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Abstract

We train neural machine translation (NMT)
models from English to six target languages,
using NMT encoder representations to predict
ancestor constituent labels of source language
words. We find that NMT encoders learn
similar source syntax regardless of NMT tar-
get language, relying on explicit morphosyn-
tactic cues to extract syntactic features from
source sentences. Furthermore, the NMT
encoders outperform RNNs trained directly
on several of the constituent label prediction
tasks, suggesting that NMT encoder represen-
tations can be used effectively for natural lan-
guage tasks involving syntax. However, both
the NMT encoders and the directly-trained
RNNs learn substantially different syntactic
information from a probabilistic context-free
grammar (PCFG) parser. Despite lower over-
all accuracy scores, the PCFG often performs
well on sentences for which the RNN-based
models perform poorly, suggesting that RNN
architectures are constrained in the types of
syntax they can learn.

1 Introduction

Neural machine translation (NMT) encoder repre-
sentations have been used successfully for cross-
task and cross-lingual transfer learning in a variety
of natural language contexts (Eriguchi et al., 2018;
McCann et al., 2017; Neubig and Hu, 2018). Pre-
vious work has investigated whether these repre-
sentations encode syntactic information (Shi et al.,
2016), as syntactic information is useful in many
natural language tasks (Chen et al., 2017; Pun-
yakanok et al., 2008). The deep recurrent neural
network (RNN) architectures used by many NMT
encoders can learn syntactic features, even without
explicit supervision (Blevins et al., 2018; Futrell
et al., 2019); NMT encoders specifically have been
found to encode information about ancestor con-
stituent labels for words (Blevins et al., 2018) and

even full syntactic parses of source language sen-
tences (Shi et al., 2016).

Cross-linguistically, there is mixed evidence
for how target language impacts the encoding
of information in NMT encoder representations.
Kudugunta et al. (2019) found that representations
clustered based on target language family when
sentence representations were aligned in a shared
space. However, Belinkov et al. (2017) found
only small effects of target language on the ability
of NMT encoder states to predict part-of-speech
(POS) tags. Because POS tags are typically re-
liant only on local features within sentences, these
contrasting results could suggest that (1) localized
encoded information is independent of NMT target
language, or (2) encoded syntactic information in
general is independent of NMT target language. In
this work, we address the second possibility.

To evaluate more global syntactic information
in NMT encoder representations, we assess the
ability of NMT encoder states to predict ancestor
constituent labels of words; this task is adopted
from Blevins et al. (2018). Extending Blevins et al.
(2018), we train NMT models towards multiple tar-
get languages and evaluate performance on individ-
ual constituent labels (e.g. noun phrases). We find
that significant syntactic information is encoded re-
gardless of target language, and target language has
little impact on the syntactic information learned
by NMT encoders. Furthermore, we find that NMT
encoders rely on explicit morphosyntactic cues to
extract syntactic information from sentences.

Finally, by training deep RNNs directly on the
constituent label prediction task, we find that RNNs
with explicit syntactic training data learn simi-
lar syntax to the NMT encoders. In contrast, a
probabilistic context-free grammar (PCFG) parser
performs significantly differently from both RNN-
based models, suggesting that RNNs may be con-
strained by their reliance on explicit syntactic cues.
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2 Methodology

We trained NMT models from English to six differ-
ent target languages, assessing the ability of NMT
encoder states to predict POS, parent, grandparent,
and great-grandparent constituent labels of words.

2.1 NMT Models

NMT models were trained on the United Na-
tions (UN) Parallel Corpus, using the fully aligned
subcorpus of approximately 11 million sentences
translated to all six UN official languages: En-
glish, Spanish, French, Russian, Arabic, and Chi-
nese (Ziemski et al., 2016). NMT models were
trained from English to each target language using
OpenNMT’s PyTorch implementation (Klein et al.,
2017) with byte pair encoding for subword tok-
enization in all languages (Sennrich et al., 2016).
Each NMT encoder and decoder was a unidirec-
tional four-layer long short-term memory (LSTM;
Hochreiter and Schmidhuber, 1997) network with
500 dimensions, using dot-product global atten-
tion in the decoder (Luong et al., 2015). Each
NMT model was trained for 11 epochs (approxi-
mately 2,000,000 steps) using Adam optimization
(Kingma and Ba, 2014).1 The model with the best
performance on the UN evaluation dataset for each
language was used to generate encoder representa-
tions in the constituent label prediction task.

2.2 Constituent Label Predictions

Dataset Constituent label predictions used tree-
parsed sentences from the CoNLL-2012 dataset,
containing sentences from English news and mag-
azine articles, web data, and transcribed conversa-
tional speech (Pradhan et al., 2012).

As in Blevins et al. (2018), constituent label mod-
els were trained on the CoNLL-2012 development
dataset and tested on the test dataset. A subset
of the CoNLL-2012 training dataset was used as
an evaluation dataset; the training, evaluation, and
test datasets each contained approximately 160,000
English words.

Prediction models We trained simple feedfor-
ward neural networks to predict ancestor con-
stituent labels (POS, parent, grandparent, and great-
grandparent) of words, given the NMT encoder
state after reading the word. The NMT encoders
were kept fixed during constituent label training.

1The first 10 epochs used learning rate 0.0002; the learning
rate was halved every 30,000 steps during the final epoch.

Figure 1: Results for the constituent label prediction
tasks, trained from NMT encoder representations. Dots
indicate mean accuracies (based on 20 feedforward
models), bars indicate two standard deviations from the
mean, and dashed lines represent baseline accuracies.

We used the deepest encoder layer as our encoder
representation; deeper layers have been shown to
perform better on constituent label prediction tasks
(Blevins et al., 2018).

Each feedforward network contained one 500-
dimensional hidden layer, and each model was
trained until it completed 10 consecutive epochs
with no improvement on the evaluation dataset. To
account for variation between models based on ran-
dom initialization of weights and shuffling of the
training data, we trained 20 feedforward models for
each combination of NMT encoder target language
and constituent label (POS, parent, grandparent, or
great-grandparent).

Baselines We computed a baseline accuracy for
each constituent label prediction task by simply
predicting the most frequent constituent label given
the current input word (e.g. given the current input
word “dog,” the most frequent POS tag would be
NN for “singular noun”). This baseline accuracy is
the maximum possible accuracy for a deterministic
model that only knows the current input word.
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3 Results

NMT encoders learned syntax. As shown in
Figure 1, NMT encoder representations for all tar-
get languages except the autoencoder resulted in
accuracy scores above the baseline for the parent,
grandparent, and great-grandparent constituent la-
bel tasks (adjusted p < 0.001 for all comparisons,
using one sample t-tests). The English autoencoder
was the only target language without consistent
performance above the baselines for these tasks;
NMT autoencoders have been found to memorize
sentences without learning syntactic information
(Shi et al., 2016). These results indicate that with
the exception of autoencoders, NMT encoder repre-
sentations contain syntactic information regardless
of target language.

Models performed poorly for POS tags. In
contrast to Blevins et al. (2018) but in line with
Belinkov et al. (2017), all target languages per-
formed slightly below the baseline for the POS
prediction task (adjusted p < 0.001 for all compar-
isons, using one sample t-tests). This result may be
because POS encodes less useful information than
other features for machine translation tasks. For
instance, Belinkov et al. (2017) found that mod-
els performed above the baseline if the task was
modified to predict semantic tags.

3.1 Similarities Across Target Languages

While there were statistically significant differ-
ences in accuracy between target languages for
all four constituent label tasks (one-way ANOVA,
p < 0.001 for all tasks), these differences were
quite small. The non-English target languages
varied by less than 2% within each of the parent,
grandparent, and great-grandparent constituent la-
bel tasks (see Figure 1).

NMT encoders learned similar syntax. To fur-
ther test the hypothesis of similar syntactic infor-
mation across encoder representations, we assessed
the performance of the NMT encoders on individ-
ual constituent labels (e.g. noun phrases). To do
this, we considered the constituent label predictions
as the results of a binary classification task for each
individual label. For instance, when considering
the noun POS tag, all POS tags were separated into
two categories: noun and not noun. Then, we com-
puted F1 scores for individual constituent labels for
each NMT model, allowing us to quantify similar-
ities between NMT encoders based on individual

Tokenized BLEU
AR EN ES FR RU ZH
37.3 99.9 56.3 44.8 37.8 24.9

Detokenized BLEU
AR EN ES FR RU ZH
38.0 100.0 56.3 44.5 37.4

Table 1: BLEU scores before and after detokenizing
the NMT translations for the UN test set. The detok-
enized BLEU score was not computed for Chinese be-
cause words were generally not separated by spaces in
the Chinese dataset.

label performance.
Individual constituent label F1 scores correlated

extremely highly between non-English target lan-
guages (all pairwise Pearson correlations r > 0.93
for the POS task; r > 0.98 for the parent task;
r > 0.99 for the grandparent and great-grandparent
tasks). In other words, the models performed well
or poorly on the same individual labels regardless
of target language. Figure 2 shows individual con-
stituent label F1 scores for each NMT target lan-
guage, displaying the three most frequent labels for
each constituent label task. Similar to the overall
accuracy scores, raw differences in F1 scores were
small between non-English target languages.

In particular, the similar F1 scores were not sim-
ply proportional to label frequencies. For instance,
all target languages performed similarly well when
identifying noun grandparent constituents (25%
of grandparent labels, F1 scores 0.59-0.60) and
question-sentence grandparent constituents (0.6%
of grandparent labels, F1 scores 0.55-0.61), despite
over a 20% difference in corresponding label fre-
quencies.2 Similar F1 scores across non-English
target languages suggest that NMT encoders en-
code very similar syntactic information regardless
of target language.

Translation quality still varied. Despite similar
syntactic information encoded across target lan-
guages, the NMT models exhibited a wide range
of BLEU scores, as shown in Table 1. This indi-
cates that morphological and non-syntactic features
have large impacts on translation performance. For
instance, inflectional morphology (e.g. verb con-
jugation and noun pluralization) has been found

2There was a loose correlation between F1 scores and label
frequencies, but this correlation could not fully account for
the similarity of F1 scores across target languages.
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Figure 2: Mean F1 scores (based on 20 feedforward models) for individual constituent label predictions, treating
each prediction task as a binary classification task. Bars indicate two standard deviations from the mean. We
display the three most frequent labels for each task, comparing across all target languages. Each label’s frequency
in the CoNLL-2012 test set is displayed on its corresponding plot.

to account for differences in performance between
languages in language modeling tasks (Cotterell
et al., 2018), although these results vary depending
on the metric used for morphological complexity
(Mielke et al., 2019). Because differences in trans-
lation performance could not be easily explained
using encoded syntactic information alone, it seems
likely that the NMT models were either unable to
extract more syntactic information from the train-
ing data or that the models did not find additional
syntactic information to be useful.

3.2 Linguistic Analysis of Errors

To gain a better understanding of how NMT en-
coders extract syntax, we conducted a qualitative
analysis of sentences for which the constituent la-
bel prediction models exhibited high error rates.

Selection of sentences We selected sentences
based on the great-grandparent constituent label
task because this task exhibited the highest ac-
curacy scores above the baseline, indicating a
large amount of learned syntax. There were high
pairwise correlation scores for per-sentence great-
grandparent constituent label accuracies between
all non-English target languages (all Pearson corre-
lations r > 0.85), so we selected sentences simply

based on their average constituent label accuracy
across the five non-English target languages.

We considered the 50 complete sentences with
the highest average great-grandparent constituent
accuracies and the 50 complete sentences with the
lowest average great-grandparent constituent ac-
curacies.3 The top 50 sentences all had average
great-grandparent accuracies above 90%, and the
bottom 50 sentences all had accuracies below 35%.
Linguistic patterns found in the top and bottom 50
sentences are compiled in Table 2.

NMT encoders relied on explicit cues. The bot-
tom 50 sentences contained a disproportionate num-
ber of null features. These features omit words
or morphemes that would indicate syntactic struc-
ture in a sentence. For instance, null copulas omit
forms of the verb “to be,” as in the sentence “He
pronounced the homework [was] finished.” Appos-
itives, where two noun phrases are placed one after
another to describe the same entity (e.g. “Grant, the
star baker”), serve as relative clauses with the usual
explicit syntactic cues omitted (e.g. “Grant, [who
is] the star baker”). Of the bottom 50 sentences, 16
contained at least one null copula or appositive; the

3Sentences were marked as “complete” by a native English
speaker. We considered only sentences from text sources (e.g.
not transcribed conversational speech).
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Feature Top 50 Bottom 50
sentences sentences

Average length 9.3 words 21.7 words
Average
great-grandparent
constituent label
accuracy

0.949 0.310

Question sentences 2 10
Infinitive phrases 26 5
Sentences with
negation

13 4

Sentences
containing a null
copula or
appositive

0 16

Embedded
sentences
(excluding
infinitives)

◦ Head before 9 5
◦ Head after 0 10

Table 2: Linguistic features in the top and bottom
50 sentences, selected based on great-grandparent con-
stituent label accuracies per sentence.

top 50 sentences contained none of either feature.
This suggests that when generating encoder repre-
sentations, NMT models typically do not identify
syntactic structures based on non-explicit cues.

However, the models performed well on complex
syntactic structures containing explicit morphosyn-
tactic cues. They performed well on sentences con-
taining infinitives (e.g. “to eat” or “to pillage”) and
negation (e.g. “I did not eat”), exhibiting far more
of these features in the top 50 sentences than in
the bottom 50 sentences (see Table 2). Both infini-
tives and negation have clear morphosyntactic cues
indicating sentence structure. The “to” in each in-
finitive clearly introduces the infinitized verb, and
the word “not” before a verb clearly indicates a
negated clause. These results suggest that NMT
encoders rely on explicit morphosyntactic cues to
extract syntactic structure from sentences.

NMT encoders recognized embedded sentences.
In fact, the NMT encoders were able to use mor-
phosyntactic cues to identify embedded sentences.
An embedded sentence appears within another
phrase (e.g. within the verb phrase “said that [sen-
tence]”). The phrase head which introduces an em-
bedded sentence can appear before or after the em-

bedded sentence (e.g. “Alex said [sentence]” versus
“[sentence], said Alex”). Because the NMT en-
coders were forward-directional RNNs, they could
not be expected to recognize embedded sentences
where the corresponding phrase head appeared af-
ter the embedded sentence. However, the mod-
els performed well on many sentences where the
phrase head appeared before the embedded sen-
tence, exhibiting nine such structures in the top 50
sentences (see Table 2). In many of these sentences,
the head and complementizer (e.g. “said that” or
“dogs that”) clearly indicate the beginning of an
embedded sentence.

Interestingly, the NMT encoders were often able
to recognize embedded sentences even when there
was a null complementizer introducing the embed-
ded sentence, such as “that” omitted in “The dog
wished [that] he was taller.” Of the nine embedded
sentences in the top 50 sentences, six had a null
complementizer. This result may partially be ex-
plained by verb bias, the tendency for certain verbs
to be followed by particular types of phrases (Gar-
nsey et al., 1997). For instance, the verb “prove”
is more often followed by a sentence complement
(e.g. “proved [that] the criminal was lying”) than
a direct object (e.g. “proved the theorem”). Peo-
ple are more likely to omit complementizers when
the head verb biases heavily towards a sentence
complement (Ferreira and Schotter, 2013); in these
cases, the verb itself serves as a syntactic cue for
the upcoming embedded sentence. Of the six null
complementizers in the top 50 sentences, five fol-
lowed a sentence-complement-biased verb. Then,
it appears that NMT encoders are able to recognize
embedded sentences using a combination of verb
bias and explicit complementizers.

4 NMT Syntax vs. Other Models

The similarity of syntactic information in NMT en-
coder representations across target languages could
suggest that regardless of target language, a similar
amount of syntactic information is helpful for trans-
lation. However, it is also possible that the structure
of the constituent label task limited the syntactic
information the encoders could represent, as pre-
dicting a label based only on a partial sentence is
an inherently ambiguous task. A third alternative
is that the RNN encoder architectures limited the
information preserved in each representation.

To further explore how well the NMT encoders
extracted syntactic information from raw sentences,
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we compared their constituent label prediction
performance to two alternative models: an RNN
trained directly for the constituent label task, and a
probabilistic context-free grammar (PCFG) parser.
In contrast to the NMT encoders, the RNN can
learn representations that are best suited for retain-
ing syntax; like the NMT encoders, it sees one
word at a time. The PCFG is trained with complete
syntactic information for partial sentences, and its
prediction task is an entire hierarchical structure,
rather than a single type of label. These compar-
isons can show whether there are syntactic features
that are predictable but systematically missed by
the NMT encoder representations.

4.1 Directly-Trained RNNs

RNN models We trained unidirectional four-
layer LSTM models with 500 dimensions to di-
rectly predict constituent labels (POS, parent,
grandparent, great-grandparent) when provided a
sentence stopping at a given word. These RNNs
were trained on the CoNLL-2012 development
dataset (the same dataset as the feedforward models
based on NMT encoder representations in Section
2.2). To account for variance in RNN training, we
trained 10 RNNs for each constituent label task,
and each RNN was trained until it completed 10
consecutive epochs without improvement on the
evaluation dataset.

NMT representations outperformed the RNNs.
Average accuracies for the RNN models in each
constituent label task are shown in Figure 3, com-
pared with the feedforward models trained from
NMT encoder representations. Surprisingly, the
RNN models trained directly for the constituent
label tasks performed worse than the NMT encoder
representation models for the parent, grandpar-
ent, and great-grandparent constituent tasks. The
NMT encoder representations’ improvement over
the other models increased consistently as the con-
stituent labels moved higher in the syntax tree (i.e.
the NMT encoders exhibited the greatest advantage
in the great-grandparent constituent task).

Because the RNNs had the same architecture
as the NMT encoders, it is likely that the directly-
trained RNNs were limited by the amount of train-
ing data provided (about 160,000 examples). The
NMT encoder representations would be able to rely
more heavily on patterns learned during NMT train-
ing and thus would be able to make better use of
the limited training data for the constituent label

Figure 3: Average accuracies on the constituent label
prediction tasks for all four types of model.

prediction tasks. It is also possible that the hy-
perparameters used for the NMT encoders were
not optimal for the directly-trained RNNs. That
said, the NMT encoder representations’ high per-
formance on the constituent label tasks supports
existing literature finding that NMT encoder repre-
sentations contain information useful for a variety
of natural language tasks (Eriguchi et al., 2018;
McCann et al., 2017).

The RNNs and NMT encoded similar syntax.
Next, to assess whether the directly-trained RNNs
learned different syntactic information from the
NMT encoders, we compared the RNN and the
NMT encoder representations’ performance on in-
dividual sentences. We primarily considered great-
grandparent constituent accuracies, the task for
which all models performed most above the base-
line.

For each sentence of length at least three, we
considered the mean great-grandparent constituent
label accuracy, averaging across all non-English
target languages for the NMT encoder accura-
cies. Figure 4 shows the correlation between per-
sentence accuracies from the NMT encoder rep-
resentation models and the directly-trained RNN
models. There was a high degree of correlation
between the two types of models (Pearson correla-
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Figure 4: Mean great-grandparent constituent label ac-
curacies per sentence for the NMT encoder-based mod-
els and the directly-trained RNNs. Each dot represents
a sentence.

Figure 5: Mean great-grandparent constituent label ac-
curacies per sentence for the NMT encoder-based mod-
els and the PCFG parser.

tion r = 0.84), indicating that the directly-trained
RNNs learned similar syntactic information to the
NMT encoders.

4.2 PCFG Parser

It may be that the directly-trained RNNs and the
NMT encoders learned similar syntactic informa-
tion because they both used the same RNN ar-
chitecture. Therefore, we tested constituent label
performance when using the probabilistic context-
free grammar (PCFG) syntactic parser provided
by Stanford NLP (Klein and Manning, 2003). We
trained the PCFG on parse trees of partial sentences
stopping at each word in the CoNLL-2012 develop-
ment dataset, the same dataset used to train the
RNN-based models. While the PCFG was not
trained specifically for the constituent label pre-
diction task, its explicit syntactic architecture (en-
coding a context-free grammar) provides a useful

RNN Baseline PCFG
NMT 0.84 0.60 0.61
RNN 0.62 0.59

Baseline 0.42

Table 3: Pairwise Pearson correlations for per-sentence
great-grandparent constituent label accuracies, com-
puted between all four types of model.

contrast to the RNN-based models.

The PCFG encoded different syntax. The
PCFG’s constituent label accuracies are shown
in Figure 3, along with the RNN and NMT en-
coder representation accuracies. As expected, be-
cause the PCFG was not trained specifically for
the constituent label prediction task, the PCFG
had slightly lower accuracies than the RNN-based
models. However, the PCFG exhibited interest-
ing patterns when considering its performance on
individual sentences.

As with the other models, the PCFG’s mean
great-grandparent constituent label accuracies were
considered for each sentence of length at least three.
Figure 5 (comparing the PCFG with the NMT en-
coder representations) can then be compared to Fig-
ure 4 (comparing the directly-trained RNNs with
the NMT encoder representations). The two plots
indicate that the PCFG performed substantially dif-
ferently from the RNN-based models. Notably,
there is a set of sentences for which the PCFG ob-
tained perfect accuracy while the NMT encoders
had substantially lower accuracies (demonstrated
by the horizontal line of dots at the top of Figure
5). Both RNN-based models’ accuracies correlated
approximately the same amount with the baseline
(most-frequent tag per word) model as with the
PCFG; all correlations between models are shown
in Table 3.

Furthermore, for the worst 50 sentences for the
NMT encoder representations (the sentences found
in Section 3.2), the PCFG performed 9% better
than the NMT encoder representation models and
6% better than the directly-trained RNN models,
despite an overall 7-9% lower accuracy than both
RNN-based models. This suggests that PCFGs
can perform well on specific sentences that RNNs
perform poorly on; for instance, PCFGs may be
less reliant on explicit morphosyntactic cues. The
PCFG’s high performance on these specific sen-
tences explains results finding that explicit syntac-
tic information provides improvements to NMT
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systems even though NMT systems already implic-
itly encode syntax (Chen et al., 2017; Chiang et al.,
2009; Li et al., 2017; Wu et al., 2017).

5 Discussion

NMT syntax is independent of target language.
We found that NMT encoders learn similar source
syntactic information regardless of target language,
consistently outperforming RNNs trained specif-
ically for the constituent label prediction task.
These results help explain the success of NMT
encoder representations in cross-task transfer learn-
ing, and they open up further questions regarding
the extent of similarity between NMT encoder rep-
resentations across target languages.

For instance, Schwenk and Douze (2017) found
that multilingual NMT encoder representations
cluster more based on semantic than syntactic sim-
ilarity, indicating that semantic information may
play a more prominent role than syntax in machine
translation. Across target languages, Poliak et al.
(2018) found inconsistencies for which target lan-
guage’s representations resulted in the best per-
formance on semantic understanding tasks. This
could suggest that semantic information in NMT
encoder representations is also similar across target
languages.

RNNs learn limited syntax. Both the NMT en-
coders and the directly-trained RNNs relied on ex-
plicit morphosyntactic cues to extract syntactic in-
formation from sentences. This result aligns with
findings that RNNs rely on syntax heuristics to
obtain high performance on tasks (McCoy et al.,
2019), performing poorly on sentences requiring
knowledge of complex syntactic structures (Linzen
et al., 2016; Marvin and Linzen, 2018). NMT
encoders specifically have been found not to en-
code fine-grained syntactic information (Shi et al.,
2016). These limitations can be partially overcome
by training an RNN model for a variety of differ-
ent tasks (Enguehard et al., 2017); alternatively,
we found that a PCFG syntactic parser encoded
significantly different syntactic information from
RNN-based models, performing well on many sen-
tences for which RNNs performed poorly.

In some ways, the RNNs’ reliance on explicit
syntactic cues is similar to sentence processing
in people. Many sentences are syntactically am-
biguous before they are completed (notably garden-
path sentences such as “The horse raced past the
barn fell”), and people generally re-evaluate upon

reading the disambiguating feature (Frazier and
Rayner, 1982; Qian et al., 2018). Thus, it may
be implausible for an online system to identify
non-explicit syntactic features given only partial
sentences. Compounding this problem, RNNs are
unable to re-evaluate past inputs and hidden states
upon reading disambiguating words. The successes
of bidirectional and Transformer models (Devlin
et al., 2019; Peters et al., 2018a; Vaswani et al.,
2017) may be due partially to their ability to com-
bine later information with representations of ear-
lier words. Indeed, contextual word representa-
tions generated by these bidirectional models have
been found to encode significant syntactic informa-
tion (Peters et al., 2018b); future work could study
whether bidirectional architectures are less reliant
on explicit morphosyntactic cues.

6 Conclusion

In this work, we found that NMT encoder repre-
sentations across target languages encode similar
source syntax, and this syntax is comparable to the
syntax learned by RNNs trained directly on syntac-
tic tasks. However, explicit syntactic architectures
may be necessary for tasks requiring fine-tuned
syntactic parses. Our results have many implica-
tions in transfer learning and multilingual sentence
representations: a better understanding of the in-
formation contained in sentence representations
provides necessary insight into the tasks these rep-
resentations can be used for.
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