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Abstract

Word embeddings have become a staple of
several natural language processing tasks, yet
much remains to be understood about their
properties. In this work, we analyze word
embeddings in terms of their principal com-
ponents and arrive at a number of novel and
counterintuitive observations. In particular,
we characterize the utility of variance ex-
plained by the principal components as a proxy
for downstream performance. Furthermore,
through syntactic probing of the principal em-
bedding space, we show that the syntactic in-
formation captured by a principal component
does not correlate with the amount of vari-
ance it explains. Consequently, we investi-
gate the limitations of variance based embed-
ding post-processing, used in a few algorithms
such as (Mu and Viswanath, 2018; Raunak
et al., 2019) and demonstrate that such post-
processing is counter-productive in sentence
classification and machine translation tasks.
Finally, we offer a few precautionary guide-
lines on applying variance based embedding
post-processing and explain why non-isotropic
geometry might be integral to word embed-
ding performance.

1 Introduction

Word embeddings have revolutionized natural lan-
guage processing by representing words as dense
real-valued vectors in a low dimensional space.
Pre-trained word embeddings such as Glove (Pen-
nington et al., 2014), word2vec (Mikolov et al.,
2013) and fastText (Bojanowski et al., 2017),
trained on large corpora are readily available for
use in a variety of tasks. Subsequently, there has
been emphasis on post-processing the embeddings
to improve their performance on downstream tasks
(Mu and Viswanath, 2018) or to induce linguis-
tic properties (Mrkšic et al.; Faruqui et al., 2015).
∗equal contribution

In particular, the Principal Component Analysis
(PCA) based post-processing algorithm proposed
by (Mu and Viswanath, 2018) has led to significant
gains in word and sentence similarity tasks, and
has also proved useful in dimensionality reduction
(Raunak et al., 2019). Similarly, understanding the
geometry of word embeddings is another area of
active research (Mimno and Thompson, 2017). In
contrast to previous work such as (Yin and Shen,
2018), which focuses on optimal dimensionality
selection for word embeddings, we explore the di-
mensional properties of existing pre-trained word
embeddings through their principal components.
Specifically, our contributions are as follows:

1. We analyze the word embeddings in terms of
their principal components and demonstrate
that their performance on both word similar-
ity and sentence classification tasks saturates
well before the full dimensionality.

2. We demonstrate that the amount of variance
captured by the principal components is a
poor representative for the downstream per-
formance of the embeddings constructed us-
ing the very same principal components.

3. We investigate the reasons behind the afore-
mentioned result through syntactic informa-
tion based dimensional linguistic probing
tasks (Conneau et al., 2018) and demonstrate
that the syntactic information captured by a
principal component is independent of the
amount of variance it explains.

4. We point out the limitations of variance based
post-processing used in a few algorithms (Mu
and Viswanath, 2018; Raunak et al., 2019)
and demonstrate that it leads to a decrease
in performance in sentence classification and
machine translation tasks, restricting its effi-
cacy mainly to semantic similarity tasks.
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Figure 1: Rho x 100 on Word Similarity Tasks

Figure 2: Accuracy on Sentence Classification Tasks

In Section 1, we provide an introduction to the
problem statement. In Section 2, we discuss the
dimensional properties of word embeddings. In
Section 3, we conduct a variance based analy-
sis by evaluating the word embeddings on sev-
eral downstream tasks. In Section 4, we move on
to dimensional linguistic probing tasks followed
by Section 5, where we discuss variance based
post-processing algorithms, and finally conclude
in Section 7. To foster reproducibility, we have
released the source code along with paper 1.

2 Dimensional Properties of the Word
Embedding Space

Principal components provide a natural basis for
studying the properties of an embedding space.
In this work, we refer to the properties pertain-
ing to the principal components of the embedding
space as dimensional properties and the embed-
ding space obtained by projecting the embeddings
on the principal components as the principal em-
bedding space. We study the principal embedding
space and the dimensional properties in a number
of different contexts such as word similarity, sen-

1 https://github.com/vyraun/dlp

tence classification. We provide a brief introduc-
tions to the both evaluation tasks of our experi-
ment in the sub-sections. For details on the bench-
marks, please refer to Conneau and Kiela (2018)
for sentence classification and Faruqui and Dyer
(2014) for word similarity.

For experiments in this section, we use 300
dimensional a) Glove embeddings (trained on
Wikipedia 201 + Gigaword 5 2), b) fastText em-
beddings (trained on Wikipedia, UBMC web-
base corpus and statmt.org news dataset 3) and
c) Word2vec embeddings (trained on the Google-
News dataset 4. We use Glove embeddings for
the word similarity tasks. For the sentence clas-
sification tasks, we show results for fasttext and
word2vec as well, in addition to Glove embed-
dings. For the sentence classification tasks we use
Logistic Regression as the classifier, since it is the
simplest classification model and we are only in-
terested in evaluating performance variation due
the changes in representations. Thus, the con-
vex objective used in the classifier avoids any op-
timizer instability, making our entire evaluation
pipeline deterministic and exactly reproducible.

2.1 Word Similarity Tasks
The word similarity benchmarks (Faruqui and
Dyer, 2014) have word pairs (WP) that have been
assigned similarity rating by humans. While eval-
uating word embeddings, the similarity between
the words is calculated by the cosine similarity
of their vector representations. Then, Spearman’s
rank correlation co-efficient (Rho) between the
ranks produced using the cosine similarities and
the given human rankings is used for the perfor-
mance evaluation. Hence, for better word similar-
ity, the evaluation metric (Rho) will be higher.

Figure 1 shows the performance (Rho x 100)
of word embeddings (Glove) on 13 word similar-
ity benchmarks w.r.t varying word embedding di-
mensions. The similarities are computed by pro-
jecting the embeddings in the principal component
space. Each new evaluation cumulatively adds 10
more principal components to the earlier embed-
dings, i.e. the units on the X-axis vary in the incre-
ments of 10. Thus, we obtain 30 measurements for
each dataset, ranging from word embeddings con-
structed using the first 10 principal components to
orignal 300 principal components. From Figure
2 https://stanford.io/2Gdv8uo
3 https://bit.ly/2FMTB4N
4 https://bit.ly/2esteWf

https://github.com/vyraun/dlp
https://stanford.io/2Gdv8uo
https://bit.ly/2FMTB4N
https://bit.ly/2esteWf
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Table 1: Test accuracy of embeddings composed of Top-100 (T), Middle-100 (M) and Bottom-100 (B) principal
components on sentence classification datasets. The highlighted cells correspond to one of the three cases - M
outperforms T ( orange ), B outperforms T ( red ) and B outperforms M ( yellow )

.
Split MR CR SUBJ MPQA SST2 SST5 TREC SICK-E MRPC

Random-Embeddings 61.65 71.6 78.9 73.79 60.57 31.09 70.0 77.07 69.91
Glove-Full 75.7 77.48 91.76 86.66 78.03 41.0 68.0 78.49 70.61

Glove-T 70.74 73.67 90.1 81.58 72.49 37.24 61.8 75.71 71.94
Glove-M 72.98 75.04 87.76 84.07 75.34 40.5 57.6 76.5 71.42
Glove-B 67.62 73.01 83.68 81.61 69.52 36.11 57.0 72.82 70.96

Word2vec-Full 77.65 79.26 90.76 88.3 79.68 42.44 83.0 78.24 72.58
Word2vec-T 74.34 76.29 89.88 85.07 77.16 40.36 70.0 75.46 71.48
Word2vec-M 72.91 73.43 82.39 82.76 72.65 38.69 66.0 70.53 71.36
Word2vec-B 71.42 74.25 82.47 81.05 73.48 38.46 72.2 74.3 71.01
fastText-Full 67.85 75.39 85.87 79.85 70.57 35.97 68.0 76.66 70.84

fastText-T 69.42 67.76 87.69 84.64 74.35 36.83 74.8 66.04 70.61
fastText-M 68.88 65.3 81.74 81.45 72.1 35.57 65.2 65.01 68.29
fastText-B 66.45 64.21 79.89 79.83 69.96 31.22 69.4 63.77 67.94

1, it is evident that the performance saturates con-
sistently at around 200 dimensions for all of the
tasks, after which adding new principal compo-
nents does not lead to much gain in performance.

2.2 Sentence Classification Tasks

The sentence classification tasks (Conneau and
Kiela, 2018) include binary classification tasks
(MR, CR, SUBJ, MPQA), multiclass classifica-
tion tasks (SST-FG, TREC), entailment (SICK-E),
semantic relatedness (STS-B) and Paraphrase de-
tection (MRPC) tasks. As usual, the evaluation is
done by computing the classification accuracy on
the test set.

Figure 2 shows the performance (Test accu-
racy) on 9 standard downstream sentence classi-
fication tasks (Conneau and Kiela, 2018) using
the same procedure for constructing word embed-
dings (Glove) as in 2.1. Further, sentence vec-
tors were constructed using an average of the con-
tained word embeddings, which has been demon-
strated to be a very strong baseline for downstream
tasks (Arora et al., 2017). From Figure 2, we can
observe that, similar to the previous word simi-
larity tasks, the performance saturates consistently
at around 200 dimensions for all of the tasks, af-
ter which incrementing the embeddings with addi-
tional principal components does not lead to much
gains in performance. We also report results for
original (300D) and post processed PCA reduced
(200D) word embeddings for other types (fast-
Text, Glove) in Table 2. In Table 2, we also report

results with pretrained 200D Glove embedding. 5

Analysis: To conclude, observations from both
word similarity and sentence classification tasks,
of saturation in performance around 200, much
before the original 300 dimensions implies redun-
dancy among the dimensions (in section 3 we will
clarify why it doesn’t imply noise). Furthermore,
this observation is consistent across various em-
bedding types (Glove, fastText and word2vec) for
the sentence classification tasks, as demonstrated
in Table 2. This also suggests a simple strategy
to reduce the embedding size wherein one third of
the components could be reliably removed with-
out affecting the performance on word similarity
or sentence classification tasks, leading to 33%
memory reduction.

3 Variance Based Analysis

In this section, we characterize the redundancy
observed in Section 2, in terms of variance of
the principal components. Specifically, we mea-
sure downstream performance (on the sentence
classification tasks of Section 2.2) of word em-
beddings against the amount of variance captured
by the principal components (the variance ex-
plained or captured by a principal component is
the variance of the embeddings when projected
onto that principal component; hereon, we refer
to the fraction of variance explained by a princi-
pal component simply as variance explained by
that component). Similar to the previous sec-
5 word embeddings for 200D for other embedding types
(fasttext, word2vec) are not publicly available.
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Table 2: Performance on sentence classification tasks of various embeddings (300 dimensional) and their post-
processed PCA reduced counterparts of 200 dimensions.

Embedding MR CR SUBJ MPQA SST2 SST5 TREC SICK-E MRPC
Glove 75.7 77.48 91.76 86.66 78.03 41.0 68.0 78.49 70.61

Glove-PCA 74.62 76.95 91.6 85.97 77.16 40.18 66.6 77.02 72.99
Glove-200 74.69 77.91 91.18 86.52 77.98 40.05 66.4 77.47 72.23
Word2vec 77.65 79.26 90.76 88.30 79.68 42.44 83.0 78.24 72.58

Word2vec-PCA 76.53 78.12 90.50 86.74 79.63 41.49 77.6 76.54 72.17
fastText 67.85 75.39 85.87 79.85 70.57 35.9 68.0 76.66 70.84

fastText-PCA 66.83 74.46 85.26 78.91 69.85 36.11 66.0 76.50 68.75

Table 3: The Variance for each of the T, M, B splits of the
embeddings.

Glove Word2vec fastText
T 0.529 0.628 0.745
M 0.371 0.221 0.162
B 0.100 0.151 0.093

tion, we use 300 dimensional Glove embeddings
(trained on Wikipedia 201 + Gigaword 52) for ex-
periments in this section, along with publically
released fastText (trained on Wikipedia, UBMC
webbase corpus and statmt.org news dataset3 and
Word2vec (trained on the GoogleNews dataset4)
embeddings, both of 300 dimensions.

For each of the embedding types, we first con-
struct word embeddings using only top 100 prin-
cipal components (T), the middle 100 principal
components (M) and the bottom 100 principal
components (B). Then, we compute the variance
for each split by aggregating the variance of the
100 principal components of each split for all
three embedding types. Table 3 highlights how
the total variance is divided across the three splits.
The T embeddings have the first 100 principal
components (PCs), so the highest variance ex-
plained, while the B embeddings have the bot-
tom 100 components, thereby the least variance
explained. Furthermore, the variance explained by
the principal components for the same split also
differ significantly across the different embedding
types. For example, fastText has more variance ex-
plained, when compared to Glove and Word2vec,
for the split T, while Glove has the most variance
explained, among the three embedding types, for
the split M. Lastly, Word2vec explains more vari-
ance than Glove and fastText for the split B. The
differences are expected since, the three embed-
ding types differ considerably in their training al-
gorithms. While Word2vec uses negative sam-
pling, Glove derives semantic relationships from
the word-word co-occurrence matrix and fastText

uses subword information. So, to summarize we
constructed altogether 9 embedding splits (3 from
each of the 3 embedding types), which differ sig-
nificantly in terms of the variance explained by
their constituent components.

We use the 100 dimensional embedding obtain
from the several splits (T, M, B) and types (Glove,
fastText, Word2vec) as features for downstream
sentence classification tasks, as in Section 2.2,
except that, now, each of the embedding feature
has 100 dimensions. The experiments are de-
signed to test whether the variance explained by
a split is closely correlated with the downstream
performance metric (classification accuracy) for
each of the three embedding types. Table 1 shows
the results on 9 sentence classification tasks, for
each embedding split, for all the three embedding
types. In the table, the highlighted cells represent
the cases where classification accuracy of the
lower variance split exceeds that of the corre-
sponding higher variance split. Each annotated
cell corresponds to one of the three cases - M
outperforms T ( orange ), B outperforms T
( red ) and B outperforms M ( yellow ). For
the comparisons between T and M splits, in 6
out of 27 such comparisons, the M embeddings
outperform the T embeddings. Similarly, for
comparisons between M and B embeddings, the
B embeddings outperform the M embeddings in
7 out of 27 cases and for comparisons between
T and B embeddings, in 2 out of 27 cases the
B embeddings outperform the T embeddings.
Further, in a number of cases (although not
highlighted), such as on the MRPC task, the T
and M splits differ very little in performance. The
same is true for M and B splits on tasks such as
MPQA and CR. Such cases are least prominent in
fastText, probably due to the extremely large gap
in the variance explained between the T, M and T,
B splits.
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Figure 3: Analysis of individual principal components
on the two syntactic information based linguistic prob-
ing tasks: TopConst (top) and TreeDepth (bottom). The
Y-axis represents the Test accuracy on the two tasks.

Analysis: From Table 1 it is evident that the per-
formance drop between the T, M, B splits is quite
low for a number of tasks, which is highly contrary
to the expectation, given the large differences in
the variance explained (Table 3). Further, there are
also many cases where lower variance embeddings
(B and M) outperform the emedddings (M and T)
with higher variance, for all the three embedding
types. These results demonstrate that for word
embeddings, the variance explained by the prin-
cipal components is not sufficient for explaining
their downstream performance. In other words,
the variance explained by the principal compo-
nents is a weak representative of downstream per-
formance. This is in contrast to the widely used
practice of using the variance explained by the
principal components as a fundamental tool to as-
sess the quality of the corresponding representa-
tions (Jolliffe and Cadima, 2016).

4 Dimensional Linguistic Probing Tasks

A plausible hypothesis to explain the better per-
formance of M and B embeddings (Table 1) in
the earlier section is that ‘the syntactic informa-

tion required for downstream sentence classifica-
tion tasks is distributed independently with respect
to the principal components’. To explore the va-
lidity of the proposed hypothesis, we leverage two
linguistic probing tasks, namely TreeDepth and
TopConst (Conneau et al., 2018). These probing
tasks are designed to test whether sentence embed-
dings are sensitive to the syntactic properties of the
encoded sentences. The TreeDepth task (a 8-way
classification problem) tests whether the model
can predict the depth of the hierarchical syntac-
tic structure of the sentence. For doing well on
the TreeDepth task, the embeddings have to group
sentences by the depth of the longest path from
root to any leaf. In the TopConst task (a 20-way
classification problem), a sentence must be clas-
sified in terms of the sequence of its constituents
occurring immediately below the sentence node
of its hierarchical structure. Therefore, for good
performance on the TopConst task, the embed-
dings have to capture latent syntactic structures
and cluster them by constituent types. The ran-
dom baselines for the TreeDepth and TopConst
tasks are 12.5 and 5.0 respectively, while full 300-
dimensional Glove embeddings obtain accuracies
of 37 and 68 percent respectively.

To evaluate the syntactic information contained
in each of the principal components, we first con-
struct one-dimensional word embeddings by pro-
jecting word vectors onto a single principal com-
ponent. Then we use these word embeddings
to construct sentence vectors, as in Section 2.2,
which are used as features for the two classifi-
cation tasks. For good performance, the single
component sentence vector has to distinguish be-
tween the probing task’s output classes. There-
fore, the performance on these tasks can be used
to isolate the behavior of individual components
with respect to the syntactic information captured.
The motivation here is that if the syntactically dis-
criminative components would vary considerably,
then we can isolate the behavior of the individ-
ual components and see their correspondence with
the rank of the principal component. Figure 3 de-
picts the scores (Test classification accuracy) on
TopConst and TreeDepth tasks respectively. The
average performance of the one-dimensional rep-
resentations has mean ± standard deviation of
18.38 ± 0.64 and 6.71 ± 0.72 for the TreeDepth
and TopConst tasks respectively.

Analysis: The average performance of the one-
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dimensional representations on both tasks is much
lower than full dimension embeddings but well
above the random baseline. However, many indi-
vidual compoenents far exceed the random base-
line as well. As mentioned earlier, we wanted to
probe whether such discriminativeness is ranked
according to variance. However from Figure 3, it
is evident that the performance across the dimen-
sions does not have any particular trend (increas-
ing or decreasing) w.r.t to the rank of the princi-
pal components. In fact, the peak performance on
both the tasks is achieved by a component in the
bottom (B) split of the embeddings. This validates
the hypothesis that the syntactic information cap-
tured by a principal component is independent of
the amount of variance it explains.

Table 4: Classification Accuracy for Linguistic Prob-
ing Tasks using the T, M, B splits of the embeddings.
Here also, the highlighted cells correspond to one of
the three cases - M outperforms T ( orange ), B out-
performs T ( red ) and B outperforms M ( yellow )

Embedding TopConst TreeDepth
Glove-T 28.1 28.2
Glove-M 26.0 24.8
Glove-B 27.1 26.9

Word2vec-T 23.9 42.5
Word2vec-M 24.3 43.5
Word2vec-B 23.7 44.6
fastText-T 31.2 50.7
fastText-M 29.3 51.0
fastText-B 30.6 56.8

To further validate the hypothesis, we repeat the
experiment described in Section 3 for each of the
embedding types, except on the synctatic probing
tasks of TopConst and TreeDepth in Table 4. Simi-
lar to Table 1, each annotated cell in Table 4 corre-
sponds to one of the three cases - M outperforms
T ( orange ), B outperforms T ( red ) and B out-
performs M ( yellow ). For the comparisons be-
tween T and M splits, in 3 out of 6 such compar-
isons, the M embeddings outperform the T embed-
dings. Similarly, for comparisons between M and
B embeddings, the B embeddings outperform the
M embeddings in 5 out of 6 cases and for compar-
isons between T and B embeddings, in 2 out of 6
cases the B embeddings outperform the T embed-
dings. In other words, table 4 shows that for the
TreeDepth task, the B embeddings significantly
outperform T and M embeddings for word2vec
and fastText, whereas for Glove, it outperforms

the M embeddings. For the TopConst task as well,
the B embeddings outperform M embeddings for
Glove and fastText, whereas for Word2vec, it out-
performs the T embeddings. Thus, the discrep-
ancy in performance on these syntactic probing
tasks is even more severe when compared to the
sentence classification tasks evaluated in Section
3. The results also validate our hypothesis that the
variance explained by the embeddings is of little
predictive strength in predicting its relative per-
formance.

5 The Post Processing Algorithm (PPA)

In this section, we briefly describe and then eval-
uate the post-processing algorithm (PPA) by (Mu
and Viswanath, 2018), which achieves high scores
on Word and Semantic textual similarity tasks
(Agirre et al., 2012). The algorithm (PPA) is listed
below as Algorithm 1. PPA removes the projec-
tions of top principal components from each of the
word vectors, making the individual word vectors
more discriminative. The algorithm could be re-
garded as pushing the word embeddings towards
a more isotropic space (Arora et al., 2016), by
eliminating the common parts (mean vector and
top principal components of the embedding space)
from the individual word embeddings. How-
ever, it is worth revisiting the assumption whether
isotropy (or angular isotropy more specifically)
of the embedding space is universally beneficial
with respect to downstream tasks. In this section,
we stress test this assumption on a range of sen-
tence classification and machine translation tasks.
Our fundamental intuition is that since these tasks
require the embedding space to capture syntac-
tic properties much more significantly than word-
similarity tasks, enforcing isotropy could lead to
worse performance.

Algorithm 1: Post Processing Algorithm PPA(X,
D)

Data: Embedding Matrix X, Threshold Parameter D
Result: Post-Processed Word Embedding Matrix X
/* Subtract Mean Embedding */

1 X = X - X ;
/* Compute PCA Components */

2 ui = PCA(X), where i = 1, 2, . . . d;
/* Remove Top-D Components */

3 for all v in X do
4 v = v −

∑D
i=1(u

T
i · v)ui

5 end
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Table 5: Performance on sentence classification tasks of various embeddings and their post-processed (PPA) coun-
terparts. The red colored cells denote the cases where the original embeddings outperformed their post-processed
(PPA) counterparts.

Embedding MR CR SUBJ MPQA SST2 SST5 TREC SICK-E MRPC
Glove (300 dim) 75.7 77.48 91.76 86.66 78.03 41.0 68.8 78.49 70.61
PPA on Glove 75.57 77.48 91.01 86.67 77.98 40.72 65.8 78.53 71.59

Word2vec (300 dim) 77.65 79.23 90.76 88.30 79.68 42.44 82.6 78.24 72.64
PPA on Word2vec 77.33 79.5 90.59 88.12 79.41 42.71 83.4 78.26 72.58
fastText (300 dim) 74.16 71.63 89.56 87.12 79.24 39.14 79.4 72.34 70.14
PPA on fastText 74.59 71.63 89.4 86.9 79.13 39.64 80.2 72.36 70.09

5.1 Sentence Classification Tasks
We compare the performance of PPA (with a con-
stant D=5 across all the embeddings) on the 9
downstream sentence classification tasks, as in
Section 3. The results are presented in Table 5.
In our work, we adhere to the linear evaluation
protocol and use a simple logistic regression clas-
sifier in evaluating word representations (Arora
et al., 2019; Gupta et al., 2020), whereas (Mu and
Viswanath, 2018) use a neural network as their
classifier. The red colored cells in Table 5 denote
the cases where the original embeddings outper-
formed their Post Processed (PPA) counterparts.
Such cases occurred in 14 out of 27 comparisons
in Table 5. The results in Table 5 show that post-
processing doesn’t always lead to accuracy gains
and can be counterproductive in a number of tasks.

Analysis: The results in Table 5 are contrary to
the expectation that pushing the word embeddings
towards isotropy would lead to better downstream
performance. This suggests that within the con-
text of downstream sentence classification tasks,
projecting word vectors away from the top com-
ponents leads to a loss of ‘useful’ information. To
explain this loss of ‘useful’ information, we could
use the analysis from Figure 3. From Figure 3,
it is evident that the top dimensions also contain
syntactic information, the loss of which adversely
impacts downstream classification tasks, which by
construction, benefit from both semantic and syn-
tactic information. Also, by just removing the
mean (no top component nullification as in PPA),
we notice almost zero change in performance for
most of the sentence classification tasks in Table 5
(the highest change was for TREC, of −0.4, still
quite low when compared to −4.4 for PPA), which
demonstrably shows that removing the mean must
be ruled out as the possible cause for the drop in
classification accuracies.

On the same tasks, we also observe a drop

in sentence classification accuracy (2.37, 1.99,
3.94 average drop on word2vec, Glove, fastText
respectively) using 150 dimensional embeddings
obtained from PPA based dimensionality reduc-
tion (Raunak et al., 2019). This shows that the
variance based post-processing algorithms such as
PPA (Mu and Viswanath, 2018) and PPA-PCA
(Raunak et al., 2019), when used in downstream
tasks have significant limitations, which could be
attributed to the loss of syntactic information.

5.2 Machine Translation

Recently, (Qi et al., 2018) have shown that pre-
trained embeddings lead to significant gains in
performance for the translation of three low re-
source languages namely, Azerbaijani (AZ), Be-
larusian (BE) and Galician (GL) into English
(EN). Here, we demonstrate the impact of the
post processing algorithm on machine translation
(MT) tasks. We replicate the experimental set-
tings of (Qi et al., 2018) and use a standard 1
layer encoder-decoder model with attention (Bah-
danau et al., 2015) and a beam size of 5. Prior
to training, we initialize the encoder with fastText
word embeddings (no other embeddings are pub-
lically available for these languages) trained on
Wikipedia6. We then use PPA on the pre-trained
embeddings and train again. The results of the ex-
periments are presented in Table 6.

Analysis: From the results, it is evident that re-
moving the top principal component(s) leads to a
consistent drop in BLEU scores across the three
language pairs. The observations are consistent
with the previous section, in that removing top
components hurts performance in non-similarity
based tasks. This can again be explained using
the analysis from earlier section i.e. instead of
strengthening the embeddings, removing the top
components leads to a loss of ‘useful’ information

6 https://bit.ly/2WkHQ0Y

https://bit.ly/2WkHQ0Y
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for the Machine translation task. Further, simi-
lar to the previous section, we can specifically at-
tribute the performance drop to the loss of syn-
tactic information, since the top components are
at least as equally important for syntactic informa-
tion as the other components, thus, nullifying them
hurts performance.

Table 6: BLEU scores over three different low-resource
language pairs with pretrained emebddings and Top D
components removed using PPA. Green cells denotes
top scores.

AZ->EN BE->EN GL->EN
Pre-Trained 3.24 6.09 15.91
PPA (D = 1) 3.19 6.02 14.81
PPA (D = 2) 3.07 5.50 13.88
PPA (D = 3) 3.04 5.26 13.27
PPA (D = 4) 2.92 4.75 13.24

5.3 Summary and Discussion
To summarize our experiments on variance based
post-processing, we conclude the following:

1. We can not rely on principal components for
manipulating word embeddings as freely as
the current literature suggests. While elimi-
nating the ‘common parts’ helps improve the
discriminativeness between the word embed-
dings (thereby refining the word similarity
scores), pushing the embeddings towards an-
gular isotropy does not lead to performance
gain in downstream tasks, e.g. sentence clas-
sification and machine translation. Although,
we did not assume any generative model for
the embeddings in any of the explanations
(unlike (Arora et al., 2016), which makes use
of the isotropy assumption to explain empiri-
cal observations in factorizing the PMI ma-
trix), our work further casts doubt on the
isotropy assumption for word embeddings
and suggests that non-isotropy may be inte-
gral to performance on downstream tasks.

2. Furthermore, worse performance in non-
similarity tasks can be attributed to the loss
of syntactic information contained in the top
components, suggesting that the specific ge-
ometry created through the ‘common parts’
is integral to embeddings capturing syntactic
properties. Establishing a link between the
syntactic properties of the embedding space
and its non-isotropy would be an interesting
direction to explore for future work.

6 Related Work

Due to the widespread utility of word embeddings,
a number of recent works have explored further
improving the embeddings post-hoc, as well as
trying to better understand and manipulate the ge-
ometry of the embedding space.

Post-Processing Word Embeddings A number
of recent works have been proposed to enhance
word embedding quality post-hoc (Mrkšic et al.;
Faruqui et al., 2014; Mu and Viswanath, 2018).
Their applications range from better modeling se-
mantic similarities, improving downstream classi-
fication performance to dimensionality reduction
of the embeddings (Raunak et al., 2019).

Word Embedding Geometry The linear alge-
braic structure emergent in word embeddings
has received considerable attention (Allen and
Hospedales, 2019; Arora et al., 2018), and theo-
retical links have been established between neu-
ral embedding algorithms and factorization based
techniques (Levy and Goldberg, 2014). Another
prominent line of work has been along the direc-
tion of probing tasks (Conneau and Kiela, 2018),
which use proxy classification tasks to compar-
atively measure the presence of certain syntac-
tic/semantic properties in the embedding space.

Our work focuses on the dimensional properties
of the embedding space in the principal compo-
nent basis, and also analyzes a few post-processing
algorithms, thus contributing to the existing litera-
ture on both the areas of embedding analysis.

7 Conclusion and Future Work

To conclude, besides elucidating redundancy in
the word embedding space, we demonstrate that
the variance explained by the word embeddings’
principal components is not a reliable proxy for
the downstream utility of the corresponding repre-
sentations and that the syntactic information cap-
tured by a principal component does not depend
on the amount of variance it explains. Further,
we show that variance based post-processing al-
gorithms such as PPA is not suitable for tasks
which rely more on syntax, such as sentence clas-
sification and machine translation. Going further,
we wish to explore whether the geometric intu-
itions developed in our work could be leveraged
for contextualized embeddings such as ElMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), and
Roberta (Liu et al., 2019), etc.
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