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Abstract

We propose a geometric framework for learn-
ing meta-embeddings of words from differ-
ent embedding sources. Our framework trans-
forms the embeddings into a common latent
space, where, for example, simple averaging
or concatenation of different embeddings (of
a given word) is more amenable. The pro-
posed latent space arises from two particular
geometric transformations - source embedding
specific orthogonal rotations and a common
Mahalanobis metric scaling. Empirical results
on several word similarity and word analogy
benchmarks illustrate the efficacy of the pro-
posed framework.

1 Introduction

Word embeddings have become an integral part of
modern NLP. They capture semantic and syntactic
similarities and are typically used as features in
training NLP models for diverse tasks like named
entity tagging, sentiment analysis, and classifica-
tion, to name a few. Word embeddings are learned
in an unsupervised manner from large text corpora
and a number of pre-trained embeddings are read-
ily available. The quality of the word embeddings,
however, depends on various factors like the size
and genre of training corpora as well as the training
method used. This has led to ensemble approaches
for creating meta-embeddings from different origi-
nal embeddings (Yin and Shutze, 2016; Coates and
Bollegala, 2018; Bao and Bollegala, 2018; O’Neill
and Bollegala, 2020). Meta-embeddings are ap-
pealing because they can improve quality of embed-
dings on account of noise cancellation and diversity
of data sources and algorithms.

Various approaches have been proposed to learn
meta-embeddings and can be broadly classified
into two categories: (a) simple linear methods like
averaging or concatenation, or a low-dimensional
projection via singular value projection (Yin and

Shutze, 2016; Coates and Bollegala, 2018) and
(b) non-linear methods that aim to learn meta-
embeddings as shared representation using auto-
encoding or transformation between common rep-
resentation and each embedding set (Muromägi
et al., 2017; Bollegala et al., 2018; Bao and Bolle-
gala, 2018; O’Neill and Bollegala, 2020).

In this work, we focus on simple linear methods
such as averaging and concatenation for computing
meta-embeddings, which are very easy to imple-
ment and have shown highly competitive perfor-
mance (Yin and Shutze, 2016; Coates and Bolle-
gala, 2018). Due to the nature of the underlying
embedding generation algorithms (Mikolov et al.,
2013; Pennington et al., 2014), correspondences be-
tween dimensions, e.g., of two embeddings x ∈ Rd

and z ∈ Rd of the same word, are usually not
known. Hence, averaging may be detrimental in
cases where the dimensions are negatively corre-
lated. Consider the scenario where z := −x. Here,
simple averaging of x and z would result in the zero
vector. Similarly, when z is a (dimension-wise) per-
mutation of x, simple averaging would result in a
sub-optimal meta-embedding vector compared to
averaging of aligned embeddings. Therefore, we
propose to align the embeddings (of a given word)
as an important first step towards generating meta-
embeddings.

To this end, we develop a geometric framework
for learning meta-embeddings, by aligning differ-
ent embeddings in a common latent space, where
the dimensions of different embeddings (of a given
word) are in coherence. Mathematically, we per-
form different orthogonal transformations of the
source embeddings to learn a latent space along
with a Mahalanobis metric that scales different fea-
tures appropriately. The meta-embeddings are, sub-
sequently, learned in the latent space, e.g., using
averaging or concatenation. Empirical results on
the word similarity and the word analogy tasks
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show that the proposed geometrically aligned meta-
embeddings outperform strong baselines such as
the plain averaging and the plain concatenation
models.

2 Proposed Geometric Modeling

Consider two (monolingual) embeddings xi ∈ Rd

and zi ∈ Rd of a given word i in a d-dimensional
space. As discussed earlier, embeddings gener-
ated from different algorithms (Turian et al., 2010;
Mikolov et al., 2013; Pennington et al., 2014;
Dhillon et al., 2015; Bojanowski et al., 2017) may
express different characteristics (of the same word).
Hence, the goal of learning a meta-embedding wi

(corresponding to word i) is to generate a represen-
tation that inherits the properties of the different
source embeddings (e.g., xi and zi).

Our framework imposes orthogonal transfor-
mations on the given source embeddings to en-
able alignment. To allow a more effective model
for comparing similarity between different embed-
dings of a given word, we additionally induce this
latent space with the Mahalanobis metric. The
Mahalanobis similarity generalizes the cosine simi-
larity measure, which is commonly used for eval-
uating the relatedness between word embeddings.
Unlike cosine similarity, the Mahalanobis metric
does not assume uncorrelated feature and it incor-
porates the feature correlation information from
the training data (Jawanpuria et al., 2019). The
combination of orthogonal transformation and Ma-
halanobis metric learning allows to capture any
affine relationship that may exist between word
embeddings. Mathematically, this relates to the sin-
gular value decomposition of a matrix (Bonnabel
and Sepulchre, 2009; Mishra et al., 2014).

Overall, we formulate the problem of learning
geometric transformations – the orthogonal rota-
tions and the metric scaling – via a binary clas-
sification problem (discussed later). The meta-
embeddings are subsequently computed using these
transformations. The following sections formal-
ize the proposed latent space and meta-embedding
models.

2.1 Learning the Latent Space

In this section, we learn the latent space using geo-
metric transformations.

Let U ∈Md and V ∈Md be orthogonal trans-
formations for embeddings xi and zi, respectively,
for all words i = 1, . . . , n. HereMd represents

the set of d× d orthogonal matrices. The aligned
embeddings in the latent space corresponding to xi
and zi can then be expressed as Uxi and Vzi, re-
spectively. We next induce the Mahalanobis metric
B in this (aligned) latent space, where B is a d× d
symmetric positive-definite matrix. In this latent
space, the similarity between the two embeddings
xi and zi can be obtained by the following expres-
sion of their dot product: (Uxi)

>B(Vzi). This
expression may also be interpreted as the standard
dot product (cosine similarity) between B

1
2Uxi

and B
1
2Vzi, where B

1
2 denotes the matrix square

root of the symmetric positive definite matrix B.
The orthogonal transformations as well as the

Mahalanobis metric are learned via the following
binary classification problem: pairs of word embed-
dings {xi, zi} of the same word i belong to the pos-
itive class while pairs {xi, zj} belong to the nega-
tive class (for i 6= j). We consider the similarity be-
tween the two embeddings in the latent space as the
decision function of the proposed binary classifica-
tion problem. Let X = [x1, . . . , xn] ∈ Rd×n and
Z = [z1, . . . , zn] ∈ Rd×n be the word embedding
matrices for n words, where the columns corre-
spond to different words. In addition, let Y denote
the label matrix, where Yii = 1 for i = 1, . . . , n
and Yij = 0 for i 6= j. The proposed optimization
problem employs the simple to optimize square
loss function:

min
U,V∈Md,

B�0

∥∥∥X>U>BVZ−Y
∥∥∥2 + C ‖B‖2 , (1)

where ‖ · ‖ is the Frobenius norm (which gener-
alizes the 2-norm to matrices) and C > 0 is the
regularization parameter.

2.2 Averaging and Concatenation in Latent
Space

Meta-embeddings constructed by averaging or
concatenating the given word embeddings have
been shown to obtain highly competitive perfor-
mance (Yin and Shutze, 2016; Coates and Bolle-
gala, 2018). Hence, we propose to learn meta-
embeddings as averaging or concatenation in the
learned latent space.

Geometry-Aware Averaging
The meta-embedding wi of a word i is gener-
ated as an average of the (aligned) word em-
beddings in the latent space. The latent space
representation of xi, as a function of orthogo-
nal transformation U and metric B, is B

1
2Uxi
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(Jawanpuria et al., 2019). Hence, we obtain
wi = average(B

1
2Uxi,B

1
2Vzi) = (B

1
2Uxi +

B
1
2Vzi)/2.
It should be noted that the proposed geometry-

aware averaging approach generalizes the plain
averaging method proposed in (Coates and Bolle-
gala, 2018), which is now a particular case in our
framework by choosing U, V, and B as identity
matrices.

Geometry-Aware Concatenation
We next propose to concatenate the aligned em-
beddings in the learned latent space. For a given
word i, with xi and zi as different source embed-
dings, the meta-embeddings wi learned by the
proposed geometry-aware concatenation model
is wi = concatenation(B

1
2Uxi,B

1
2Vzi) =

[(B
1
2Uxi)

>, (B
1
2Vzi)

>]>. The plain concatena-
tion method studied in (Yin and Shutze, 2016) is a
special case of the proposed geometry-aware con-
catenation (by setting U, V, and B as identity
matrices).

2.3 Optimization

The proposed optimization problem (1) employs
square loss function and `2-norm regularization,
both of which are well-studied in the literature. The
search space is the Cartesian product of the set of
d-dimensional symmetric positive definite matrices
and the set of d-dimensional orthogonal matrices,
both of which are smooth spaces. Such sets have
well-known Riemannian manifold structure (Lee,
2003) that allows to propose computationally effi-
cient iterative optimization algorithms. A manifold
may be viewed as a generalization of the notion
of surface to higher dimensions. We employ the
popular Riemannian optimization framework (Ab-
sil et al., 2008) to solve (1). Recently, Jawanpuria
et al. (2019) have studied a similar optimization
problem in the context of learning cross-lingual
word embeddings.

Our implementation is done using the Pymanopt
toolbox (Townsend et al., 2016), which is a publicly
available Python toolbox for Riemannian optimiza-
tion algorithms. In particular, we use the conjugate
gradient algorithm of Pymanopt. For this, we just
need to supply the objective function of (1). This
can be done efficiently as the numerical cost of
computing the objective function is O(nd2). The
overall computational cost of our implementation
scales linearly with the number of words in the

vocabulary sets. Our code is available at https:
//github.com/SatyadevNtv/geo-meta-emb.

3 Experiments

In this section, we evaluate the performance of the
proposed meta-embedding models.

3.1 Evaluation Tasks and Datasets

We consider the following standard evaluation
tasks (Yin and Shutze, 2016; Coates and Bollegala,
2018):
• Word similarity: in this task, we compare the

human-annotated similarity scores between
pairs of words with the corresponding cosine
similarity computed via the constructed meta-
embeddings. We report results on the follow-
ing benchmark datasets: RG (Rubenstein and
Goodenough, 1965), MC (Miller and Charles,
1991), WS (Finkelstein et al., 2001), MTurk
(Halawi et al., 2012), RW (Luong et al., 2013),
and SL (Hill et al., 2015). Following pre-
vious works (Yin and Shutze, 2016; Coates
and Bollegala, 2018; O’Neill and Bollegala,
2020), we report the Spearman correlation
score (higher is better) between the cosine
similarity (computed via meta-embeddings)
and the human scores.
• Word analogy: in this task, the aim is to an-

swer questions which have the form “A is to
B as C is to ?” (Mikolov et al., 2013). After
generating the meta-embeddings a, b, and c
(corresponding to terms A, B, and C, respec-
tively), the answer is chosen to be the term
whose meta-embedding has the maximum co-
sine similarity with (b−a+c) (Mikolov et al.,
2013). The benchmark datasets include MSR
(Gao et al., 2014), GL (Mikolov et al., 2013),
and SemEval (Jurgens et al., 2012). Follow-
ing previous works (Yin and Shutze, 2016;
Coates and Bollegala, 2018; O’Neill and Bol-
legala, 2020), we report the percentage of cor-
rect answers for MSR and GL datasets, and
the Spearman correlation score for SemEval.
In both cases, a higher score implies better
performance.

We learn the meta-embeddings from the follow-
ing publicly available 300-dimensional pre-trained
word embeddings for English.
• CBOW (Mikolov et al., 2013): has 929 023

word embeddings trained on Google News.
• GloVe (Pennington et al., 2014): has

https://github.com/SatyadevNtv/geo-meta-emb
https://github.com/SatyadevNtv/geo-meta-emb


42

Model RG MC WS MTurk RW SL Avg.(WS) MSR GL SemEvaL Avg.(WA)

CBOW 76.1 80.0 77.2 68.4 53.4 44.2 66.5 71.7 55.4 20.4 49.2
GloVe 82.9 84.0 79.6 70.0 48.7 45.3 68.4 69.3 75.2 18.6 54.4

CONC 81.1 84.6 81.4 71.9 54.6 46.0 69.9 76.6 69.9 20.1 55.5
AVG 81.5 83.7 79.4 72.1 52.9 46.2 69.3 73.7 66.9 19.7 53.4
Geo-CONC 86.0 85.0 81.2 70.5 55.6 48.2 71.1 78.1 73.3 19.9 57.1
Geo-AVG 85.8 83.5 81.2 69.1 55.7 48.2 70.6 77.3 72.3 19.5 56.3

Table 1: Generalization performance of the meta-embedding algorithms on the word similarity and the word
analogy tasks with GloVe and CBOW source embeddings. The columns ‘Avg.(WS)’ and ‘Avg.(WA)’ correspond
to the average performance on the word similarity and the word analogy tasks, respectively.

Model RG MC WS MTurk RW SL Avg.(WS) MSR GL SemEvaL Avg.(WA)

GloVe 82.9 84.0 79.6 70.0 48.7 45.3 68.4 69.3 75.2 18.6 54.4
fastText 83.8 82.5 83.5 73.3 58.0 46.4 71.2 78.7 71.0 22.5 57.4

CONC 83.8 82.5 83.4 73.3 57.9 46.4 71.2 79.8 71.7 22.5 58.0
AVG 83.4 82.1 83.5 73.3 58.0 46.5 71.1 79.7 71.7 22.4 57.9
Geo-CONC 83.7 84.0 82.6 74.6 55.1 48.4 71.4 80.4 79.3 21.5 60.4
Geo-AVG 83.6 82.0 82.7 74.3 57.0 48.4 71.3 79.1 71.1 23.1 57.8

Table 2: Generalization performance of the meta-embedding algorithms on the word similarity and the word
analogy tasks with GloVe and fastText source embeddings. The columns ‘Avg.(WS)’ and ‘Avg.(WA)’ correspond
to the average performance on the word similarity and the word analogy tasks, respectively.

1 917 494 word embeddings trained on 42B
tokens of web data from the common crawl.
• fastText (Bojanowski et al., 2017): has
2 000 000 word embeddings trained on com-
mon crawl.

The meta-embeddings are learned on the common
set of words from different pairs of the source em-
beddings. The number of common words between
various source embeddings pairs are as follows:
154 077 (GloVe ∩ CBOW), 552 168 (GloVe ∩ fast-
Text), and 641 885 (CBOW ∩ fastText).

3.2 Results and Discussion

The performance of our geometry-aware averag-
ing and concatenation models, henceforth termed
as Geo-AVG and Geo-CONC, respectively, are re-
ported in Tables 1-3. Each table corresponds to a
pair of source embeddings (from CBOW, GloVe,
and fastText) and the meta-embeddings generated
from the source embeddings. We report the perfor-
mance of the following:
• the proposed models Geo-AVG and Geo-

CONC
• the meta-embeddings models AVG (Coates

and Bollegala, 2018) and CONC (Yin and

Shutze, 2016), which perform plain averag-
ing and concatenation, respectively
• the source embeddings, which serve as a

benchmark the meta-embeddings algorithms
should ideally surpass in order to justify their
usage

We observe that the proposed geometry-aware
models (Geo-AVG and Geo-CONC) outperform
the individual source embeddings in most datasets.
Among the source embeddings, fastText performs
better than CBOW and GloVe. Interestingly, we ob-
serve that the performance of the meta-embeddings
generated by the proposed Geo-CONC with CBOW
and GloVe (results in Table 1) is at par with the fast-
Text embeddings (results in Table 2).

The proposed models also easily surpass the
AVG and CONC models in both the word simi-
larity and the word analogy tasks. In all the three
tables, the proposed models obtain the best overall
performance in both the tasks. This shows that the
alignment of word embedding spaces with orthogo-
nal rotations and the Mahalanobis metric improves
the overall quality of the meta-embeddings.
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Model RG MC WS MTurk RW SL Avg.(WS) MSR GL SemEvaL Avg.(WA)

CBOW 76.1 80.0 77.2 68.4 53.4 44.2 66.5 71.7 55.4 20.4 49.2
fastText 83.8 82.5 83.5 73.3 58.0 46.4 71.2 78.7 71.0 22.5 57.4

CONC 83.8 82.5 83.5 73.6 59.9 46.4 71.6 79.9 75.8 22.5 59.4
AVG 83.7 82.5 83.4 73.7 59.8 46.4 71.6 79.9 75.8 22.5 59.4
Geo-CONC 85.3 84.3 82.9 73.6 59.7 47.4 72.2 80.1 76.9 22.1 59.7
Geo-AVG 85.5 84.6 82.9 73.6 59.7 47.4 72.3 79.9 76.9 22.0 59.6

Table 3: Generalization performance of the meta-embedding algorithms on the word similarity and the word
analogy tasks with CBOW and fastText source embeddings. The columns ‘Avg.(WS)’ and ‘Avg.(WA)’ correspond
to the average performance on the word similarity and the word analogy tasks, respectively.

4 Conclusion

We propose a geometric framework for learning
meta-embeddings of words from various sources
of word embeddings. Our framework aligns the
embeddings in a common latent space. The im-
portance of learning the latent space is shown in
several benchmark datasets, where the proposed al-
gorithms (Geo-AVG and Geo-CONC) outperforms
the plain averaging and the plain concatenation
models.

Extending the proposed geometric framework
to non-linear word meta-embedding approaches
and for generating sentence meta-embeddings are
promising directions of future research.
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