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Abstract

We evaluate named entity representations of
BERT-based NLP models by investigating
their robustness to replacements from the same
typed class in the input. We highlight that
on several tasks while such perturbations are
natural, state of the art trained models are
surprisingly brittle. The brittleness continues
even with the recent entity-aware BERT mod-
els. We also try to discern the cause of this
non-robustness, considering factors such as to-
kenization and frequency of occurrence. Then
we provide a simple method that ensembles
predictions from multiple replacements while
jointly modeling the uncertainty of type an-
notations and label predictions. Experiments
on three NLP tasks show that our method en-
hances robustness and increases accuracy on
both natural and adversarial datasets.

1 Introduction

Contextual word embeddings from heavily pre-
trained language models (Peters et al., 2018; De-
vlin et al., 2018) now form the basis of many NLP
tasks. While they have lead to improved accuracy
for most tasks, there are mounting concerns on
how well these embeddings encapsulate syntactic
and semantic constructs such as synonyms, mis-
spellings, and knowledge representations. Indeed,
it has been shown that even BERT based models
are not robust to synonym swaps or spelling mis-
takes in a sentence (Jin et al., 2019; Hsieh et al.,
2019; Sun et al., 2019). In this work, we investigate
how well these contextual representations fare for
named entities.

Designing robust representations of named enti-
ties is challenging due to the sheer variety of named
entities. Named entities diversify with language,
geographical location, time of history, and even
with the fine types. Adding to this the varying
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length of such entities combined with out of vocab-
ulary names, the complexity only increases.

We quantify how well current systems under-
stand named entities by studying their robustness
to substitutions of name mentions in a sentence
with other names within an entity class. The entity
class within which we seek such robustness is task-
dependent and easy for humans to provide. For ex-
ample, we may require a natural language inference
model to be robust to the replacement of company
names within the input sentence pairs. In Table 1
we show a sentence pair which contains mentions
of a company name Facebook. When we re-
place that mention with other company names like
Microsoft or Google, a robust model should
continue to make the same prediction. Likewise,
we may require a co-reference resolution model
to be robust to replacements of person names in a
passage, and a grammar error correction model to
be robust to replacement of person names of same
gender or country names. A good language repre-
sentation should be able to generalize well to such
perturbations and not deviate from its output upon
such perturbations.

The contributions of this work are three-fold.
First, we investigate the robustness of trained NLP
models using a generic algorithm that we develop.
We empirically demonstrate a lack of robustness
of state of the art BERT-based models for different
user-specified typed classes spanning three NLP
tasks: natural language inference (NLI), corefer-
ence resolution (CoRef), and Grammar Error Cor-
rection (GEC). The lack of robustness is specif-
ically of concern for an entity-focused task like
CoRef, where 85% of test sentences have change in
their predictions with a single person name change.

Second, we try to seek explanations for such
lack of robustness, by observing performance vs.
frequency of named entities occurring in the fine-
tuning dataset or based on the count of tokens
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Sentence 1: Magner , who is 54 and known as Marge , has been the consumer group ’s chief
operating officer since April 2002 , and sits on Facebook Microsoft ’s management committee
Sentence 2: She has been the consumer unit ’s chief operating officer since April 2002 , and sits
Facebook Microsoft ’s management committee.
Gold: 1 ; Prediction: Original: 1; Perturbed: 0

Sentence 1: The workers accuse Goldman Novell of “ reverse age discrimination ” because of a
change in retirement benefits in 1997 .
Sentence 2: Goldman Novell was sued when it changed its retirement benefits in 1997 .
Gold: 0 ; Prediction: Original: 0; Perturbed: 1

Table 1: Examples on paraphrase detection task – Replacement of an entity

in a named entity. We also explored if BERT’s
wordpiece-level masking was particularly unfavor-
able to entities by switching to Span-BERT, the
recent span based masking model. While overall ac-
curacy improved for all datasets with Span-BERT,
we found no change in the robustness of the model.

Finally, we develop a simple approach that en-
sembles predictions from multiple replacements
(RESEMBLE) while modeling the uncertainty of
type annotations and label predictions. Our ap-
proach not only improves performance on adver-
sarial datasets but also on the original datasets, and
achieves higher stability on all the tasks.

2 Evaluating Robustness to
Named-Entity Replacements

We study the robustness of BERT-based NLP mod-
els w.r.t. type-specific named-entity substitutions,
for tasks like NLI, GEC and CoRef. Algorithm 1
describes our method of probing NLP models for
lack of robustness. Let V be a dictionary of candi-
date named entities of a given type c, and D denote
a dataset consisting of sentence-label pairs (x, y).
Let G be a model fine-tuned on a pre-trained BERT.
For each sentence (x, y) ∈ D, we identify the men-
tions of named-entities of the type c in x1. We
obtain a perturbed sentence xm by replacing all
mentions of a distinct name in x by a random entry
from V . We repeat this process B times where B is
a budget (we used 50), with replacement of names.
Over the B perturbations, the sentence with the
lowest accuracy is added to the set DWorst and the
highest accuracy added to the set DBest. A lower
variance in model’s performance across the datasets
{D, DWorst, DBest} is indicative of higher robust-

1We pre-filtered using a named entity tagger in the spaCy
library, and made manual corrections so that all tagged entity
mentions are correct in D.

Algorithm 1: Probing a model using
named-entity substitutions
Data: D(dataset) , V (names), M (metric),

B(budget)
Result: Dworst, Dbest (datasets on which the
model performs worst and best)
for (x, y) ∈ D do

min score =∞, max score = −∞ ;
N ← RandomSelection(V , B) ;
for n ∈ N do
x′ ← Replace (x, n) ; // Details in

text for each task

score←M(G(x′), y) ;
if score < min score then

min score← score, xworst ← x′

end
if score > max score then

max score← score, xbest ← x′

end
end
Dworst ← Dworst + (xworst, y);
Dbest ← Dbest + (xbest, y);

end

ness and vice-versa. We also measure stability as
the fraction of sentences in D whose predictions
stay unchanged within the budget sized replace-
ments.

We use the above method to evaluate the robust-
ness of state-of-the-art BERT based models. We
evaluate NLI with organization name replacements,
GEC with person and country name replacements,
and CoRef with person name replacements. In Ta-
ble 3 we report accuracy on the original, worst, and
best case perturbations of the input and stability for
the four task-entity combinations. We discuss task
details and results next.
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Task: GEC; Perturbed Entity: Person

Text: One day Penny Bujalski discovered it and it go to tell it to his queen .

Original Prediction: One day Penny discovered it and went to tell it to his queen .

Perturbed Prediction: One day Bujalski discovered it and to tell it to his queen.

Text: the two boys heard that he was planing to steal some money and kill people so the boys start
their adventure on stopping Abigale Injuin Joe .

Original Prediction: The two boys heard that he was planning to steal some money and kill people
so the boys started their adventure by stopping Abigale .

Perturbed Prediction: The two boys heard that he was planning to steal some money and kill
people so the boys started their adventure by stopping Joe .

Task: GEC; Perturbed Entity: Country

Text: There are countries , such as Greece Oman or Bulgaria Venezuela , in which the econmoy
relies merely on tourism .

Original Prediction: There are countries , such as Greece or Bulgaria , in which the econmoy relies
merely on tourism .

Perturbed Prediction: There are countries , such as Oman or Venezuela , in which the econmoy
rely merely on tourism .

Text: I am 20 years old , living in Port - Said , Egypt China .

Original Prediction: I am 20 years old and living in Port - Said , Egypt .

Perturbed Prediction: I am 20 years old , living in Port - Said , China .

Task: CoRef; Perturbed Entity: Person

Text: And Chris Hill Sam Rusnock our ambassador was in China a few days ago. he made the point
and Secretary Rice made the point yesterday to the Chinese Foreign minister , we want to see China
use its influence. Speaker Newt Gingrich the former speaker Republican weighed in on this debate
in this way. [truncated] Well uh with all due respect to Speaker Gingrich we are on a course which
has a reasonable chance of success.

Original Predicted Cluster: [“Chris Hill our ambassador”,”he”]

Perturbed Predicted Cluster: [“Sam Rusnock our ambassador”,”he”, ”Speaker Gingrich”]

Text: Arianna Huffington Sydnie Rabaut uh in this lengthy piece this morning, Judy Miller is quoted
excuse me as saying [truncated]. Do you buy this notion that she doesn’t recall who this other source
was? No of course not Howie. In fact I think this is the major unanswered question.

Original Predicted Cluster:[”Arianna Huffington”, ”you”, ”I”]

Perturbed Predicted Cluster: [ ]

Table 2: Lack of robustness of GEC and CoRef model with respect to person and country names
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NLI F1 GEC F0.5 CoRef F1

Dataset ORG PER COUN PER
Original 84.82 50.93 47.87 76.47
Worst 79.90 36.51 32.12 60.91
Best 90.03 58.32 51.47 87.85

Stability 86.8% 75% 63.4% 12.86%

Table 3: Adversarial Evaluation of BERT on different
tasks

2.1 Natural Language Inference (NLI)

Task Paraphrase detection is a binary classifica-
tion task on whether two sentences are paraphrases
of each other. We work on the paraphrasing task
of the GLUE dataset (Wang et al., 2018). The stan-
dard dataset split consists of 4077 training sentence
pairs and 1726 testing pairs. We use the BERT-
base model fine-tuned on the training dataset. The
model takes as input the concatenated sentence
pairs and predicts a binary output. The metric used
for this task is F1 score on the binary output.

Attack details We measure robustness over the
organization concept class. As the replacement
dictionary V we used organization names from
Fortune 500 companies. We filter out sentence
pairs consisting of organization name mention in
each sentence of the pair and get 218 sentence
pairs. We use spaCy (Honnibal, 2016) for tagging
the sentences followed by manual inspection of
matched entities so that in the 218 filtered sentences
all entity mentions are correctly identified.

Results Observe in Table 3 almost a 10% swing
in F-score between DWorst, DBest just by replacing
organization names in test instances. The pertur-
bation dictionary consisted of Fortune 500 com-
panies, and were not particularly obscure either.
As the examples in Table 1 show some of these
replacements do not span rare names (Facebook
to Microsoft or Goldman to Novell)

2.2 Grammatical error correction (GEC)

Task Grammatical error correction is a sequence
prediction task, given an incorrect sentence as in-
put we have to predict the grammatically correct
output. We use the LOCNESS corpus (Granger,
1998) comprising of incorrect and correct parallel
English essays. The standard dataset split consists
of 34,308 incorrect-correct sentence pairs for train-
ing and 4,384 pairs for testing. We use the publicly
available parallel edit model from (Awasthi et al.,

2019). It uses a BERT model for predicting the
edits at every token on the input and applies those
edits to compute the final output. We only use
a single iteration of the model for ease of evalua-
tion. The performance is measured using F0.5 score
based on M2 files (Bryant et al., 2017).

Attack details We measure robustness on two
concept classes: person names and country names.
From the test set, 328 sentences mentioned per-
son names and 82 mentioned country names. For
person names, we perform gender-specific replace-
ments. The person name dictionary was created as
follows: we start with a large dictionary of 4018 fe-
male first names, 3437 male first names and 151670
last names and remove names encountered in the
training data. We then generate about 250 names
from these sets by combining first names and last
names. For countries we use 58 non-frequent coun-
try names.

Results The gap in accuracy between the best
and worst-case perturbations is almost 20% for
both person name and country name replacements.
Moreover, we find that 25% of the sentences
change prediction on changing person names and
more than 35% sentences vary prediction of coun-
try names! Table 2 shows some examples. Notice
how changing the country from Greece to Oman
and Bulgaria to Venezuela changes the edit
predictions five tokens away in the sentence.

2.3 Coreference Resolution (CoRef)

Task Coreference resolution refers to the prob-
lem of finding all expressions that refer to the same
entity in a text. We work on the standard OntoNotes
dataset from the CoNLL-2012 shared task on coref-
erence resolution (Pradhan et al., 2012). Each doc-
ument represents one instance and has a series of
sentences within it. The standard split consists of
2,802 training documents and 348 testing docu-
ments. We use the BERT base model fine-tuned on
the training dataset from (Joshi et al., 2019b). The
model predicts top-k spans for a document and then
computes antecedent scores for them and thereby
builds clusters for coreference. Since documents in
OntoNotes contain many clusters while we replace
only mentions of a single name in the long docu-
ment, to better highlight differences, we measure F
score for only the gold clusters with the replaced
entity.
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Attack details We measure the robustness with
respect to person names. We filter out documents
containing a person name based on gold annota-
tions in the OntoNotes corpus, and get 210 docu-
ments. Replacement vocabulary V was made in
similar way as mentioned for GEC using the same
male, female and last name dictionaries. We also
ensure that the name replacements do not alter the
coreferences. Therefore, we replace every instance
of each name occurring in the document with our
randomly sampled adversarial name, taking care
that first(or last) names are replaced with adversar-
ial first(or last) names. In case of any ambiguity,
we replace the name with the last name. Also the
replacements are gender specific.

Results We found the worst stability for CoRef
and only 13% of the sentences preserved pre-
dictions on named-entity replacements. Also,
the gap between the worst and best case pertur-
bations is almost 30 F1 points. As seen from
the truncated document examples in the second-
last row of Table 2, replacing the name Chris
Hill to Sam Rusnock makes the model mis-
predict the original cluster, as it predicts an-
other name Speaker Gingrich as co-referent
to Sam Rusnock. Even in second example
changing the name Arianna Huffington to
Sydnie Rabau causes model to miss the its en-
tire cluster! We also found that on an average,
predictions of model differ by two clusters per
sentence after name perturbation. For one doc-
ument almost 17 clusters were affected by a sin-
gle entity swap. The non-robustness on CoRef is
especially surprising since it is principally a task
about named entities. Our experiments were on the
widely used OntoNotes dataset with person name
mentions. Such varying performance should be a
cause of concern for benchmarking CoRef models.
Perhaps, the dataset needs to be augmented with
variants arising out of named-entity replacements
and stability should be a required performance met-
ric, in addition to accuracy on the original sentence.

Another interesting observation across tasks is
that the accuracy on the original D is enhanced
after moving to DBest — that is, just substituting
names in a given instance with more ‘favorable’
names can lead to substantial gains. We will exploit
this observation to enhance base accuracy and im-
prove the robustness of NLP models in Section 4.

Figure 1: Variation of NLI model’s performance with
frequency of named entity in training dataset. The
green lines depict variance across performance of
names of a given frequency

3 Causes of Non-Robustness

We then sought to investigate reasons for such
lack of stability. We first attempted to see if
the poor accuracy of certain names can be ex-
plained by their frequency of occurrence in the
training dataset. In Figure 1 we plot a graph of
the frequency of a named-entity in the training
corpus against the F-score on the NLI task. As
we can see there is no strong correlation of fre-
quency with the performance of a named entity,
in fact, an organization name appearing in only
four sentence pairs (Goldman) performed better
than Microsoft which was present in over 30
sentence pairs. Facebook which is not even
present in the training set performs better than
Microsoft or Google. This is likely due to
the biases learned during the massive pre-training
that BERT-based models enjoy.

Our next guess was to see if the number of to-
kens in BERT’s word-piece tokenization of named
entity causes any significant impact on accuracy.
Sequence labeling models like PIE (Awasthi et al.,
2019) for GEC are most likely to be susceptible to
that effect. In Figure 2 we show accuracy against
the number of tokens in a named entity for GEC.
We compared performance across three classes –
1 token length entities or two token length enti-
ties or three or more token length entities. We
created budget sized copies of the original dataset
and compare performance across three variants –
(Original, Best, and Worst) but found no significant
difference in accuracy with the number of tokens.
However, we did observe some anecdotal evidence
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Figure 2: Variation of F1 scores for GEC model with
different token length perturbation.

of specific nuisance tokens arising out of the word
piece model on out of vocabulary names. For ex-
ample consider the person name Tobey that gets
tokenized as [To, ##bey] or Injuin which is
tokenized as [In, ##juin]. The first token of
the names are “To” or “In”, both frequent preposi-
tions, which perhaps BERT finds difficult to disam-
biguate. As we can see from the second example in
Table 2 – Injuin confuses the given model and
the model even deletes the name probably since
“In” proposition is not required there. Another ar-
tifact could be memorized correlations between
names (e.g. Obama and President) that tasks
like CoRef could exploit. Recent work (Poerner
et al., 2019) has infact shown that BERT based
models use surface form of entities for relational
reasoning.

NLI (ORG) F1 CoRef (PER) F1

Original 86.80 76.71
Worst 82.7 62.37
Best 90.2 86.76

Stability 89.9% 16.19%

Table 4: Adversarial Evaluation of Span-BERT on dif-
ferent tasks

Finally, we explore if BERT’s single token mask-
ing model is unfavorable to robust entity repre-
sentations by comparing with a language model
pre-trained by masking spans covering multiple to-
kens. Specifically, we use Span-BERT (Joshi et al.,
2019a), which is trained with masked language
modeling on spans instead of tokens. We tried to
compare the performance on NLI and CoRef2 in

2We were unable to train Span-BERT for GEC, since in

comparison with BERT. The results can be found
in Table 4. We were surprised that Span-BERT
does not provide any better robustness, although
it does provide consistent higher accuracy on all
tasks. Various metrics such as – the difference be-
tween worst and best accuracy, stability are both
very similar for BERT and Span-BERT.

4 Enhancing Robustness

We propose a simple ensembling with replacements
approach (referred to as RESEMBLE) that does
not require any retraining and can work with any
existing pre-trained language model. We assume a
type annotator T that marks mentions of entities of
the type c for which robustness needs to enhanced.
The type-annotator might be noisy. We identify
a small set M of entities of type c on which the
model provides high accuracy on a validation set.
We call these the list of canonical entities.

Given any input x, we invoke the task-specific
model G to obtain predicted labels ŷ and the type
annotator T to obtain type annotations ẑ. If ẑ de-
notes that a named entity of type c is present in
one or more spans of x, we generate new sentences
xm by replacing the named entities with canoni-
cal named entities m ∈ M . The model G when
applied to xm generates prediction ŷm.

Let the true labels of x and xm be y and ym

respectively, and the true type of x be z. If the type
annotator correctly identified the spans correspond-
ing to concept class c (i.e., z = ẑ), y and all yms
have to agree as per our requirement of robustness.
We use this to define a revised distribution over true
y from the individual predictions as follows:

PR(y|x, ẑ) ∝ (1− P (z = ẑ|x))P (y|x)

+P (z = ẑ|x)

(
P (y|x)

∏
m

P (y|xm)

) 1
m+1 (1)

The above is an annotator confidence weighted av-
erage of two terms: The first half calculates the
probability of y from the default model G when
the type annotator may be wrong and the ym predic-
tions should be ignored. The second half calculates
the ensembled agreement probability when the type
annotator is correct. We calculate that as a geomet-
ric mean of the predictions from the different re-
placements. In the above equation, the ensembled

released Span-BERT checkpoints were not compatible with
the GEC model
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probability is under the simplifying assumption
that all entity replacements have the same num-
ber of tokens. During implementation, we remove
this assumption, and implement a more detailed
span-level agreement for variable-length entities.

An important requirement for the above expres-
sion is that the probabilities provided by the differ-
ent models express true uncertainty of predictions,
that is, they be well-calibrated. Unfortunately, mod-
ern neural networks tend to be uncalibrated. To cal-
ibrate the probabilities, we use a popular method
called temperature scaling (Guo et al., 2017) where
probabilities are raised by an exponent, which is
the inverse of the temperature. Temperature scal-
ing flattens the probability distribution over output
classes thus reduces the confidence until it is cor-
rectly calibrated. The expression is as follows:

PT (y|x) =
P (y|x)

1
T∑

y′ P (y′|x)
1
T

where y denotes a scalar prediction. For two of our
tasks (GEC and CoRef), the output from our BERT-
based models is a product of probabilities from
multiple positions. We apply the same temperature
scale to each prediction. Thus, our final expression
becomes:

PR(y|x, ẑ) ∝ (1− P (z = ẑ|x))PT (y|x)

+P (z = ẑ|x)

(
PT (y|x)

∏
m

P (y|xm)

) 1
m+1

(2)

The temperature hyper-parameter T is fixed
from a validation dataset. Note we do not ap-
ply temperature scaling to the predictions from the
canonical entries.

4.1 Empirical Results
For each task, we will describe the defense
mechanisms used, with the description of the
replacement list, and replacement strategies. The
calibration hyper-parameters used for the defense
methods are temperatures T = 2 across all tasks.
The canonical dictionary M for NLI comprises of
Microsoft, Nasdaq and IBM. For GEC, due
to the huge size of the GEC corpus we pick the
most common English first names and combine
them with common English last names. We use
three male names (John, James Brown,
Robert Johnson) and three female names

(Patricia, Mary Jones, Jennifer
Brown) for replacement. If gender is ambiguous,
we use 1 male name and 2 female names (John,
Mary Jones, Jennifer Brown). For
CoRef, we used the top 3 frequent person names
from the training dataset for our replacement list
namely – George Bush, Bill Clinton,
Ehud Barak. We also present results when we
restrict the cannonical dictionary M to only the
first name in the above described lists.

We show results with RESEMBLE in Ta-
ble 5. We perform defense on four datasets
– Original, Best, Worst, Random
Replacement. For random replacement, we
constructed 10 new datasets from the original
dataset with its names replaced with randomly
selected names, and then evaluate the performance
of our models on these datasets. We present the
mean and standard deviation of the F scores across
these newly constructed datasets. For best and
worst we evaluate performance on datasets gener-
ated from Algo. 1. First observe that accuracy of
even the original test dataset improves with our
simple replacement ensembling while reducing
the variance. For example, for GEC F score
increases from 50.93 to 51.81. The variance has
also reduced as seen for the random replacement
datasets. The adversarial accuracy improves
significantly — for CoRef we see a jump of DWorst
from 60.91 to 68.31 and for GEC the gains are
even higher. The difference between the best
and worst accuracy reduces drastically. Although
for DBest accuracy drops with RESEMBLE, the
overall gains across the three dataset variants are
much higher. Further a single canonical entry
M = 1 is almost as effective as larger ensembles
of M = 3. This implies that at test-time, we have
to deploy the model on at most two instances to
enjoy significantly higher robustness. This shows
that replacement with canonical entities while
accounting for uncertainty of entity identification
is a viable alternative to enhance robustness.

5 Related Work

Study of BERT Representations Jin et al.
(2019); Hsieh et al. (2019) study robustness of
state of the art BERT fine-tuned models on classi-
fication, entailment, and machine translation tasks
with respect to synonym replacements. The for-
mer used a black box scenario while the latter
used input gradients and attention magnitudes to
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Dataset NLI(ORG) F1 GEC(PER) F0.5 CoRef(PER) F1

Original
RESEMBLE

Original
RESEMBLE

Original
RESEMBLE

M=1 M=3 M=1 M=3 M=1 M=3
Original 84.80 85.16 85.16 50.93 51.81 51.53 76.47 76.87 76.71
Worst 79.90 82.71 82.71 36.51 47.09 46.75 60.91 68.31 69.43
Best 90.03 86.91 86.63 58.32 55.38 55.38 87.85 82.6 82.18

Random 85.53 85.48 85.50 49.96 51.47 52.03 76.37 76.78 76.87
Replacement (0.54) (0.50) (0.40) (1.05) (0.70) (0.66) (1.04) (0.75) (0.81)

Table 5: Adversarial Evaluation of BERT on different tasks comparing the accuracy on the original model against
our algorithm with a canonical dictionary of size (M ) 1 or 3. For Random Replacement dataset, mean across the
ten artificial datasets along with standard deviation in brackets is presented

find probable candidate replacements. Sun et al.
(2019) applied an adversarial mis-spelling attack
to BERT using gradient-based saliencies. Poerner
et al. (2019) show that BERT uses the surface form
of words for relational reasoning (guessing per-
son with an Italian sounding name speaks Italian).
Zhang et al. (2019a) generated adversarial sentence
pairs for paraphrase detection by swapping the or-
der of named entities in two sentences which was
enough to fool BERT. Joshi et al. (2019a) intro-
duced Span-BERT that is trained on masked lan-
guage modelling on spans instead of tokens. Zhang
et al. (2019b) developed ERNIE model for entity
linking which combines named entity embeddings
from knowledge graph with BERT.

Other Robustness Studies in NLP Techniques
for generating adversarial examples to study ro-
bustness of NLP models have seen a lot of enthu-
siasm in recent years. These approaches can be
loosely categorized into three types – character-
level (Ebrahimi et al., 2018b,a) or word-level or
sentence-level (Zhao et al., 2018; Iyyer et al., 2018;
Ribeiro et al., 2018). Our work is most related to
word-level attacks which we elaborate on. Liang
et al. (2018) proposed word insertion, deletion, or
replacement using gradient magnitudes for classifi-
cation tasks but requires human effort to ensure the
sensibility of the replacements. Samanta and Mehta
(2017) used synonym replacements along with the
gradient sign method for choosing the worst syn-
onym replacement. Alzantot et al. (2018) provides
a population-based genetic algorithm for synonym
attacks for sentiment classification and textual en-
tailment in a black-box setting. Ren et al. (2019)
developed a greedy algorithm for synonym swaps
using weighted gradient based word saliencies, for
sentiment classification and entailment.

In this work, we also perform word-level attacks

but our focus is robustness to named entity replace-
ments. The closest work to ours is (Prabhakaran
et al., 2019) that checks the sensitivity of models
with respect to named entities but they only con-
sider sentiment or toxicity classification. Our work
covers more interesting structured prediction tasks
such as coreference resolution and grammatical
error correction.

Defenses in NLP Most approaches (Cheng et al.,
2018; Jia and Liang, 2017) for defenses in NLP
have focused on augmenting training datasets with
adversarial instances. Pruthi et al. (2019) proposed
a word recognition model along with backoff strate-
gies for robustness against misspellings. Zhou et al.
(2019) used an adversarial detection cum replace-
ment strategy. We did not consider data augmen-
tation methods because that would significantly
increase the training time for models like GEC.

There has also been a trend in usage of certi-
fied robustness approaches (Ko et al., 2019; Jia
et al., 2019; Huang et al., 2019; Shi et al., 2020)
which provide guarantees on the minimum perfor-
mance of models. The main technique so far is
to propagate interval bounds around input word
embeddings and has been applied for robustness
to synonyms change. Synonyms are expected to
have similar embeddings, but interval bounds are
unlikely to work for entities within a large concept
class. We are not aware of any prior work that en-
hances robustness with canonical replacements like
ours in the context of an existing language model.

6 Conclusions and Future Work

In this work we show that state of the art BERT-
based models are surprisingly brittle to named en-
tity replacements. We propose RESEMBLE, a sim-
ple ensembling approach to increase robustness
while also improving nominal accuracy. The gen-
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eral paradigm of enhancing robustness via ensem-
bles on guided instance perturbations is a promising
direction and needs to be explored for other tasks
too.

Acknowledgement We thank the anonymous re-
viewers for their constructive feedback on this
work. This research was partly sponsored by IBM
AI Horizon Networks - IIT Bombay initiative and
partly by a Google India AI/ML Research Award.
Abhijeet is supported by Google PhD Fellowship
in Machine Learning.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing.

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,
Sabyasachi Ghosh, and Vihari Piratla. 2019. Par-
allel iterative edit models for local sequence trans-
duction. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP).

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers).

Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie
Zhai, and Yang Liu. 2018. Towards robust neural
machine translation. In Proceedings of the 56th As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Javid Ebrahimi, Daniel Lowd, and Dejing Dou. 2018a.
On adversari al examples for character-level neural
machine translation. International Conference on
Computational Linguistics (COLING).

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018b. Hotflip: White-box adversarial exam-
ples for nlp. Association for Computational Linguis-
tics (ACL).

S. Granger. 1998. The computer learner corpus: A ver-
satile new source of data for sla research. Learner
English on Computer. Addison Wesley Longman :
London New York, 3-18.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Syd-
ney, NSW, Australia, 6-11 August 2017, pages 1321–
1330.

M Honnibal. 2016. spacy: Industrial-strength natural
language processing in python.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei
Wei, Wen-Lian Hsu, and Cho-Jui Hsieh. 2019. On
the robustness of self-attentive models.

Po-Sen Huang, Robert Stanforth, Johannes Welbl,
Chris Dyer, Dani Yogatama, Sven Gowal, Krish-
namurthy Dvijotham, and Pushmeet Kohli. 2019.
Achieving verified robustness to symbol substitu-
tions via interval bound propagation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of NAACL.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
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