so. First, as noted
by Baldridge (2008) and Garrette et al. (2014), a
compositional view of lexical categories can pro-
vide strong information about surrounding cate-
gories. For example, if a word has category S/NP,
then it is likely that there is a primitive NP type
somewhere else in the sentence, whether as a sim-
ple category or as part of a complex one.

Second, treating CCG categories as atomic
makes it impossible to fully tag all new data, since
new, rare categories may be encountered during
inference. Such rare categories are not necessarily
spurious; over the whole CCGbank, Hockenmaier
and Steedman (2007) note that while some of the
once-occurring categories “are due to noise or an-
notation errors, most are in fact required for cer-
tain constructions.”2 Admittedly, novel categories
(i.e., those not occurring in the training set) are
rare in CCGbank: in the standard splits, 0.06% of
word tokens in the development set and 0.04% in
the test set are tagged with a category that does
not occur in the training set. But since an incor-
rect lexical category can impair the parsability of
a full sentence, it is more appropriate to consider
the number of affected sentences, which is 0.9%
for both the development and test sets.3 Work on
CCG parsers has noted their high sensitivity to su-
pertagging accuracy (e.g., Clark and Curran, 2004;
Lewis et al., 2016), so such cases should not be ig-
nored. And unlike typical classification scenarios,
out-of-vocabulary lexical categories are not differ-
ent in kind from in-vocabulary ones; they are com-
posed from the same units using the same rules,
suggesting that OOV categories can, in principle,
be treated in a concordant manner.

2They provide relative pronouns in pied-piping construc-
tions and verbs which take expletive subjects as examples; we
found lengthy adjunction chains to contribute as well.

3These proportions are even higher for out-of-domain data
(Rimell and Clark, 2008).

195

3 Related work

While our focus in this paper is on CCG supertag-
ging, it is worth noting that the supertagging task
originates in the context of LTAG (Joshi and Srini-
vas, 1994; Bangalore and Joshi, 1999), which also
has highly complex lexical categories. Supertag-
ging is important for efficient parsing in such gram-
mars as it helps narrow the search space for the
parse (Clark and Curran, 2004).

Despite the complexity captured in supertags,
the vast majority of existing approaches treat CCG
lexical categories as atomic units for prediction, ig-
noring their varying complexities and structured
nature. Effectively, at each time step of the in-
put sentence, the model must decide which of a
fixed set of CCG categories is the best choice. This
category-classification approach is the same as for
POS tagging, and indeed, existing supertagging
models are very similar to (if not the same as) POS
tagging models in structure.

Early work for CCG supertagging relied on
maximum-entropy models with hand-specified fea-
tures, a limited set of possible categories, and tag
dictionaries that tracked allowed categories for fre-
quent words based on the training data (Clark,
2002; Clark and Curran, 2004, 2007). Recent work
relies heavily on word embeddings: they allow
better handling of out-of-vocabulary words and
decrease reliance on part-of-speech tags, where
imperfect accuracy can be a detriment for the
supertagger. Lewis and Steedman (2014) used
externally-trained embeddings (Turian et al., 2010)
combined with suffix and capitalization features in
a simple feed-forward neural network as well as a
CRF; they also allowed words to be tagged with
categories with which they did not co-occur in the
training data. Xu et al. (2015) applied the same em-
beddings and features in a standard Elman RNN
(Elman, 1990); they later improved their model by
making it bidirectional (Xu et al., 2016). Lewis
et al. (2016) replaced the Elman RNNs with two-
layer bidirectional LSTMs, taking advantage of the
LSTM units’ ability to retain information over time
(Hochreiter and Schmidhuber, 1997), and incorpo-
rated a data-augmentation technique as well.

Vaswani et al. (2016) used a single-layer bidi-
rectional LSTM but dropped all hand-specified
features, removed the limit on the categories that
the model could produce, used custom in-domain
word embeddings, and included a language model–
style LSTM over the output lexical categories that

allowed the model to condition its predicted tag
at time t on the previously-predicted lexical cate-
gory at time t− 1. In addition to improving word
accuracy, this latter addition drastically increased
the number of tagged sentences that were parsable,
even in variations that hurt word accuracy.

The current state-of-the-art result in CCG su-
pertagging was achieved by Clark et al. (2018).
Their model consisted of a two-layer bidirectional
LSTM with GloVe word embeddings (Penning-
ton et al., 2014) supplemented by the output of
a character-level convolutional neural network.
Their approach involved training additional “auxil-
iary” prediction modules on top of the same LSTM
on an additional, unlabelled corpus (Chelba et al.,
2014). These auxiliary modules were given an in-
complete view of the input (e.g., only words to the
left) and trained to predict the same label that the
primary prediction module predicted.

If we consider other grammars, (Kogkalidis
et al., 2019) presented a type-logical grammar for
Dutch and a supertagging approach that relied on
primitive units. While their approach yielded im-
provement in word accuracy, the overall accuracy
was substantially lower than with CCG supertag-
ging; furthermore, the grammar’s type system was
so different that it is difficult to draw conclusions
about applicability to other grammars.4 In order
to see some consideration of the composed struc-
ture of CCG lexical categories, we must alter our
task scope somewhat. Garrette et al. (2014), fol-
lowing earlier work (Baldridge, 2008), applied a
Bayesian model with grammar-informed priors for
supertagging where only a tag dictionary and raw,
unlabelled text was made available. Their model
included a generative model for categories as well
as the notion of combinability, preferring tag se-
quences where adjacent words could be combined
via CCG rules. Similarly, work in CCG grammar
induction has involved some basic consideration of
how CCG categories are constructed so that that a
grammar could be built using EM (Bisk and Hock-
enmaier, 2012) or hierarchical Dirichlet processes
(Bisk and Hockenmaier, 2013). Despite these ap-
plications, consideration of CCG primitives has
yet to make its way to supervised supertagging ap-
proaches; we aim to fill that gap.

4Their grammar had 5700 unique types for a corpus of 65k
sentences; categories were constructed from 30 atomic types,
corresponding to POS tags or phrasal categories, and 22 non-
directional binary connectives, corresponding to dependency
labels.

196

4 Method and model

Despite the potential advantages discussed above
in Section 2, it is unclear a priori whether su-
pertagging with primitive units is more or less dif-
ficult than standard, whole-category classification.
While the output vocabulary becomes drastically
smaller, the output sequences are longer and must
be arranged correctly. One of our aims in this pa-
per is to establish a baseline for this approach to
supertagging and evaluate its difficulty as a task in
comparison to the usual methods.

4.1 Linearization

Lexical categories in categorial grammars are com-
posed of a relatively small, fixed set of primitive
types (S, NP, etc.) with indications for precedence/
grouping (parentheses) and ordering (forward and
backward slashes). In this paper, we approach the
generation of CCG lexical categories as the pre-
diction of a linear sequence of decomposed sym-
bols. We use a simple linearization scheme: we
split each lexical category label into tokens, using
parentheses and slashes as delimiters. We keep the
delimiters as units in the output sequence as well,
as they crucially define the structure of the cate-
gory. This linearization method yields an output
vocabulary of size 38 (including parentheses and
slashes); many of these are feature-typed versions
of plain primitive types; e.g., Sto and Nnum. We re-
fer to all units resulting from this decomposition,
whether they are primitive types, slashes, or paren-
theses, as primitives for brevity.

It may seem difficult to try to learn to predict a
sequence such as {(, Sdcl, \, NP,), /, NP} con-
sistently and correctly, or to produce sequences
in general that are well-formed. Any model at-
tempting this will have to implicitly learn the rules
for constructing lexical categories from primitives,
such as the balancing of parentheses, or that prim-
itive types cannot occur directly adjacent to one
another and must be joined with a slash. But re-
cent work suggests that this is not an unreasonable
ask: Vinyals et al. (2015) used a similarly simple
linearization scheme to convert a constituent parse
tree into a sequence predictable by a linear decoder.
The model did produce malformed parses on occa-
sion, such as by forgetting to close open parenthe-
ses, but in general, it was able to perform near or
above the state-of-the-art at the time, depending on
how much data were used for training.

4.2 Decoding sequences of primitives

The most recent, highest-performing supertaggers
are all based on bidirectional LSTM architectures.
At each time step, the forward and backward
LSTM outputs are combined and fed through a
softmax layer to produce a distribution over cat-
egories. In order to construct a supertagger that
works at the level of primitives, we propose a
model that replaces the softmax prediction layer
with a separate LSTM that predicts primitives in
a manner similar to the decoder in RNN encoder-
decoder architectures (Cho et al., 2014; Sutskever
et al., 2014), or to how text is generated from neu-
ral language models.

In encoder-decoder LSTM models, an encoder
LSTM is run over the input sequence. The final
LSTM cell is used to initialize the decoder’s LSTM
cell, after which the decoder is trained to predict
the output sequence. During training, the decoder
receives as input the correct output for time t− 1,
and asked to predict the output for time t. During
inference, the model makes its predictions autore-
gressively, since the correct previous output is un-
known at test time. Output sequences are padded
with [START] and [STOP] symbols: the former
allows the model to learn a distribution over ini-
tial output symbols, as well as providing a means
to trigger the output sequence prediction process
(e.g., after an input sentence has been read by the
encoder); the latter is how the decoder indicates its
completion of the current sequence.

Standard use cases for encoder-decoder models,
such as machine translation, have the property that
the output sequence lengths are not easily deter-
minable from the input sequence lengths; nor is
there an easy, strictly monotonic correspondence
between input and output tokens. The usual appli-
cation of encoder-decoder models handles this dis-
crepancy by mostly separating the encoding and
decoding parts of the model, leaving them con-
nected only at their ends (i.e., via the copying of
the encoder’s hidden state to the decoder’s).

A naive application of encoder-decoder models
to supertagging would simply output the sequence
of categories (or primitives, in our case) for a sen-
tence, after having encoded the entire input. For
supertagging, this would be less than ideal. If one
were to treat the sequence of categories as the tar-
get output sequence, there would be a long path
through the network from the input word to the
output supertag. One could remedy this with atten-

197

w1

BiLSTM

LSTM

[SEP]

Softmax
y1,1

LSTM

p1,1

Softmax
y1,2

LSTM

p1,N1

Softmax
[SEP]

LSTM

[SEP]

BiLSTM

w2

Softmax
y2,1

Figure 2: Our supertagging model. Where traditional models would classify an entire category for each word wi at
a time, we decode a sequence of primitives yi,1, . . . , yi,Ni

. The BiLSTM forward/backward combination layer is
omitted for brevity.

tion mechanisms, but since there is a known and di-
rect correspondence between a given encoder step
and the output time steps, it is simpler to link the
encoder output to the decoder directly.5

Our model, illustrated in Figure 2, consists of a
bidirectional LSTM over the input sentence words,
a feed-forward layer to combine and project the
two LSTM directions, and finally by a unidirec-
tional LSTM to produce sequences of primitives.6

We refer to the bidirectional (base) LSTM as the
encoder and the unidirectional primitive LSTM
as the decoder to help differentiate the two, even
though our use isn’t exactly the same as in standard
encoder-decoder models. Instead of initializing the
decoder’s cell with an encoder’s final cell state, we
directly use the encoder’s output as inputs to the
decoder, concatenated with the primitive from the
previous time step.7 During training, it is known
which primitives correspond to which words, so
aligning the encoder outputs to the decoder inputs
is straightforward. During inference, we maintain
a pointer i to select the relevant encoder output,
initialized to i = 1. Then, whenever the decoder
predicts the end of the current word’s category, i is
incremented so that the next decoder step gets the
correct encoder output; decoding is stopped when
the decoder predicts the end of the last word’s cat-
egory. Since one word’s [STOP] symbol indicates
the next word’s [START] symbol, we combine the
two symbols into a single [SEP] symbol, which

5Our initial (non-exhaustive) tests found no benefit to
adding attention to our model, instead serving only to increase
memory usage and slow training down.

6We stick with LSTMs, as with previous work, in order to
conduct a well-controlled comparison.

7We did experiment with priming the decoder’s initial cell
state; our tests found this to yield a lower word accuracy com-
pared to including the encoder output in the decoder input,
and there was no benefit to doing both.

can be interpreted as a word boundary marker.
Importantly, we do not reset the model state be-

tween words. This enables the decoder to maintain
a memory of the primitives (and, by extension, cat-
egories) previously predicted in the sentence.

5 Experimental setup

5.1 Data
As is standard, we train our model on sections 2–22
of CCGbank (Hockenmaier and Steedman, 2005),
keep section 0 for development and tuning, and
evaluate on section 23. As required for decoding,
we decompose the categories for each word, insert-
ing the [SEP] token at word boundaries.

To represent the input words at the lowest level
of our model, we use the (frozen) 5.5B ELMo em-
beddings (Peters et al., 2018). Because ELMo em-
beddings are cased and character-based, we need
very little preprocessing of the input data: we con-
vert all “n’t” tokens to “’t” and append “n” to the
preceding token, unless it is “can” or “won”; we
convert the bracket tokens to their original char-
acters (e.g., “-LRB-” to “(”, etc.); and we replace
“\/” and “*” with “/” and “*” respectively. These
steps are solely to more closely match what the
ELMo model saw during its training. The inputs
are otherwise untouched. There is also no need for
a separate token for unknown words. Comparing
previous work indicates that ELMo (Clark et al.,
2018) drastically outperforms GloVe (Wu et al.,
2017) and even custom WSJ-trained word embed-
dings (Vaswani et al., 2016); we also observed this
difference ourselves during early development.

5.2 Evaluation
In order to control for minor implementation dif-
ferences, we implement a baseline classification-

198

based bidirectional LSTM supertagger. This model
is the same as ours shown in Figure 2, but replaces
our decoder LSTM with a softmax layer, produc-
ing one category prediction per word. All recent
supertagging work has been based on this architec-
ture, with minor variations. We refer to the baseline
as BILSTM and our model as PRIMDECODER.

Since our decoder can maintain a history of pre-
vious outputs, it may be better able to produce a se-
quence of supertags that form a parsable sentence,
even if it makes mistakes on individual words.
Therefore, in addition to the usual word accuracy
and parser labelled F1, we also measure parser cov-
erage; we use the Java version of the C&C parser
(Clark et al., 2015) to parse the sentences with our
predicted supertags and gold part-of-speech tags.
Coverage denotes the percentage of sentences for
which the parser yields a complete parse, even if
the derivation is not exactly correct; it therefore
serves as a measure of how well the supertagging
model is learning to be syntagmatically consistent,
according to the rules of the relevant grammar.
Lastly, since our model has the ability to generate
arbitrary tags, we additionally measure word accu-
racy on word tokens tagged with OOV categories.
Since the parser cannot handle OOV categories, we
instead give it the predicted tag from the baseline
in the cases where our model generates novel tags.

5.3 Model and training details

All layers in our models other than the softmax
layer use size 512. Our LSTMs use standard LSTM
activations (sigmoid for the gates, tanh for the
state) and we use ReLU activations (Nair and Hin-
ton, 2010) for the layer that combines the for-
ward and backward encoder LSTMs. ReLU layer
weights are initialized according to He et al. (2015),
LSTM recurrent weights according to Saxe et al.
(2013), and all other weights according to Glorot
and Bengio (2010). We apply variational recurrent
dropout (Gal and Ghahramani, 2016) throughout
our model8, including on the embeddings, except
on the encoder output that is fed to the decoder,
as we found it detrimental in initial tests. For the
same reason, we do not use layer normalization
on the ELMo embeddings, pre-trained primitive
embeddings in the decoder (standard decoders typ-
ically take pre-trained word embeddings as inputs),

8For dropout directly between adjacent LSTM states, we
use the same dropout mask not just at each time step, but
for all sentences in a batch. This allows us to use recurrent
dropout with the fast cuDNN LSTM implementation.

attention, or scheduled sampling.
We train our models with the Adam optimizer

(Kingma and Ba, 2014) for 25 epochs, halving the
learning rate whenever there is no improvement
in the development set loss, and keep the model
weights from the epoch with the best develop-
ment set accuracy. Training examples are sorted by
output sequence length to yield efficient batches;
the batches are subsequently processed in a semi-
shuffled order, with batches being read through
a shuffling buffer. We clip gradients, scaling ac-
cordingly, if the sum of gradient norms exceeds 1.
During inference, we impose a maximum length
on each word’s predicted category; the maximum
length is set to that of the longest category in the
training set. Post-processing of the decoder outputs
is limited to the removal of redundant parentheses.

Our models have four hyperparameters: the ini-
tial learning rate, the dropout rate on the input (i.e.,
on the ELMo embeddings), the dropout rate on
the output immediately prior to the softmax layer,
and dropout rate elsewhere in the model. We tune
the hyperparameters over 50 value sets sampled
according to the tree-structured Parzen estimator
method (Bergstra et al., 2011) as implemented in
the Optuna9 package.10 The initial learning rate is
sampled from a log-uniform distribution on [10−4,
10−2) while the dropout rates are independently
sampled from a uniform distribution on [0, 0.8).
For each hyperparameter value set, we train the
model five times with different random seeds and
select the values yielding the best accuracy on the
development set. We use the best values to run each
model with 15 additional seeds so that we have
a better estimate of the variance in model perfor-
mance over random initializations. For PRIMDE-
CODER, we decode the output sequences greedily
for the hyperparameter search but evaluate with
beam search, with a beam width of 5.

6 Results

Table 1 summarizes our main results. Our model
outperforms the baseline on all measures

The Cochran-Mantel-Haenszel (CMH) test indi-
cates that the difference in test set word accuracy
between our model and the baseline is statistically
significant (p ≈ 1.6× 10−7); likewise for the dif-
ference in coverage (p ≈ 0).11 Averaging sentence

9https://optuna.org/
10We were able to execute many runs in parallel, resulting

in sampling more akin to standard random sampling.
11For a single run, McNemar’s is the usual test. Since we

199

Development set Test set

Model Acc OOV F1 Cov Acc OOV F1 Cov

Clark et al. (2018)
CVT — 0 — — 95.7 0 — —
ELMo-based — 0 — — 95.8 0 — —

BILSTM 96.15 0 90.6 87.0 95.89 0 90.2 84.6
PRIMDECODER 96.27 11 91.3 96.0 96.00 5 90.9 96.2

Table 1: Our model’s word accuracy, OOV category word accuracy, parser F1, and parser coverage on CCGbank,
compared to the bidirectional LSTM classifier baseline and comparable results from the most recent previous
work. All accuracies are averaged over 20 runs with different random seeds. Standard deviations range around
0.05% for word accuracy, 0.1% for F1, 0.4% for BILSTM coverage, and 0.2% for PRIMDECODER coverage. All
improvements are statistically significant with p� 0.001.

F1 scores over the 20 runs, the Wilcoxon signed-
rank test indicates statistical significance for the
difference in F1 scores (p ≈ 6.7× 10−15).

It is extremely rare for our model to produce
malformed categories. Over all 20 runs, our model
produces only two instances of redundant parenthe-
ses, which are automatically repaired, and seven in-
stances of malformed categories12, which are left
as-is and therefore counted as incorrect predictions.
The malformations consist entirely of missing clos-
ing parentheses or extraneous opening parentheses.

6.1 Comparison to Clark et al. (2018)

In addition to besting the baseline, our model also
yields a higher word accuracy than the single-task
models reported by Clark et al. (2018). The focus
of their work was their novel cross-view training
(CVT) approach, which allowed for efficient and
effective augmentation of model performance us-
ing unlabelled data. They compared their approach
to the alternative use of ELMo over a variety of
tasks, and CCG supertagging was the only one in
which CVT underperformed the incorporation of
ELMo. Their result with the ELMo-based model
set the state-of-the-art word accuracy for single-
task CCG supertagging.

It is therefore worth briefly discussing the simi-
larities and differences between their ELMo-based
model and our baseline. Their models used two-
layer LSTMs with hidden units of size 1024, pro-
jected to 512 units between/after layers; our base-
line has a single layer of width 512. Where we sim-
ply include ELMo representations as inputs to our

have multiple runs, the CMH test is appropriate. The CMH
test reduces to McNemar’s test in the case of a single run.

12Which is to say, an average of 0.35 instances over a single
run over the test set, which has around 55k words.

models, they followed the recommendation of Pe-
ters et al. (2018) to include GloVe representations
along with ELMo as well as to additionally provide
the ELMo representations to the final output layer
of the model. Since our baseline model is smaller
and simpler than theirs but both are ELMo-based,
it is mildly curious that our baseline outperforms
their model. We expect that this difference is at-
tributable to minor differences in implementation
details.13

For reference, Clark et al. (2018) also reported a
word accuracy of 96.0% if they trained their CVT-
based model, but only if it was trained in a multi-
task setting.14 This constitutes a separate task, so
the results are not directly comparable, but we note
that our model achieves the same accuracy without
the necessity for multi-task training, which could
presumably benefit our model as well.

6.2 Novel categories

Of course, prior work as well as the baseline model
cannot handle OOV categories at all, and accord-
ingly have zero accuracies for such categories. Our
model can generate novel categories, and can even
do so correctly, though the accuracy is admittedly
low, around 5% on the test set. These results in-
dicates that our model is not merely memorizing
the sequences of primitives that constitute the cate-
gories in the training set, but is learning some no-
tion of the structure of CCG lexical categories and
how subcategorical units are related among words.

Although we cannot make general claims about

13For example, our decision to match the tokenization that
ELMo saw during its training may have contributed to this
difference.

14Or 96.1% with a much larger model, with LSTMs of
width 4096.

200

when our model generates novel categories, it is
still interesting to look at the cases where it does.
We discuss some examples below where our model
consistently generates novel categories, excerpting
or rephrasing sentences for brevity as needed.

• In the sentence “She was prosecuted un-
der a law that makes it a crime to breach
test security.”, the word “makes” has OOV
category (((Sdcl\NP)/(Sto\NP))/NP)/NPexpl,
which our model gets correct. The baseline
predicts a similar (incorrect) tag where the
final primitive is NP instead of NPexpl. Our
model seems to pick up on contextual cues to
generate the correct category; there are other
such cases where our model selects the cor-
rectly typed primitive over the baseline.

• In the phrase “Edward L. Cole, Jackson, Miss.,
$ 10,000 fine”, the “$” has OOV category
((NP\NP)/(NP\NP)) /Nnum, modifying the
word “fine” with category NP\NP. Our model
correctly generates the new category while
the baseline incorrectly predicts (N/N)/Nnum.

• In “..., as has been the case...”, both the
baseline and our model incorrectly tag “as”
with ((S\NP)\(S\NP))/Sinv while the correct
tag is ((S\NP)\(S\NP))/(Sdcl\NP). Then, for
“has”, our model generates the incorrect but
novel category Sinv/(Spt\NP) in place of the
correct (Sdcl\NP)/(Spt\NP) and in contrast to
the baseline’s (Spss\NP)/(Spt\NP). Our model
adjusted for its error and thus produced a
parsable sequence.

6.3 Improvement effect analysis
Although PRIMDECODER outperforms the base-
line on all fronts, there is a potential confound in
determining which aspect of the model is respon-
sible for this improvement. PRIMDECODER dif-
fers from BILSTM in two respects: the production
of primitives and knowledge of prediction history.
Since previous work has found that incorporating
prediction history can increase both word accuracy
and parser coverage (Vaswani et al., 2016), we can-
not immediately attribute PRIMDECODER’s higher
performance to production of primitives alone.

In order to isolate these effects, we test two
additional model variants. First, to examine the
effect of history alone, we modify the BILSTM
baseline system to include an LSTM over the lex-
ical categories. This is similar to Vaswani et al.

–History +History
Acc F1 Cov Acc F1 Cov

Cat 95.9 90.2 84.6 95.8 90.3 90.8
Prim 95.9 90.2 84.9 96.0 90.9 96.2

Table 2: Word accuracy, parser F1, and parser coverage
for the four model variants on the CCGbank test set.

(2016), but our model differs in that we feed the
base LSTM outputs directly into the top “language
model” LSTM rather than into a further MLP layer
that combines the two LSTMs. This keeps the
changes from our PRIMDECODER model minimal.

Second, to examine the effect of outputting prim-
itives alone, we alter our model to reset the de-
coder’s LSTM state between words, and so cannot
maintain a history between words. Other than these
noted changes, these two additional variants are
trained in the same way as above, with the same
layer sizes, same hyperparameter optimization and
training procedure, and same beam width.

Combined with PRIMDECODER and BILSTM,
these alterations allow us to examine all four com-
binations of whether the model does or doesn’t
have history and whether it predicts whole cate-
gories or decodes primitive sequences.

Table 2 shows the results of the four options on
the CCGbank test set. On the history axis, we note
a result similar to Vaswani et al. (2016): adding
history to the baseline model provides useful infor-
mation about past prediction history, substantially
boosting parser coverage. Vaswani et al. (2016) ob-
served a slight word accuracy decrease when doing
this without scheduled sampling; since we did not
use scheduled sampling to keep the comparison
well-controlled, we attribute the slight decrease in
word accuracy for our version to this omission.

On the other axis, we find that very little changes
when allowing the model to decode primitives in-
stead of classifying categories if prediction history
is unavailable. Word accuracy and F1 stay about
the same, but there is a slight increase in parser
coverage. This indicates that there is no signifi-
cant detriment to supertag prediction quality when
predicting primitives over categories. Although we
omit the value from Table 2, the memoryless prim-
itive decoding model can also correctly tag some
words with OOV categories, though not as well as
PRIMDECODER: 2% word accuracy on the devel-
opment set and 0.3% on the test set. Even with a
similar word accuracy to the BILSTM baseline,

201

this model at least has the ability to produce new
categories, an important property for a supertagger.

These results lead us to conclude that PRIMDE-
CODER’s outperformance of BILSTM is due to the
conjunction of decoding primitives and allowing
the decoder to keep a memory of previous predic-
tions. Moreover, this improvement is synergistic:
the increases in word accuracy, parser F1, and cov-
erage are substantially greater in magnitude than
the sum of the increases from the two control mod-
els. We hypothesize that our model is better able to
learn associations between categories given that it
has direct access to the categories’ primitive units.

7 Conclusion and future work

In this paper, we have presented an alternative view
to classification-based CCG supertagging where
lexical categories are constructed from CCG prim-
itives. Where CCG categories are traditionally pre-
dicted atomically, we instead found that breaking
them down into their primitive types and opera-
tors provides a substantial increase in word accu-
racy, parser F1, and parser coverage for English
CCG supertagging. Even with a simple lineariza-
tion scheme, our LSTM decoder–based model out-
performed the baseline in all respects, and was
also able to generate correct categories during in-
ference that were unseen during training. Our anal-
ysis showed that there is a strong interplay between
knowledge of prediction history and prediction of
primitive units, with both aspects being necessary
to obtain the full increases in performance that our
model exhibits. We conclude that our novel consid-
eration of CCG lexical categories as the complex
units that they are is worthwhile and beneficial.

Our model demonstrates the benefit of a more
careful, informed consideration of the structure of
supertagging and, by extension, CCG parsing. We
expect that further, more sophisticated incorpora-
tion of category structure will yield additional ben-
efit, and are investigating such extensions in place
of the straightforward linearization of the category
strings we applied in this paper; this is somewhat
similar to some work in LTAG supertagging (Ban-
galore and Joshi, 1999; Kasai et al., 2017). At
the same time, other categorial grammars, such
as Lambek categorial grammar, are likely to be
amenable to such improvements as well, but their
theoretical properties may allow for more princi-
pled methods of decomposing lexical categories,
allowing the supertagger’s role to be more tightly

integrated in the parsing process.

Acknowledgments

We thank Elizabeth Patitsas for her helpful discus-
sions and comments, as well as our anonymous
reviewers for their questions, suggestions, and en-
couragement. This research was enabled in part by
support provided by NSERC, SHARCNET, and
Compute Canada. Training of our models was
aided by the use of GNU Parallel (Tange, 2011).

References

Jason Baldridge. 2008. Weakly Supervised Supertag-
ging with Grammar-Informed Initialization. In Pro-
ceedings of the 22nd International Conference on
Computational Linguistics (COLING 2008), pages
57–64, Manchester, UK. COLING 2008 Organizing
Committee.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An Approach to Almost Parsing. Com-
putational Linguistics, 25(2):237–265.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for Hyper-Parameter
Optimization. In Advances in Neural Information
Processing Systems 24, pages 2546–2554. Curran
Associates, Inc.

Yonatan Bisk and Julia Hockenmaier. 2012. Simple ro-
bust grammar induction with combinatory categorial
grammars. In AAAI Conference on Artificial Intelli-
gence, pages 1643–1649.

Yonatan Bisk and Julia Hockenmaier. 2013. An HDP
Model for Inducing Combinatory Categorial Gram-
mars. Transactions of the Association for Computa-
tional Linguistics, 1:75–88.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Philipp Koehn, and Tony Robinson.
2014. One Billion Word Benchmark for Measur-
ing Progress in Statistical Language Modeling. In
Proceedings of the 14th Annual Conference of the In-
ternational Speech Communication Association (IN-
TERSPEECH), pages 2635–2639, Singapore. Inter-
national Speech Communication Association.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1724–1734, Doha, Qatar. Association for
Computational Linguistics.

202

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-Supervised Se-
quence Modeling with Cross-View Training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925, Brussels, Belgium. Association for Computa-
tional Linguistics.

Stephen Clark. 2002. Supertagging for Combinatory
Categorial Grammar. In Proceedings of the Sixth
International Workshop on Tree Adjoining Gram-
mar and Related Frameworks (TAG+6), pages 19–
24, Universitá di Venezia. Association for Computa-
tional Linguistics.

Stephen Clark and James R. Curran. 2004. The Impor-
tance of Supertagging for Wide-Coverage CCG Pars-
ing. In COLING 2004: Proceedings of the 20th Inter-
national Conference on Computational Linguistics,
pages 282–288, Geneva, Switzerland. COLING.

Stephen Clark and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33(4):493–552.

Stephen Clark, Darren Foong, Luana Bulat, and Wend-
uan Xu. 2015. The Java Version of the C&C Parser
Version 0.95. Technical report, University of Cam-
bridge Computer Laboratory.

Jeffrey L. Elman. 1990. Finding Structure in Time.
Cognitive Science, 14(2):179–211.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In Advances in Neural Informa-
tion Processing Systems 29, pages 1019–1027. Cur-
ran Associates, Inc.

Dan Garrette, Chris Dyer, Jason Baldridge, and
Noah A. Smith. 2014. Weakly-Supervised Bayesian
Learning of a CCG Supertagger. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning, pages 141–150, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249–256, Chia Laguna
Resort, Sardinia, Italy. PMLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving Deep into Rectifiers: Surpass-
ing Human-Level Performance on ImageNet Classi-
fication. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 1026–1034.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Julia Hockenmaier and Mark Steedman. 2005. CCG-
bank LDC2005T13. Linguistic Data Consortium,
Philadelphia, PA, USA.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Treebank.
Computational Linguistics, 33(3):355–396.

Aravind K. Joshi and B. Srinivas. 1994. Disambigua-
tion of Super Parts of Speech (or Supertags): Almost
Parsing. In COLING 1994 Volume 1: The 15th Inter-
national Conference on Computational Linguistics,
pages 154–160.

Jungo Kasai, Bob Frank, Tom McCoy, Owen Rambow,
and Alexis Nasr. 2017. TAG Parsing with Neural
Networks and Vector Representations of Supertags.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1713–1723, Copenhagen, Denmark. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference for Learn-
ing Representations, San Diego, USA.

Konstantinos Kogkalidis, Michael Moortgat, and Te-
jaswini Deoskar. 2019. Constructive Type-Logical
Supertagging With Self-Attention Networks. In Pro-
ceedings of the 4th Workshop on Representation
Learning for NLP (RepL4NLP-2019), pages 113–
123, Florence, Italy. Association for Computational
Linguistics.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG Parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 221–231, San Diego,
USA. Association for Computational Linguistics.

Mike Lewis and Mark Steedman. 2014. Improved
CCG Parsing with Semi-supervised Supertagging.
Transactions of the Association for Computational
Linguistics, 2:327–338.

Vinod Nair and Geoffrey E. Hinton. 2010. Recti-
fied Linear Units Improve Restricted Boltzmann Ma-
chines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages
807–814, Haifa, Israel. Omnipress.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVE: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association

203

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models and
Auxiliary Loss. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 412–
418, Berlin, Germany. Association for Computa-
tional Linguistics.

Laura Rimell and Stephen Clark. 2008. Adapting
a Lexicalized-Grammar Parser to Contrasting Do-
mains. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing,
pages 475–484, Honolulu, Hawaii. Association for
Computational Linguistics.

Andrew M. Saxe, James L. McClelland, and Surya
Ganguli. 2013. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks.
In Proceedings of the 2nd International Conference
on Learning Representations, Banff, Canada.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Pro-
cessing Systems 27, pages 3104–3112. Curran Asso-
ciates, Inc.

Ole Tange. 2011. GNU parallel - the command-
line power tool. ;login: The USENIX Magazine,
36(1):42–47.

Ann Taylor, Mitchell Marcus, and Beatrice Santorini.
2003. The Penn Treebank: An Overview. In
Anne Abeillé, editor, Treebanks: Building and Us-
ing Parsed Corpora, Text, Speech and Language
Technology, pages 5–22. Springer Netherlands, Dor-
drecht.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-Supervised Learning. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 384–394, Up-
psala, Sweden. Association for Computational Lin-
guistics.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging With LSTMs. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
232–237, San Diego, California. Association for
Computational Linguistics.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a Foreign Language. In Advances in Neu-
ral Information Processing Systems 28, pages 2773–
2781. Curran Associates, Inc.

Huijia Wu, Jiajun Zhang, and Chengqing Zong. 2017.
A Dynamic Window Neural Network for CCG Su-
pertagging. In AAAI Conference on Artificial Intelli-
gence, pages 3337–3343.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG Supertagging with a Recurrent Neural Net-
work. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on
Natural Language Processing (Volume 2: Short Pa-
pers), pages 250–255, Beijing, China. Association
for Computational Linguistics.

Wenduan Xu, Michael Auli, and Stephen Clark. 2016.
Expected F-Measure Training for Shift-Reduce Pars-
ing with Recurrent Neural Networks. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
210–220, San Diego, California. Association for
Computational Linguistics.

204

Proceedings of the 5th Workshop on Representation Learning for NLP (RepL4NLP-2020), pages 205–214
July 9, 2020. c©2020 Association for Computational Linguistics

What’s in a Name? Are BERT Named Entity Representations
just as Good for any other Name?

Sriram Balasubramanian† Naman Jain† Gaurav Jindal†
Abhijeet Awasthi Sunita Sarawagi
Indian Institute of Technology, Bombay

{sriramb,namanjain,gauravj,awasthi,sunita}@cse.iitb.ac.in

Abstract

We evaluate named entity representations of
BERT-based NLP models by investigating
their robustness to replacements from the same
typed class in the input. We highlight that
on several tasks while such perturbations are
natural, state of the art trained models are
surprisingly brittle. The brittleness continues
even with the recent entity-aware BERT mod-
els. We also try to discern the cause of this
non-robustness, considering factors such as to-
kenization and frequency of occurrence. Then
we provide a simple method that ensembles
predictions from multiple replacements while
jointly modeling the uncertainty of type an-
notations and label predictions. Experiments
on three NLP tasks show that our method en-
hances robustness and increases accuracy on
both natural and adversarial datasets.

1 Introduction

Contextual word embeddings from heavily pre-
trained language models (Peters et al., 2018; De-
vlin et al., 2018) now form the basis of many NLP
tasks. While they have lead to improved accuracy
for most tasks, there are mounting concerns on
how well these embeddings encapsulate syntactic
and semantic constructs such as synonyms, mis-
spellings, and knowledge representations. Indeed,
it has been shown that even BERT based models
are not robust to synonym swaps or spelling mis-
takes in a sentence (Jin et al., 2019; Hsieh et al.,
2019; Sun et al., 2019). In this work, we investigate
how well these contextual representations fare for
named entities.

Designing robust representations of named enti-
ties is challenging due to the sheer variety of named
entities. Named entities diversify with language,
geographical location, time of history, and even
with the fine types. Adding to this the varying

† equal contribution, sorted alphabetically by last name

length of such entities combined with out of vocab-
ulary names, the complexity only increases.

We quantify how well current systems under-
stand named entities by studying their robustness
to substitutions of name mentions in a sentence
with other names within an entity class. The entity
class within which we seek such robustness is task-
dependent and easy for humans to provide. For ex-
ample, we may require a natural language inference
model to be robust to the replacement of company
names within the input sentence pairs. In Table 1
we show a sentence pair which contains mentions
of a company name Facebook. When we re-
place that mention with other company names like
Microsoft or Google, a robust model should
continue to make the same prediction. Likewise,
we may require a co-reference resolution model
to be robust to replacements of person names in a
passage, and a grammar error correction model to
be robust to replacement of person names of same
gender or country names. A good language repre-
sentation should be able to generalize well to such
perturbations and not deviate from its output upon
such perturbations.

The contributions of this work are three-fold.
First, we investigate the robustness of trained NLP
models using a generic algorithm that we develop.
We empirically demonstrate a lack of robustness
of state of the art BERT-based models for different
user-specified typed classes spanning three NLP
tasks: natural language inference (NLI), corefer-
ence resolution (CoRef), and Grammar Error Cor-
rection (GEC). The lack of robustness is specif-
ically of concern for an entity-focused task like
CoRef, where 85% of test sentences have change in
their predictions with a single person name change.

Second, we try to seek explanations for such
lack of robustness, by observing performance vs.
frequency of named entities occurring in the fine-
tuning dataset or based on the count of tokens

205

Sentence 1: Magner , who is 54 and known as Marge , has been the consumer group ’s chief
operating officer since April 2002 , and sits on Facebook Microsoft ’s management committee
Sentence 2: She has been the consumer unit ’s chief operating officer since April 2002 , and sits
Facebook Microsoft ’s management committee.
Gold: 1 ; Prediction: Original: 1; Perturbed: 0

Sentence 1: The workers accuse Goldman Novell of “ reverse age discrimination ” because of a
change in retirement benefits in 1997 .
Sentence 2: Goldman Novell was sued when it changed its retirement benefits in 1997 .
Gold: 0 ; Prediction: Original: 0; Perturbed: 1

Table 1: Examples on paraphrase detection task – Replacement of an entity

in a named entity. We also explored if BERT’s
wordpiece-level masking was particularly unfavor-
able to entities by switching to Span-BERT, the
recent span based masking model. While overall ac-
curacy improved for all datasets with Span-BERT,
we found no change in the robustness of the model.

Finally, we develop a simple approach that en-
sembles predictions from multiple replacements
(RESEMBLE) while modeling the uncertainty of
type annotations and label predictions. Our ap-
proach not only improves performance on adver-
sarial datasets but also on the original datasets, and
achieves higher stability on all the tasks.

2 Evaluating Robustness to
Named-Entity Replacements

We study the robustness of BERT-based NLP mod-
els w.r.t. type-specific named-entity substitutions,
for tasks like NLI, GEC and CoRef. Algorithm 1
describes our method of probing NLP models for
lack of robustness. Let V be a dictionary of candi-
date named entities of a given type c, and D denote
a dataset consisting of sentence-label pairs (x, y).
Let G be a model fine-tuned on a pre-trained BERT.
For each sentence (x, y) ∈ D, we identify the men-
tions of named-entities of the type c in x1. We
obtain a perturbed sentence xm by replacing all
mentions of a distinct name in x by a random entry
from V . We repeat this process B times where B is
a budget (we used 50), with replacement of names.
Over the B perturbations, the sentence with the
lowest accuracy is added to the set DWorst and the
highest accuracy added to the set DBest. A lower
variance in model’s performance across the datasets
{D, DWorst, DBest} is indicative of higher robust-

1We pre-filtered using a named entity tagger in the spaCy
library, and made manual corrections so that all tagged entity
mentions are correct in D.

Algorithm 1: Probing a model using
named-entity substitutions
Data: D(dataset) , V (names), M (metric),

B(budget)
Result: Dworst, Dbest (datasets on which the
model performs worst and best)
for (x, y) ∈ D do

min score =∞, max score = −∞ ;
N ← RandomSelection(V , B) ;
for n ∈ N do
x′ ← Replace (x, n) ; // Details in

text for each task

score←M(G(x′), y) ;
if score < min score then

min score← score, xworst ← x′

end
if score > max score then

max score← score, xbest ← x′

end
end
Dworst ← Dworst + (xworst, y);
Dbest ← Dbest + (xbest, y);

end

ness and vice-versa. We also measure stability as
the fraction of sentences in D whose predictions
stay unchanged within the budget sized replace-
ments.

We use the above method to evaluate the robust-
ness of state-of-the-art BERT based models. We
evaluate NLI with organization name replacements,
GEC with person and country name replacements,
and CoRef with person name replacements. In Ta-
ble 3 we report accuracy on the original, worst, and
best case perturbations of the input and stability for
the four task-entity combinations. We discuss task
details and results next.

206

Task: GEC; Perturbed Entity: Person

Text: One day Penny Bujalski discovered it and it go to tell it to his queen .

Original Prediction: One day Penny discovered it and went to tell it to his queen .

Perturbed Prediction: One day Bujalski discovered it and to tell it to his queen.

Text: the two boys heard that he was planing to steal some money and kill people so the boys start
their adventure on stopping Abigale Injuin Joe .

Original Prediction: The two boys heard that he was planning to steal some money and kill people
so the boys started their adventure by stopping Abigale .

Perturbed Prediction: The two boys heard that he was planning to steal some money and kill
people so the boys started their adventure by stopping Joe .

Task: GEC; Perturbed Entity: Country

Text: There are countries , such as Greece Oman or Bulgaria Venezuela , in which the econmoy
relies merely on tourism .

Original Prediction: There are countries , such as Greece or Bulgaria , in which the econmoy relies
merely on tourism .

Perturbed Prediction: There are countries , such as Oman or Venezuela , in which the econmoy
rely merely on tourism .

Text: I am 20 years old , living in Port - Said , Egypt China .

Original Prediction: I am 20 years old and living in Port - Said , Egypt .

Perturbed Prediction: I am 20 years old , living in Port - Said , China .

Task: CoRef; Perturbed Entity: Person

Text: And Chris Hill Sam Rusnock our ambassador was in China a few days ago. he made the point
and Secretary Rice made the point yesterday to the Chinese Foreign minister , we want to see China
use its influence. Speaker Newt Gingrich the former speaker Republican weighed in on this debate
in this way. [truncated] Well uh with all due respect to Speaker Gingrich we are on a course which
has a reasonable chance of success.

Original Predicted Cluster: [“Chris Hill our ambassador”,”he”]

Perturbed Predicted Cluster: [“Sam Rusnock our ambassador”,”he”, ”Speaker Gingrich”]

Text: Arianna Huffington Sydnie Rabaut uh in this lengthy piece this morning, Judy Miller is quoted
excuse me as saying [truncated]. Do you buy this notion that she doesn’t recall who this other source
was? No of course not Howie. In fact I think this is the major unanswered question.

Original Predicted Cluster:[”Arianna Huffington”, ”you”, ”I”]

Perturbed Predicted Cluster: []

Table 2: Lack of robustness of GEC and CoRef model with respect to person and country names

207

NLI F1 GEC F0.5 CoRef F1

Dataset ORG PER COUN PER
Original 84.82 50.93 47.87 76.47
Worst 79.90 36.51 32.12 60.91
Best 90.03 58.32 51.47 87.85

Stability 86.8% 75% 63.4% 12.86%

Table 3: Adversarial Evaluation of BERT on different
tasks

2.1 Natural Language Inference (NLI)

Task Paraphrase detection is a binary classifica-
tion task on whether two sentences are paraphrases
of each other. We work on the paraphrasing task
of the GLUE dataset (Wang et al., 2018). The stan-
dard dataset split consists of 4077 training sentence
pairs and 1726 testing pairs. We use the BERT-
base model fine-tuned on the training dataset. The
model takes as input the concatenated sentence
pairs and predicts a binary output. The metric used
for this task is F1 score on the binary output.

Attack details We measure robustness over the
organization concept class. As the replacement
dictionary V we used organization names from
Fortune 500 companies. We filter out sentence
pairs consisting of organization name mention in
each sentence of the pair and get 218 sentence
pairs. We use spaCy (Honnibal, 2016) for tagging
the sentences followed by manual inspection of
matched entities so that in the 218 filtered sentences
all entity mentions are correctly identified.

Results Observe in Table 3 almost a 10% swing
in F-score between DWorst, DBest just by replacing
organization names in test instances. The pertur-
bation dictionary consisted of Fortune 500 com-
panies, and were not particularly obscure either.
As the examples in Table 1 show some of these
replacements do not span rare names (Facebook
to Microsoft or Goldman to Novell)

2.2 Grammatical error correction (GEC)

Task Grammatical error correction is a sequence
prediction task, given an incorrect sentence as in-
put we have to predict the grammatically correct
output. We use the LOCNESS corpus (Granger,
1998) comprising of incorrect and correct parallel
English essays. The standard dataset split consists
of 34,308 incorrect-correct sentence pairs for train-
ing and 4,384 pairs for testing. We use the publicly
available parallel edit model from (Awasthi et al.,

2019). It uses a BERT model for predicting the
edits at every token on the input and applies those
edits to compute the final output. We only use
a single iteration of the model for ease of evalua-
tion. The performance is measured using F0.5 score
based on M2 files (Bryant et al., 2017).

Attack details We measure robustness on two
concept classes: person names and country names.
From the test set, 328 sentences mentioned per-
son names and 82 mentioned country names. For
person names, we perform gender-specific replace-
ments. The person name dictionary was created as
follows: we start with a large dictionary of 4018 fe-
male first names, 3437 male first names and 151670
last names and remove names encountered in the
training data. We then generate about 250 names
from these sets by combining first names and last
names. For countries we use 58 non-frequent coun-
try names.

Results The gap in accuracy between the best
and worst-case perturbations is almost 20% for
both person name and country name replacements.
Moreover, we find that 25% of the sentences
change prediction on changing person names and
more than 35% sentences vary prediction of coun-
try names! Table 2 shows some examples. Notice
how changing the country from Greece to Oman
and Bulgaria to Venezuela changes the edit
predictions five tokens away in the sentence.

2.3 Coreference Resolution (CoRef)

Task Coreference resolution refers to the prob-
lem of finding all expressions that refer to the same
entity in a text. We work on the standard OntoNotes
dataset from the CoNLL-2012 shared task on coref-
erence resolution (Pradhan et al., 2012). Each doc-
ument represents one instance and has a series of
sentences within it. The standard split consists of
2,802 training documents and 348 testing docu-
ments. We use the BERT base model fine-tuned on
the training dataset from (Joshi et al., 2019b). The
model predicts top-k spans for a document and then
computes antecedent scores for them and thereby
builds clusters for coreference. Since documents in
OntoNotes contain many clusters while we replace
only mentions of a single name in the long docu-
ment, to better highlight differences, we measure F
score for only the gold clusters with the replaced
entity.

208

Attack details We measure the robustness with
respect to person names. We filter out documents
containing a person name based on gold annota-
tions in the OntoNotes corpus, and get 210 docu-
ments. Replacement vocabulary V was made in
similar way as mentioned for GEC using the same
male, female and last name dictionaries. We also
ensure that the name replacements do not alter the
coreferences. Therefore, we replace every instance
of each name occurring in the document with our
randomly sampled adversarial name, taking care
that first(or last) names are replaced with adversar-
ial first(or last) names. In case of any ambiguity,
we replace the name with the last name. Also the
replacements are gender specific.

Results We found the worst stability for CoRef
and only 13% of the sentences preserved pre-
dictions on named-entity replacements. Also,
the gap between the worst and best case pertur-
bations is almost 30 F1 points. As seen from
the truncated document examples in the second-
last row of Table 2, replacing the name Chris
Hill to Sam Rusnock makes the model mis-
predict the original cluster, as it predicts an-
other name Speaker Gingrich as co-referent
to Sam Rusnock. Even in second example
changing the name Arianna Huffington to
Sydnie Rabau causes model to miss the its en-
tire cluster! We also found that on an average,
predictions of model differ by two clusters per
sentence after name perturbation. For one doc-
ument almost 17 clusters were affected by a sin-
gle entity swap. The non-robustness on CoRef is
especially surprising since it is principally a task
about named entities. Our experiments were on the
widely used OntoNotes dataset with person name
mentions. Such varying performance should be a
cause of concern for benchmarking CoRef models.
Perhaps, the dataset needs to be augmented with
variants arising out of named-entity replacements
and stability should be a required performance met-
ric, in addition to accuracy on the original sentence.

Another interesting observation across tasks is
that the accuracy on the original D is enhanced
after moving to DBest — that is, just substituting
names in a given instance with more ‘favorable’
names can lead to substantial gains. We will exploit
this observation to enhance base accuracy and im-
prove the robustness of NLP models in Section 4.

Figure 1: Variation of NLI model’s performance with
frequency of named entity in training dataset. The
green lines depict variance across performance of
names of a given frequency

3 Causes of Non-Robustness

We then sought to investigate reasons for such
lack of stability. We first attempted to see if
the poor accuracy of certain names can be ex-
plained by their frequency of occurrence in the
training dataset. In Figure 1 we plot a graph of
the frequency of a named-entity in the training
corpus against the F-score on the NLI task. As
we can see there is no strong correlation of fre-
quency with the performance of a named entity,
in fact, an organization name appearing in only
four sentence pairs (Goldman) performed better
than Microsoft which was present in over 30
sentence pairs. Facebook which is not even
present in the training set performs better than
Microsoft or Google. This is likely due to
the biases learned during the massive pre-training
that BERT-based models enjoy.

Our next guess was to see if the number of to-
kens in BERT’s word-piece tokenization of named
entity causes any significant impact on accuracy.
Sequence labeling models like PIE (Awasthi et al.,
2019) for GEC are most likely to be susceptible to
that effect. In Figure 2 we show accuracy against
the number of tokens in a named entity for GEC.
We compared performance across three classes –
1 token length entities or two token length enti-
ties or three or more token length entities. We
created budget sized copies of the original dataset
and compare performance across three variants –
(Original, Best, and Worst) but found no significant
difference in accuracy with the number of tokens.
However, we did observe some anecdotal evidence

209

Figure 2: Variation of F1 scores for GEC model with
different token length perturbation.

of specific nuisance tokens arising out of the word
piece model on out of vocabulary names. For ex-
ample consider the person name Tobey that gets
tokenized as [To, ##bey] or Injuin which is
tokenized as [In, ##juin]. The first token of
the names are “To” or “In”, both frequent preposi-
tions, which perhaps BERT finds difficult to disam-
biguate. As we can see from the second example in
Table 2 – Injuin confuses the given model and
the model even deletes the name probably since
“In” proposition is not required there. Another ar-
tifact could be memorized correlations between
names (e.g. Obama and President) that tasks
like CoRef could exploit. Recent work (Poerner
et al., 2019) has infact shown that BERT based
models use surface form of entities for relational
reasoning.

NLI (ORG) F1 CoRef (PER) F1

Original 86.80 76.71
Worst 82.7 62.37
Best 90.2 86.76

Stability 89.9% 16.19%

Table 4: Adversarial Evaluation of Span-BERT on dif-
ferent tasks

Finally, we explore if BERT’s single token mask-
ing model is unfavorable to robust entity repre-
sentations by comparing with a language model
pre-trained by masking spans covering multiple to-
kens. Specifically, we use Span-BERT (Joshi et al.,
2019a), which is trained with masked language
modeling on spans instead of tokens. We tried to
compare the performance on NLI and CoRef2 in

2We were unable to train Span-BERT for GEC, since in

comparison with BERT. The results can be found
in Table 4. We were surprised that Span-BERT
does not provide any better robustness, although
it does provide consistent higher accuracy on all
tasks. Various metrics such as – the difference be-
tween worst and best accuracy, stability are both
very similar for BERT and Span-BERT.

4 Enhancing Robustness

We propose a simple ensembling with replacements
approach (referred to as RESEMBLE) that does
not require any retraining and can work with any
existing pre-trained language model. We assume a
type annotator T that marks mentions of entities of
the type c for which robustness needs to enhanced.
The type-annotator might be noisy. We identify
a small set M of entities of type c on which the
model provides high accuracy on a validation set.
We call these the list of canonical entities.

Given any input x, we invoke the task-specific
model G to obtain predicted labels ŷ and the type
annotator T to obtain type annotations ẑ. If ẑ de-
notes that a named entity of type c is present in
one or more spans of x, we generate new sentences
xm by replacing the named entities with canoni-
cal named entities m ∈ M . The model G when
applied to xm generates prediction ŷm.

Let the true labels of x and xm be y and ym

respectively, and the true type of x be z. If the type
annotator correctly identified the spans correspond-
ing to concept class c (i.e., z = ẑ), y and all yms
have to agree as per our requirement of robustness.
We use this to define a revised distribution over true
y from the individual predictions as follows:

PR(y|x, ẑ) ∝ (1− P (z = ẑ|x))P (y|x)

+P (z = ẑ|x)
(
P (y|x)

∏

m

P (y|xm)

) 1
m+1 (1)

The above is an annotator confidence weighted av-
erage of two terms: The first half calculates the
probability of y from the default model G when
the type annotator may be wrong and the ym predic-
tions should be ignored. The second half calculates
the ensembled agreement probability when the type
annotator is correct. We calculate that as a geomet-
ric mean of the predictions from the different re-
placements. In the above equation, the ensembled

released Span-BERT checkpoints were not compatible with
the GEC model

210

probability is under the simplifying assumption
that all entity replacements have the same num-
ber of tokens. During implementation, we remove
this assumption, and implement a more detailed
span-level agreement for variable-length entities.

An important requirement for the above expres-
sion is that the probabilities provided by the differ-
ent models express true uncertainty of predictions,
that is, they be well-calibrated. Unfortunately, mod-
ern neural networks tend to be uncalibrated. To cal-
ibrate the probabilities, we use a popular method
called temperature scaling (Guo et al., 2017) where
probabilities are raised by an exponent, which is
the inverse of the temperature. Temperature scal-
ing flattens the probability distribution over output
classes thus reduces the confidence until it is cor-
rectly calibrated. The expression is as follows:

PT (y|x) =
P (y|x) 1

T

∑
y′ P (y′|x) 1

T

where y denotes a scalar prediction. For two of our
tasks (GEC and CoRef), the output from our BERT-
based models is a product of probabilities from
multiple positions. We apply the same temperature
scale to each prediction. Thus, our final expression
becomes:

PR(y|x, ẑ) ∝ (1− P (z = ẑ|x))PT (y|x)

+P (z = ẑ|x)
(
PT (y|x)

∏

m

P (y|xm)

) 1
m+1

(2)

The temperature hyper-parameter T is fixed
from a validation dataset. Note we do not ap-
ply temperature scaling to the predictions from the
canonical entries.

4.1 Empirical Results
For each task, we will describe the defense
mechanisms used, with the description of the
replacement list, and replacement strategies. The
calibration hyper-parameters used for the defense
methods are temperatures T = 2 across all tasks.
The canonical dictionary M for NLI comprises of
Microsoft, Nasdaq and IBM. For GEC, due
to the huge size of the GEC corpus we pick the
most common English first names and combine
them with common English last names. We use
three male names (John, James Brown,
Robert Johnson) and three female names

(Patricia, Mary Jones, Jennifer
Brown) for replacement. If gender is ambiguous,
we use 1 male name and 2 female names (John,
Mary Jones, Jennifer Brown). For
CoRef, we used the top 3 frequent person names
from the training dataset for our replacement list
namely – George Bush, Bill Clinton,
Ehud Barak. We also present results when we
restrict the cannonical dictionary M to only the
first name in the above described lists.

We show results with RESEMBLE in Ta-
ble 5. We perform defense on four datasets
– Original, Best, Worst, Random
Replacement. For random replacement, we
constructed 10 new datasets from the original
dataset with its names replaced with randomly
selected names, and then evaluate the performance
of our models on these datasets. We present the
mean and standard deviation of the F scores across
these newly constructed datasets. For best and
worst we evaluate performance on datasets gener-
ated from Algo. 1. First observe that accuracy of
even the original test dataset improves with our
simple replacement ensembling while reducing
the variance. For example, for GEC F score
increases from 50.93 to 51.81. The variance has
also reduced as seen for the random replacement
datasets. The adversarial accuracy improves
significantly — for CoRef we see a jump of DWorst
from 60.91 to 68.31 and for GEC the gains are
even higher. The difference between the best
and worst accuracy reduces drastically. Although
for DBest accuracy drops with RESEMBLE, the
overall gains across the three dataset variants are
much higher. Further a single canonical entry
M = 1 is almost as effective as larger ensembles
of M = 3. This implies that at test-time, we have
to deploy the model on at most two instances to
enjoy significantly higher robustness. This shows
that replacement with canonical entities while
accounting for uncertainty of entity identification
is a viable alternative to enhance robustness.

5 Related Work

Study of BERT Representations Jin et al.
(2019); Hsieh et al. (2019) study robustness of
state of the art BERT fine-tuned models on classi-
fication, entailment, and machine translation tasks
with respect to synonym replacements. The for-
mer used a black box scenario while the latter
used input gradients and attention magnitudes to

211

Dataset NLI(ORG) F1 GEC(PER) F0.5 CoRef(PER) F1

Original
RESEMBLE

Original
RESEMBLE

Original
RESEMBLE

M=1 M=3 M=1 M=3 M=1 M=3
Original 84.80 85.16 85.16 50.93 51.81 51.53 76.47 76.87 76.71
Worst 79.90 82.71 82.71 36.51 47.09 46.75 60.91 68.31 69.43
Best 90.03 86.91 86.63 58.32 55.38 55.38 87.85 82.6 82.18

Random 85.53 85.48 85.50 49.96 51.47 52.03 76.37 76.78 76.87
Replacement (0.54) (0.50) (0.40) (1.05) (0.70) (0.66) (1.04) (0.75) (0.81)

Table 5: Adversarial Evaluation of BERT on different tasks comparing the accuracy on the original model against
our algorithm with a canonical dictionary of size (M) 1 or 3. For Random Replacement dataset, mean across the
ten artificial datasets along with standard deviation in brackets is presented

find probable candidate replacements. Sun et al.
(2019) applied an adversarial mis-spelling attack
to BERT using gradient-based saliencies. Poerner
et al. (2019) show that BERT uses the surface form
of words for relational reasoning (guessing per-
son with an Italian sounding name speaks Italian).
Zhang et al. (2019a) generated adversarial sentence
pairs for paraphrase detection by swapping the or-
der of named entities in two sentences which was
enough to fool BERT. Joshi et al. (2019a) intro-
duced Span-BERT that is trained on masked lan-
guage modelling on spans instead of tokens. Zhang
et al. (2019b) developed ERNIE model for entity
linking which combines named entity embeddings
from knowledge graph with BERT.

Other Robustness Studies in NLP Techniques
for generating adversarial examples to study ro-
bustness of NLP models have seen a lot of enthu-
siasm in recent years. These approaches can be
loosely categorized into three types – character-
level (Ebrahimi et al., 2018b,a) or word-level or
sentence-level (Zhao et al., 2018; Iyyer et al., 2018;
Ribeiro et al., 2018). Our work is most related to
word-level attacks which we elaborate on. Liang
et al. (2018) proposed word insertion, deletion, or
replacement using gradient magnitudes for classifi-
cation tasks but requires human effort to ensure the
sensibility of the replacements. Samanta and Mehta
(2017) used synonym replacements along with the
gradient sign method for choosing the worst syn-
onym replacement. Alzantot et al. (2018) provides
a population-based genetic algorithm for synonym
attacks for sentiment classification and textual en-
tailment in a black-box setting. Ren et al. (2019)
developed a greedy algorithm for synonym swaps
using weighted gradient based word saliencies, for
sentiment classification and entailment.

In this work, we also perform word-level attacks

but our focus is robustness to named entity replace-
ments. The closest work to ours is (Prabhakaran
et al., 2019) that checks the sensitivity of models
with respect to named entities but they only con-
sider sentiment or toxicity classification. Our work
covers more interesting structured prediction tasks
such as coreference resolution and grammatical
error correction.

Defenses in NLP Most approaches (Cheng et al.,
2018; Jia and Liang, 2017) for defenses in NLP
have focused on augmenting training datasets with
adversarial instances. Pruthi et al. (2019) proposed
a word recognition model along with backoff strate-
gies for robustness against misspellings. Zhou et al.
(2019) used an adversarial detection cum replace-
ment strategy. We did not consider data augmen-
tation methods because that would significantly
increase the training time for models like GEC.

There has also been a trend in usage of certi-
fied robustness approaches (Ko et al., 2019; Jia
et al., 2019; Huang et al., 2019; Shi et al., 2020)
which provide guarantees on the minimum perfor-
mance of models. The main technique so far is
to propagate interval bounds around input word
embeddings and has been applied for robustness
to synonyms change. Synonyms are expected to
have similar embeddings, but interval bounds are
unlikely to work for entities within a large concept
class. We are not aware of any prior work that en-
hances robustness with canonical replacements like
ours in the context of an existing language model.

6 Conclusions and Future Work

In this work we show that state of the art BERT-
based models are surprisingly brittle to named en-
tity replacements. We propose RESEMBLE, a sim-
ple ensembling approach to increase robustness
while also improving nominal accuracy. The gen-

212

eral paradigm of enhancing robustness via ensem-
bles on guided instance perturbations is a promising
direction and needs to be explored for other tasks
too.

Acknowledgement We thank the anonymous re-
viewers for their constructive feedback on this
work. This research was partly sponsored by IBM
AI Horizon Networks - IIT Bombay initiative and
partly by a Google India AI/ML Research Award.
Abhijeet is supported by Google PhD Fellowship
in Machine Learning.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2019. Par-
allel iterative edit models for local sequence trans-
duction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP).

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers).

Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie
Zhai, and Yang Liu. 2018. Towards robust neural
machine translation. In Proceedings of the 56th As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018a.
On adversari al examples for character-level neural
machine translation. International Conference on
Computational Linguistics (COLING).

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018b. Hotflip: White-box adversarial exam-
ples for nlp. Association for Computational Linguis-
tics (ACL).

S. Granger. 1998. The computer learner corpus: A ver-
satile new source of data for sla research. Learner
English on Computer. Addison Wesley Longman :
London New York, 3-18.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, pages 1321–
1330.

M Honnibal. 2016. spacy: Industrial-strength natural
language processing in python.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On
the robustness of self-attentive models.

Po-Sen Huang, Robert Stanforth, Johannes Welbl,
Chris Dyer, Dani Yogatama, Sven Gowal, Krish-
namurthy Dvijotham, and Pushmeet Kohli. 2019.
Achieving verified robustness to symbol substitu-
tions via interval bound propagation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of NAACL.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to adversar-
ial word substitutions. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907.11932.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2019a.
SpanBERT: Improving pre-training by repre-
senting and predicting spans. arXiv preprint
arXiv:1907.10529.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019b. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Ching-Yun Ko, Zhaoyang Lyu, Lily Weng, Luca
Daniel, Ngai Wong, and Dahua Lin. 2019.
POPQORN: Quantifying robustness of recurrent
neural networks. In Proceedings of the 36th Inter-
national Conference on Machine Learning.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2018. Deep text clas-
sification can be fooled. International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018,.

213

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2019. Bert is not a knowledge base (yet): Fac-
tual knowledge vs. name-based reasoning in unsu-
pervised qa.

Vinodkumar Prabhakaran, Ben Hutchinson, and Mar-
garet Mitchell. 2019. Perturbation sensitivity analy-
sis to detect unintended model biases. EMNLP.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task.

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversarial
rules for debugging NLP models. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).

Suranjana Samanta and Sameep Mehta. 2017. To-
wards crafting text adversarial samples. CoRR,
abs/1707.02812.,.

Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie
Huang, and Cho-Jui Hsieh. 2020. Robustness verifi-
cation for transformers. In International Conference
on Learning Representations.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari
Asai, Jia Li, Philip Yu, and Caiming Xiong. 2019.
Adv-bert: Bert is not robust on misspellings! gen-
erating nature adversarial samples on bert. arXiv
preprint arXiv:2003.04985.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019a.
PAWS: Paraphrase adversaries from word scram-
bling. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019b. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of ACL 2019.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In Interna-
tional Conference on Learning Representations.

Yichao Zhou, Jyun-Yu Jiang, Kai-Wei Chang, and Wei
Wang. 2019. Learning to discriminate perturbations
for blocking adversarial attacks in text classification.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

214

Author Index

Adel, Heike, 95, 103
Adhikari, Ashutosh, 72
Andrews, Nicholas, 143
Asahara, Masayuki, 55
Awasthi, Abhijeet, 205

Balasubramanian, Sriram, 205
Banerjee, Souvik, 24
Bhargava, Aditya, 194
Bhat, Siddharth, 24
Bhathena, Hanoz, 185
Bredin, Hervé, 89

Cengiz, Cemil, 78
Chang, Tyler A., 7
Chen, Mingda, 17
Cheng, Fei, 55
Cho, Kyunghyun, 34
Coria, Juan Manuel, 89

Dai, Andrew, 34
Dass, Nathan, 185
Debnath, Alok, 24
Dell’Orletta, Felice, 110
Dredze, Mark, 120
Duh, Kevin, 143

Foerster, Jakob, 34
Fung, Pascale, 1

Gao, Lingyu, 166
Ghannay, Sahar, 89
Gimpel, Kevin, 17, 166
Glavaš, Goran, 45
Gordon, Mitchell, 143
Gupta, Abhinav, 34
Gupta, Vivek, 156

Hamilton, William L., 72

Iurshina, Anastasiia, 103

Jain, Naman, 205
Jawanpuria, Pratik, 39
Jindal, Gaurav, 205

Kobayashi, Ichiro, 55
Korhonen, Anna, 45
Kumar, Vaibhav, 156
Kunchukuttan, Anoop, 39

Lange, Lukas, 95, 103
Lin, Jimmy, 72
Liu, Xiaodong, 55
Liu, Zhiyuan, 177
Liu, Zihan, 1
Livescu, Karen, 166

Malagò, Luigi, 61
Metze, Florian, 156
Miaschi, Alessio, 110
Mishra, Bamdev, 39

N T V, Satya Dev, 39

Penn, Gerald, 194
Pereira, Lis, 55

Rafferty, Anna, 7
Ram, Achyudh, 72
Raunak, Vikas, 156
Resnick, Cinjon, 34
Rosset, Sophie, 89

Sarawagi, Sunita, 205
Shi, Bowen, 166
Shi, Haoyue, 166
Shrivastava, Manish, 24
Snajder, Jan, 131
Strötgen, Jannik, 95, 103

Tang, Raphael, 72
Toshniwal, Shubham, 166
Tutek, Martin, 131

Volpi, Riccardo, 61
Vulić, Ivan, 45

Willis, Angelica, 185
Winata, Genta Indra, 1
Wu, Shijie, 120

Yang, Chenghao, 177

215

Yuret, Deniz, 78

Zhang, Yuhui, 177
Zhou, Zhengping, 177

	Program
	Zero-Resource Cross-Domain Named Entity Recognition
	Encodings of Source Syntax: Similarities in NMT Representations Across Target Languages
	Learning Probabilistic Sentence Representations from Paraphrases
	Word Embeddings as Tuples of Feature Probabilities
	Compositionality and Capacity in Emergent Languages
	Learning Geometric Word Meta-Embeddings
	Improving Bilingual Lexicon Induction with Unsupervised Post-Processing of Monolingual Word Vector Spaces
	Adversarial Training for Commonsense Inference
	Evaluating Natural Alpha Embeddings on Intrinsic and Extrinsic Tasks
	Exploring the Limits of Simple Learners in Knowledge Distillation for Document Classification with DocBERT
	Joint Training with Semantic Role Labeling for Better Generalization in Natural Language Inference
	A Metric Learning Approach to Misogyny Categorization
	On the Choice of Auxiliary Languages for Improved Sequence Tagging
	Adversarial Alignment of Multilingual Models for Extracting Temporal Expressions from Text
	Contextual and Non-Contextual Word Embeddings: an in-depth Linguistic Investigation
	Are All Languages Created Equal in Multilingual BERT?
	Staying True to Your Word: (How) Can Attention Become Explanation?
	Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning
	On Dimensional Linguistic Properties of the Word Embedding Space
	A Cross-Task Analysis of Text Span Representations
	Enhancing Transformer with Sememe Knowledge
	Evaluating Compositionality of Sentence Representation Models
	Supertagging with CCG primitives
	What's in a Name? Are BERT Named Entity Representations just as Good for any other Name?

