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Abstract

In this paper, we provide an alternate perspec-
tive on word representations, by reinterpreting
the dimensions of the vector space of a word
embedding as a collection of features. In this
reinterpretation, every component of the word
vector is normalized against all the word vec-
tors in the vocabulary. This idea now allows
us to view each vector as an n-tuple (akin
to a fuzzy set), where n is the dimensional-
ity of the word representation and each ele-
ment represents the probability of the word
possessing a feature. Indeed, this representa-
tion enables the use fuzzy set theoretic oper-
ations, such as union, intersection and differ-
ence. Unlike previous attempts, we show that
this representation of words provides a notion
of similarity which is inherently asymmetric
and hence closer to human similarity judge-
ments. We compare the performance of this
representation with various benchmarks, and
explore some of the unique properties includ-
ing function word detection, detection of pol-
ysemous words, and some insight into the in-
terpretability provided by set theoretic opera-
tions.

1 Introduction

Word embedding is one of the most crucial facets
of Natural Language Processing (NLP) research.
Most non-contextualized word representations aim
to provide a distributional view of lexical semantics,
known popularly by the adage ”a word is known by
the company it keeps” (Firth, 1957). Popular imple-
mentations of word embeddings such as word2vec
(Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014) aim to represent words as embeddings
in a vector space. These embeddings are trained
to be oriented such that vectors with higher simi-
larities have higher dot products when normalized.
Some of the most common methods of intrinsic
evaluation of word embeddings include similarity,

analogy and compositionality. While similarity is
computed using the notion of dot product, analogy
and compositionality use vector addition.

However, distributional representations of words
over vector spaces have an inherent lack of inter-
pretablity (Goldberg and Levy, 2014). Further-
more, due to the symmetric nature of the vector
space operations for similarity and analogy, which
are far from human similarity judgements (Tver-
sky, 1977). Other word representations tried to
provide asymmetric notions of similarity in a non-
contextualized setting, including Gaussian embed-
dings (Vilnis and McCallum, 2014) and word sim-
ilarity by dependency (Gawron, 2014). However,
these models could not account for the inherent
compositionality of word embeddings (Mikolov
et al., 2013b). Moreover, while work has been done
on providing entailment for vector space models
by entirely reinterpreting word2vec as an entail-
ment based semantic model (Henderson and Popa,
2016), it requires an external notion of composi-
tionality. Finally, word2vec and GloVe, as such, are
meaning conflation deficient, meaning that a single
word with all its possible meanings is represented
by a single vector (Camacho-Collados and Pile-
hvar, 2018). Sense representation models in non-
contextualized representations such as multi-sense
skip gram, by performing joint clustering for local
word neighbourhood. However, these sense repre-
sentations are conditioned on non-disambiguated
senses in the context and require additional con-
ditioning on the intended senses (Li and Jurafsky,
2015).

In this paper, we aim to answer the question:
Can a single word representation mechanism ac-
count for lexical similarity and analogy, composi-
tionality, lexical entailment and be used to detect
and resolve polysemy? We find that by performing
column-wise normalization of word vectors trained
using the word2vec skip-gram negative sampling
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regime, we can indeed represent all the above char-
acteristics in a single representation. We interpret a
column wise normalized word representation. We
now treat these representations as fuzzy sets and
can therefore use fuzzy set theoretic operations
such as union, intersection, difference, etc. while
also being able to succinctly use asymmetric no-
tions of similarity such as K-L divergence and cross
entropy. Finally, we show that this representation
can highlight syntactic features such as function
words, use their properties to detect polysemy, and
resolve it qualitatively using the inherent composi-
tionality of this representation.

In order to make these experiments and their
results observable in general, we have provided
the code which can be used to run these opera-
tions. The code can be found at https://github.
com/AlokDebnath/fuzzy_embeddings. The code
also has a working command line interface where
users can perform qualitative assessments on the
set theoretic operations, similarity, analogy and
compositionality which are discussed in the paper.

2 Related Work

The representation of words using logical
paradigms such as fuzzy logic, tensorial representa-
tions and other probabilistic approaches have been
attempted before. In this section, we uncover some
of these representations in detail.

Lee (1999) introduced measures of distributional
similarity to improve the probability estimation for
unseen occurrences. The measure of similarity of
distributional word clusters was based on multiple
measures including Euclidian distance, cosine dis-
tance, Jaccard’s Coefficient, and asymmetric mea-
sures like α-skew divergence.

Bergmair (2011) used a fuzzy set theoretic view
of features associated with word representations.
While these features were not adopted from the
vector space directly, it presents a unique perspec-
tive of entailment chains for reasoning tasks. Their
analysis of inference using fuzzy representations
provides interpretability in reasoning tasks.

Grefenstette (2013) presents a tenosrial calcu-
lus for word embeddings, which is based on com-
positional operators which uses vector representa-
tion of words to create a compositional distribu-
tional model of meaning. By providing a category-
theoretic framework, the model creates an inher-
ently compositional structure based on distribu-
tional word representations. However, they showed

that in this framework, quantifiers could not be
expressed.

Herbelot and Vecchi (2015) refers to a notion of
general formal semantics inferred from a distribu-
tional representation by creating relevant ontology
based on the existing distribution. This mapping is
therefore from a standard distributional model to
a set-theoretic model, where dimensions are predi-
cates and weights are generalised quantifiers.

Emerson and Copestake (2016, 2017) developed
functional distributional semantics, which is a prob-
abilistic framework based on model theory. The
framework relies on differentiating and learning
entities and predicates and their relations, on which
Bayesian inference is performed. This representa-
tion is inherently compositional, context dependent
representation.

3 Background: Fuzzy Sets and Fuzzy
Logic

In this section, we provide a basic background of
fuzzy sets including some fuzzy set operations,
reinterpreting sets as tuples in a universe of finite
elements and showing some set operations. We
also cover the computation of fuzzy entropy as a
Bernoulli random variable.

A fuzzy set is defined as a set with probabilistic
set membership. Therefore, a fuzzy set is denoted
as A = {(x, µA(x)), x ∈ Ω}, where x is an ele-
ment of set A with a probability µA(x) such that
0 ≤ µA ≤ 1, and Ω is the universal set.

If our universe Ω is finite and of cardinality n,
our notion of probabilistic set membership is con-
strained to a maximum n values. Therefore, each
fuzzy set A can be represented as an n-tuple, with
each member of the tupleA[i] being the probability
of the ith member of Ω. We can rewrite a fuzzy
set as an n-tuple A′ = (µA′(x),∀x ∈ Ω), such
that |A′| = |Ω|. In this representation, A[i] is the
probability of the ith member of the tuple A. We
define some common set operations in terms of this
representation as follows.

https://github.com/AlokDebnath/fuzzy_embeddings
https://github.com/AlokDebnath/fuzzy_embeddings
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(A ∩B)[i] ≡ A[i]×B[i] (set intersection)
(A ∪B)[i] ≡ A[i] +B[i]−A[i]×B[i] (set union)
(A tB)[i] ≡ max(1,min(0, A[i] +B[i])) (disjoint union)
(¬A)[i] ≡ 1−A[i] (complement)
(A \B)[i] ≡ A[i]−min(A[i], B[i]) (set difference)
(A ⊆ B) ≡ ∀x ∈ Ω : µA(x) ≤ µB(x) (set inclusion)

|A| ≡
∑
i∈Ω

µA(i) (cardinality)

The notion of entropy in fuzzy sets is an extrapo-
lation of Shannon entropy from a single variable on
the entire set. Formally, the fuzzy entropy of a set
S is a measure of the uncertainty of the elements
belonging to the set. The possibility of a member
x belonging to the set S is a random variable XS

i

which is truewith probability (pSi ) and false with
probability (1− pSi ). Therefore, XS

i is a Bernoulli
random variable. In order to compute the entropy
of a fuzzy set, we sum the entropy values of each
XS

i :

H(A) ≡
∑
i

H(XA
i )

≡
∑
i

−pAi ln pAi − (1− pAi ) ln(1− pAi )

≡
∑
i

−A[i] lnA[i]− (1−A[i]) ln(1−A[i])

This formulation will be useful in section 4.4
where we discuss two asymmetric measures of sim-
ilarity, cross-entropy and K-L divergence, which
can be seen as a natural extension of this formula-
tion of fuzzy entropy.

4 Representation and Operations

In this section, we use the mathematical formula-
tion above to reinterpret word embeddings. We
first show how these word representations are cre-
ated, then detail the interpretation of each of the set
operations with some examples. We also look into
some measures of similarity and their formulation
in this framework. All examples in this section
have been taken using the Google News Negative
300 vectors1. We used these gold standard vectors

1https://code.google.com/archive/p/
word2vec/

4.1 Constructing the Tuple of Feature
Probabilities

We start by converting the skip-gram negative sam-
ple word vectors into a tuple of feature probabili-
ties. In order to construct a tuple of features rep-
resentation in Rn, we consider that the projection
of a vector ~v onto a dimension i is a function of
its probability of possessing the feature associated
with that dimension. We compute the conversion
from a word vector to a tuple of features by first
exponentiating the projection of each vector along
each direction, then averaging it over that feature
for the entire vocabulary size, i.e. column-wise.

vexp[i] ≡ exp~v[i]

v̂[i] ≡ vexp[i]∑
w∈VOCAB expwexp[i]

This normalization then produces a tuple of prob-
abilities associated with each feature (correspond-
ing to the dimensions of Rn).

In line with our discussion from 3, this tuple of
probabilities is akin to our representation of a fuzzy
set. Let us consider the word v, and its correspond-
ing n-dimensional word vector ~v. The projection
of ~v on a dimension i normalized (as shown above)
to be interpreted as if this dimension i were a prop-
erty, what is probability that v would possess that
property?

In word2vec, words are distributed in a vector
space of a particular dimensionality. Our represen-
tation attempts to provide some insight into how
the arrangement of vectors provides insight into the
properties they share. We do so by considering a
function of the projection of a word vector onto a
dimension and interpreting as a probability. This
allows us an avenue to explore the relation between
words in relation to the properties they share. It
also allows us access to the entire arsenal of set
operations, which are described below in section
4.2.

4.2 Operations on Feature Probabilities
Now that word vectors can be represented as tuples
of feature probabilities, we can apply fuzzy set the-
oretic operations in order to ascertain the veracity
of the implementation. We show qualitative exam-
ples of the set operations in this subsection, and the
information they capture. Throughout this subsec-
tion, we follow the following notation: For any two
words w1, w2 ∈ VOCAB, ŵ1 and ŵ2 represents

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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R̂ ~R V̂ ~V R̂ ∪ V̂
risen cashew wavelengths yellowish flower
capita risen ultraviolet whitish red
peaked soared purple aquamarine stripes
declined acuff infrared roans flowers
increased rafters yellowish bluish green
rises equalled pigment greenish garlands

Table 1: An example of feature union. Rose is repre-
sented byR and Violet by V . We see here that while
the word rose and violet have different meanings and
senses, the unionR∪V captures the sense of the flower
as well as of colours, which are the senses common to
these two words. We list words closest to the given
word in the table. Closeness measured by cosine simi-
larity for word2vec and cross-entropy-similarity for our
vectors.

those words using our representation, while ~w1 and
~w2 are the word2vec vectors of those words.

Feature Union, Intersection and Difference In
section 3, we showed the formulation of fuzzy set
operations, assuming a finite universe of elements.
As we saw in section 4.1, considering each dimen-
sion as a feature allows us to reinterpret word vec-
tors as tuples of feature probabilities. Therefore,
we can use the fuzzy set theoretic operations on
this reinterpretation of fuzzy sets. For convenience,
these operations have been called feature union,
intersection and difference.

Intuitively, the feature intersection of words ŵ1

and ŵ2 should give us that word ŵ1∩2 which has
the features common between the two words; an
example of which is given in table 1. Similarly,
the feature union ŵ1∪2 ' ŵ1 ∪ ŵ2 which has the
properties of both the words, normalized for those
properties which are common between the two,
and feature difference ŵ1\2 ' ŵ1 \ ŵ2 is that word
which is similar to w1 without the features of w2.
Examples of feature intersection and feature differ-
ence are shown in table 2 and 3 respectively.

While feature union does not seem to have a
word2vec analogue, we consider that feature inter-
section is analogous to vector addition, and feature
difference as analogous to vector difference.

Feature Inclusion Feature inclusion is based on
the subset relation of fuzzy sets. We aim to capture
feature inclusion by determining if there exist two
words w1 and w2 such that all the feature probabil-
ities of ŵ1 are less than that of ŵ2, then ŵ2 ⊆ ŵ1.
We find that feature inclusion is closely linked to
hyponymy, which we will show in 5.3.

Ĉ P̂ Ĉ ∩ P̂
hardware vested cpu
graphics purchasing hardware
multitasking capita powerpc
console exercise machine
firewire parity multitasking
mainframe veto microcode

~C ~P ~C + ~P
bioses centralize expandability
scummvm veto writable
hardware decembrist cpcs
imovie exercised reconfigure
writable redistribution backplane
console devolving oem

Table 2: An example of feature intersection with the
possible word2vec analogue (vector addition). The
word computer is represented by C and power by
P . Note that power is also a decent example of poly-
semy, and we see that in the context of computers, the
connotations of hardware and the CPU are the most ac-
cessible. We list words closest to the given word in
the table. Closeness measured by cosine similarity for
word2vec and cross-entropy-similarity for our vectors.

4.3 Interpreting Entropy

For a word represented using a tuple of feature
probabilities, the notion of entropy is strongly tied
to the notion of certainty (Xuecheng, 1992), i.e.
with what certainty does this word possess or not
possess this set of features? Formally, the fuzzy
entropy of a set S is a measure of the uncertainty
of elements belonging to the set. The possibility
a member xi belonging to S is a random variable
XS

i , which is true with probability pSi , false
with probability (1− pSi ). Thus, XS

i is a Bernoulli
random variable. So, to measure the fuzzy entropy
of a set, we add up the entropy values of each of
the XS

i (MacKay and Mac Kay, 2003).
Intuitively, words with the highest entropy are

those which have features which are equally likely
to belong to them and to their complement, i.e.
∀i ∈ Ω, A[i] ' 1 − A[i]. So words with high
fuzzy entropy can occur only in two scenarios: (1)
The words occur with very low frequency so their
random initialization remained, or (2) The words
occur around so many different word groups that
their corresponding fuzzy sets have some probabil-
ity of possessing most of the features.

Therefore, our representation of words as tuples
of features can be used to isolate function words
better than the more commonly considered notion
of simply using frequency, as it identifies the in-
formation theoretic distribution of features based
on the context the function word occurs in. Table
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F̂ B̂ F̂ \ B̂
french isles communaut
english colonial aise
france subcontinent langue
german cinema monet
spanish boer dictionnaire
british canadians gascon

~F ~B ~F − ~B
french scottish ranjit
english american privatised
france thatcherism tardis
german netherlands molloy
spanish hillier isaacs
british cukcs raj

Table 3: An example of feature difference, along
with a possible word2vec analogue (vector difference).
French is represented by F and British by B. We
see here that set difference capture french words from
the dataset, while there does not seem to be any such
correlation in the vector difference. We list words clos-
est to the given word in the table. Closeness measured
by cosine similarity for word2vec and cross-entropy-
similarity for our vectors.

4 provides the top 15 function words by entropy,
and the correspodingly ranked words by frequency.
We see that frequency is clearly not a good enough
measure to identify function words.

4.4 Similarity Measures

One of the most important notions in presenting a
distributional word representation is its ability to
capture similarity (Van der Plas and Tiedemann,
2006). Since we use and modify vector based word
representations, we aim to preserve the ”distribu-
tion” of the vector embeddings, while providing a
more robust interpretation of similarity measures.
With respect to similarity, we make two strong
claims:

1. Representing words as a tuple of feature prob-
abilities lends us an inherent notion of similar-
ity. Feature difference provides this notion, as
it estimates the difference between two words
along each feature probability.

2. Our representation allows for an easy adoption
of known similarity measures such as K-L
divergence and cross-entropy.

Note that feature difference (based on fuzzy set
difference), K-L divergence and cross-entropy are
all asymmetric measures of similarity. As Ne-
matzadeh et al. (2017) points out, human similarity
judgements are inherently asymmetric in nature.

We would like to point out that while most meth-
ods of introducing asymmetric similarity measures
in word2vec account for both the focus and context
vector Asr et al. (2018) and provide the asymme-
try by querying on this combination of focus and
context representations of each word. Our repre-
sentation, on the other hand, uses only the focus
representations (which are a part of the word rep-
resentations used for downstream task as well as
any other intrinsic evaluation), and still provides an
innately asymmetric notion of similarity.

K-L Divergence From a fuzzy set perspective,
we measure similarity as an overlap of features.
For this purpose, we exploit the notion of fuzzy
information theory by comparing how close the
probability distributions of the similar words are
using a standard measure, Kullback-Leibler (K-
L) divergence. K-L divergence is an asymmetric
measure of similarity.

The K-L divergence of a distribution P from an-
other distribution Q is defined in terms of loss of
compression. Given data d which follows distribu-
tion P , the extra bits need to store it under the false
assumption that the data d follows distribution Q
is the K-L divergence between the distributions P
and Q. In the fuzzy case, we can compute the KL
divergence as:

D(S || T ) ≡ D
(
XS

i

∣∣∣∣∣∣∣∣ XT
i

)
=
∑
i

pSi log
(
pSi /p

T
i

)

We see in table 5 some qualitative examples of
how K-L divergence shows the relation between
two words (or phrases when composed using fea-
ture intersection as in the case of north korea).
We exemplify Nematzadeh et al. (2017)’s human
annotator judgement of the distance between China
and North Korea, where human annotators consid-
ered “North Korea” to be very similar to “China,”
while the reverse relationship was rated as signif-
icantly less strong (“China” is not very similar to
”North Korea”).

Cross Entropy We also calculate the cross en-
tropy between two words, as it can be used to de-
termine the entropy associated with the similarity
between two words. Ideally, by determining the
”spread” of the similarity of features between two
words, we can determine the features that allow two
words to be similar, allowing a more interpretable
notion of feature-wise relation.
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and the in one which to however two for eight
this of of in the zero to is a for
as and only a also nine it as but s

Table 4: On the left: Top 15 words with highest entropy with frequency ≥ 100 (note that all of them are function
words). On the right: Top 15 words with the highest frequency. The non-function words have been emphasized for
comparison.

Example 1 D(ganges || delta) 6.3105
D(delta || ganges) 6.3040

Example 2 D(north ∩ korea || china) 1.02923
D(china || north ∩ korea) 10.60665

Table 5: Examples of KL-divergence as an asymmetric
measure of similarity. Lower is closer. We see here that
the evaluation of North Korea as a concept being closer
to China than vice versa can be observed by the use of
K-L Divergence on column-wise normalization.

The cross-entropy of two distributions P and Q
is a sum of the entropy of P and the K-L divergence
between P and Q. In this sense, in captures both
the uncertainty in P , as well as the distance from P
to Q, to give us a general sense of the information
theoretic difference between the concepts of P and
Q. We use a generalized version of cross-entropy
to fuzzy sets (Li, 2015), which is:

H(S, T ) ≡
∑
i

H(XS
i ) +D(XS

i || XT
i )

Feature representations which on comparison
provide high cross entropy imply a more distributed
feature space. Therefore, provided the right words
to compute cross entropy, it could be possible to
extract various features common (or associated)
with a large group of words, lending some insight
into how a single surface form (and its representa-
tion) can capture the distribution associated with
different senses. Here, we use cross-entropy as
a measure of polysemy, and isolate polysemous
words based on context. We provide an example of
capturing polysemy using composition by feature
intersection in table 6.

We can see that the words which are most similar
to noble are a combination of words from many
senses, which provides some perspective into its
distribution, . Indeed, it has an entropy value of
6.27652.

4.5 Constructing Analogy
Finally, we construct the notion of analogy in our
representation of a word as a tuple of features.
Word analogy is usually represented as a problem

2For reference, the word the has an entropy of 6.2934.

N̂ M̂ Ĝ N̂ ∩ M̂ N̂ ∩ Ĝ
nobility metal bad fusible good
isotope fusible manners unreactive dharma
fujwara ductility happiness metalloids morals
feudal with evil ductility virtue
clan alnico excellent heavy righteous

~N ~M ~G ~N + ~M ~N + ~G
noblest trivalent bad fusible gracious
auctoritas carbides natured metals virtuous
abies metallic humoured sulfides believeth
eightfold corrodes selfless finntroll savages
vojt alloying gracious rhodium hedonist

Table 6: Polysemy of the word noble, in the context
of the words good and metal. noble is represented
by N , metal by M and good by G. We also provide
the word2vec analogues of the same.

where given a pairing (a : b), and a prior x, we are
asked to compute an unknown word y? such that
a : b :: x : y?. In the vector space model, analogy
is computed based on vector distances. We find that
this training mechanism does not have a consistent
interpretation beyond evaluation. This is because
normalization of vectors performed only during
inference, not during training. Thus, computing
analogy in terms of vector distances provides little
insight into the distribution of vectors or to the no-
tion of the length of the word vectors, which seems
to be essential to analogy computation using vector
operations

In using a fuzzy set theoretic representation, vec-
tor projections are inherently normalized, making
them feature dense. This allows us to compute
analogies much better in lower dimension spaces.
We consider analogy to be an operation involving
union and set difference. Word analogy is com-
puted as follows:

a : b :: x : y?

y? = b− a+ x =⇒ y? = (b+ x)− a
y = (b t x) \ a (Set-theoretic interpretation)

Notice that this form of word analogy can be ”de-
rived” from the vector formula by re-arrangement.
We use non-disjoint set union so that the com-
mon features are not eliminated, but the values
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Word 1 Word 2 Word 3 word2vec Our representation
bacteria tuberculosis virus polio hiv

cold freezing hot evaporates boiling
ds nintendo dreamcast playstation sega

pool billiards karate taekwondo judo

Table 7: Examples of analogy compared to the analogy
in word2vec. We see here that the comparisons con-
structed by feature representations are similar to those
given by the standard word vectors.

are clipped at (0, 1] so that the fuzzy representa-
tion is consistent. Analogical reasoning is based
on the common features between the word repre-
sentations, and conflates multiple types of relations
such as synonymy, hypernymy and causal relations
(Chen et al., 2017). Using fuzzy set theoretic rep-
resentations, we can also provide a context for the
analogy, effectively reconstructing analogous rea-
soning to account for the type of relation from a
lexical semantic perspective.

Some examples of word analogy based are pre-
sented in table 7.

5 Experiments and Results

In this section, we present our experiments and
their results in various domains including similar-
ity, analogy, function word detection, polysemy
detection, lexical entailment and compositionality.
All the experiments have been conducted on estab-
lished datasets.

5.1 Similarity and Analogy

Similarity and analogy are the most popular intrin-
sic evaluation mechanisms for word representations
(Mikolov et al., 2013a). Therefore, to evaluate our
representations, the first tasks we show are similar-
ity and analogy. For similarity computations, we
use the SimLex corpus (Hill et al., 2015) for train-
ing and testing at different dimensions For word
analogy, we use the MSR Word Relatedness Test
(Mikolov et al., 2013c). We compare it to the vector
representation of words for different dimensions.

5.1.1 Similarity
Our scores our compared to the word2vec scores
of similarity using the Spearman rank correlation
coefficient (Spearman, 1987), which is a ratio of the
covariances and standard deviations of the inputs
being compared.

As shown in table 8, using our representation,
similarity is slightly better represented according to
the SimLex corpus. We show similarity on both the
asymmetric measures of similarity for our repre-

Dims. word2vec Our Representation
K-L Divergence Cross-Entropy

20 0.2478 0.2690 0.2744
50 0.2916 0.2966 0.2981

100 0.2960 0.3124 0.3206
200 0.3259 0.3253 0.3298

Table 8: Similarity scores on the SimLex-999 dataset
(Hill et al., 2015), for various dimension sizes (Dims.).
The scores are provided according to the Spearman Cor-
relation to incorporate higher precision.

Category word2vec Our representation
50 100 50 100

Capital Common Countries 21.94 37.55 39.13 47.23
Capital World 13.02 20.10 27.30 26.54
Currency 12.24 18.60 25.27 24.90
City-State 10.38 16.70 23.24 23.51
Family 10.61 17.34 23.67 23.88

Adjective-Adverb
Syntactic 4.74 3.23 7.26 3.83
Semantic 10.61 17.34 23.67 23.88
Overall 9.92 15.68 21.73 21.52

Opposite
Syntactic 4.06 3.66 7.61 4.92
Semantic 10.61 17.34 23.67 23.88
Overall 9.36 14.73 20.60 20.26

Comparative
Syntactic 8.86 12.63 16.88 15.39
Semantic 10.61 17.34 23.67 23.88
Overall 10.10 15.96 21.67 21.39

Superlative
Syntactic 7.59 11.30 14.32 13.36
Semantic 10.61 17.34 23.67 23.88
Overall 9.54 15.20 20.35 20.15

Present-Participle
Syntactic 7.51 10.96 14.31 13.14
Semantic 10.61 17.34 23.67 23.88
Overall 9.34 14.73 19.84 19.49

Nationality
Syntactic 12.51 19.07 21.64 21.96
Semantic 10.61 17.34 23.67 23.88
Overall 11.51 18.16 22.71 22.97

Past Tense
Syntactic 11.65 17.09 20.43 19.76
Semantic 10.61 17.34 23.67 23.88
Overall 11.16 17.21 21.96 27.72

Plural
Syntactic 11.76 17.23 20.53 19.89
Semantic 10.61 17.34 23.67 23.88
Overall 11.26 17.28 21.90 21.64

Plural Verbs
Syntactic 11.36 16.60 19.88 19.46
Semantic 10.61 17.34 23.67 23.88
Overall 11.05 16.91 21.46 21.30

Table 9: Comparison of Analogies between word2vec
and our representation for 50 and 100 dimensions
(Dims.). For the first five, only overall accuracy is
shown as overall accuracy is the same as semantic ac-
curacy (as there is no syntactic accuracy measure). For
all the others, we present, syntactic, semantic and over-
all accuracy as well. We see here that we outperform
word2vec on every single metric.

sentation, K-L divergence as well as cross-entropy.
We see that cross-entropy performs better than K-L
Divergence. While the similarity scores are gen-
erally higher, we see a reduction in the degree of
similarity beyond 100 dimension vectors (features).

5.1.2 Analogy
For analogy, we see that our model outperforms
word2vec at both 50 and 100 dimensions. We
see that at lower dimension sizes, our normalized
feature representation captures significantly more
syntactic and semantic information than its vector
counterpart. We conjecture that this can primarily
be attributed to the fact that constructing feature
probabilities provides more information about the
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top n words word2vec Our Representation
15 10 15
30 21 30
50 39 47

Table 10: Function word detection using entropy (in
our representation) and by frequency in word2vec. We
see that we consistently detect more function words
than word2vec, based on the 176 function word list
released by Nation (2016). The metric is number of
words, i.e. the number of words chosen by frequency
for word2vec and entropy for our representation

common (and distinct) ”concepts” which are shared
between two words.

Since feature representations are inherently
fuzzy sets, lower dimension sizes provide a more
reliable probability distribution, which becomes
more and more sparse as the dimensionality of the
vectors increases (i.e. number of features rise).
Therefore, we notice that the increase in feature
probabilities is a lot more for 50 dimensions than
it is for 100.

5.2 Function Word Detection

As mentioned in section 4.3, we use entropy as a
measure of detecting function words for the stan-
dard GoogleNews-300 negative sampling dataset3.
In order to quantitatively evaluate the detection of
function words, we choose the top n words in our
representation ordered by entropy with a frequency
≥ 100, and compare it to the top n words ordered
by frequency from word2vec; n being 15, 30 and
50. We compare the number of function words
in both in table 10. The list of function words is
derived from Nation (2016).

5.3 Compositionality

Finally, we evaluate the compositionality of word
embeddings. Mikolov et al. (2013b) claims that
word embeddings in vector spaces possess additive
compositionality, i.e. by vector addition, seman-
tic phrases such as compounds can be well repre-
sented. We claim that our representation in fact
captures the semantics of phrases by performing a
literal combination of the features of the head and
modifier word, therefore providing a more robust
representation of phrases.

We use the English nominal compound phrases
from Ramisch et al. (2016). An initial set of experi-
ments on nominal compounds using word2vec have
been done before (Cordeiro et al., 2016), where it

3https://code.google.com/archive/p/word2vec/

Dims. Metric word2vec Our Representation

50 Spearman 0.3946 0.4117
Pearson 0.4058 0.4081

100 Spearman 0.4646 0.4912
Pearson 0.4457 0.4803

200 Spearman 0.4479 0.4549
Pearson 0.4163 0.4091

Table 11: Results for compositionality of word embed-
dings for nominal compounds for various dimensions
(Dims.). We see that almost across the board, we per-
form better, however, for the Pearson correlation met-
ric, at 200 dimensions, we find that word2vec has a
better representation of rank by frequency for nominal
compounds.

was shown to be a fairly difficult task for modern
non-contextual word embeddings. In order to anal-
yse nominal compounds, we adjust our similarity
metric to account for asymmetry in the similarity
between the head-word and the modifier, and vice
versa. We report performance on two metrics, the
Spearman correlation (Spearman, 1987) and Pear-
son correlation (Pearson, 1920).

The results are shown in table 11. The difference
in scores for the Pearson and Spearman rank cor-
relation show that word2vec at higher dimensions
better represents the rank of words (by frequency),
but at lower dimensions, the feature probability
representation has a better analysis of both rank
by frequency, and its correlation with similarity of
words with a nominal compound. Despite this, we
show a higher Spearman correlation coefficient at
200 dimesions as well, as we capture non-linear
relations.

5.4 Dimensionality Analysis and Feature
Representations

In this subsection, we provide some interpretation
of the results above, and examine the effect of scal-
ing dimensions to the feature representation. As
seen here, the evaluation has been done on smaller
dimension sizes of 50 and 100, and we see that
our representation can be used for a slightly larger
range of tasks from the perspective of intrinsic eval-
uations. However, the results of quantitative anal-
ogy for higher dimensions have been observed to
be lower for fuzzy representations rather than the
word2vec negative-sampling word vectors.

We see that the representation we propose does
not scale well as dimensions increase. This is be-
cause our representation relies on the distribution
of probability mass per feature (dimension) across
all the words. Therefore, increasing the dimension-
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ality of the word vectors used makes the represen-
tation that much more sparse.

6 Conclusion

In this paper, we presented a reinterpretation of
distributional semantics. We performed a column-
wise normalization on word vectors, such that each
value in this normalized representation represented
the probability of the word possessing a feature that
corresponded to each dimension. This provides us
a representation of each word as a tuple of feature
probabilities. We find that this representation can
be seen as a fuzzy set, with each probability being
the function of the projection of the original word
vector on a dimension.

Considering word vectors as fuzzy sets allows
us access to set operations such as union, inter-
section and difference. In our modification, these
operations provide the product, disjoint sum and
difference of the word representations, feature wise.
Using qualitative examples, we show that our rep-
resentation naturally captures an asymmetric no-
tion of similarity using feature difference, from
which known asymmetric measures can be easily
constructed, such as Cross Entropy and K-L Diver-
gence.

We qualitatively show how our model accounts
for polysemy, while showing quantitative proofs
of our representation’s performance at lower di-
mensions in similarity, analogy, compositionality
and function word detection. We hypothesize that
lower dimensions are more suited for our represen-
tation as sparsity increases with higher dimensions,
so the significance of feature probabilities reduces.
This sparsity causes a diffusion of the probabilities
across multiple features.

Through this work, we aim to provide some
insights into interpreting word representations by
showing one possible perspective and explanation
of the lengths and projections of word embeddings
in the vector space. These feature representations
can be adapted for basic neural models, allowing
the use of feature based representations at lower
dimensions for downstream tasks.
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