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Abstract

End-to-end models trained on natural lan-
guage inference (NLI) datasets show low gen-
eralization on out-of-distribution evaluation
sets. The models tend to learn shallow heuris-
tics due to dataset biases. The performance
decreases dramatically on diagnostic sets mea-
suring compositionality or robustness against
simple heuristics. Existing solutions for this
problem employ dataset augmentation which
has the drawbacks of being applicable to only
a limited set of adversaries and at worst hurt-
ing the model performance on other adver-
saries not included in the augmentation set.
Our proposed solution is to improve sentence
understanding (hence out-of-distribution gen-
eralization) with joint learning of explicit se-
mantics. We show that a BERT based model
trained jointly on English semantic role la-
beling (SRL) and NLI achieves significantly
higher performance on external evaluation sets
measuring generalization performance.

1 Introduction

NLI is the task of determining the inference re-
lationship between a premise and a hypothesis
sentence which is usually formulated as a three-
class classification task with entailment, contra-
diction and neutral labels. It has been regarded
as a central problem in natural language under-
standing and found its place in benchmarks such
as GLUE (Wang et al., 2018). Contemporary neu-
ral network based models achieve state-of-the-art
(SOTA) results on these benchmarks. However,
scoring high on test sets that have a similar distri-
bution to the training sets does not guarantee wider
generalization. Models that top the leaderboards
on standard test sets may perform poorly on specif-
ically constructed evaluation sets targeting dataset
biases. For instance, the HANS challenge dataset
(McCoy et al., 2019b) showed that models trained
on NLI get fooled easily by heuristics when the
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input sentence pairs have high lexical similarity.
The following example from HANS can explain
how this might happen.

Premise: The judge by the actor stopped the
banker.

Hypothesis: The banker stopped the actor.

A human reading this sentence pair carefully can
conclude that the hypothesis can not be inferred
from the premise. However, models relying on the
lexical overlap heuristic will be fooled and predict
the label as entailment since the premise contains
all words of the hypothesis. Existing approaches
commonly tackle such adversaries by training the
model with a dataset augmented with similar ad-
versarial examples. As detailed in Section 5, the
problem with this approach is that it might lead to
overfitting to the adversaries on the augmentation
set. Therefore, it can decrease the performance on
other possible adversaries and hurt generalization
(Nie et al., 2018).

Semantic Role Labeling (SRL) asks the “who
did what to whom, when and where etc.” questions
to find the semantic roles of words or phrases in
a sentence (He et al., 2017). We hypothesize that
using the SRL task as a joint objective should im-
prove the semantic knowledge of the models, thus
making them less prone to dataset biases. Con-
sider the semantic roles in the previous example
sentence pair, which are shown in Table 1. We can
see that the role of “the banker” differs between
the sentences. Since “stop” is not a reciprocal verb,
a model that is aware of the semantic roles can find
out that the inference relation is non-entailment
although the premise contains all words in the hy-
pothesis, albeit with a different order. In contrast,
if a model pays too much attention to lexical simi-
larity, it might falsely predict the relation as entail-
ment as the SOTA models analyzed on HANS such
as BERT (Devlin et al., 2018) do. SRL informs the
model directly about the semantic roles of words
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Premise | The judge by the actor stopped
the banker.

VERB stopped

ARGO | The judge by the actor

ARGI1 the banker

Hypoth. | The banker stopped the actor.

VERB stopped

ARGO The banker

ARGI1 the actor

Table 1: An example pair from HANS, including the
semantic roles of the words in each sentence. ARGO
represents the proto-agent, i.e. the thing that stops,
ARG] represents the proto-patient, i.e. the object be-
ing stopped, in this example.

which makes it easier for the model to rely on more
than just shallow lexical cues.
Our contribution in this work is threefold:

e We propose a BERT based multi-task learning
(MTL) model jointly trained on English SRL
and NLI (Section 3), and show that this model
achieves scores comparable to the single-task
BERT on both tasks (Section 4).

e We evaluate the proposed model on out-of-
distribution test sets such as HANS (Mc-
Coy et al., 2019b) and Comparisons (Das-
gupta et al., 2018) and demonstrate that it
exceeds the single-task BERT performance
significantly. Specifically, when trained on
MultiNLI, the multi-task model exceeds the
single-task model accuracy by 4% on HANS
and 5.3% on Comparisons without using data
augmentation. (Section 4.1.2 and 4.2)

e We compare the proposed MTL approach to
the sequential transfer learning and show that
the MTL is more helpful. (Section 4.1.3)

2 Datasets

In this section, we describe the datasets used in the
experiments. We explain the shortcomings of the
NLI datasets and describe an SRL dataset that can
be used to alleviate these shortcomings.

2.1 Large-scale NLI Datasets

In this work, we consider two open-domain, large-
scale NLI datasets in English, SNLI (Bowman
et al., 2015) and MultiNLI (Williams et al., 2018).
SNLI is created using image captions written by
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humans whereas MultiNLI includes five different
genres of written and spoken English such as travel
guides and telephone conversations. Both datasets
have been used for training general NLI models,
or as an intermediate training resource for trans-
fer learning to a domain-specific dataset, possibly
with smaller size (Cengiz et al., 2019). Recently,
deep neural network models achieved human-level
performance on NLI tasks in benchmarks such as
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019). However, as McCoy et al. (2019b)
and Dasgupta et al. (2018) showed, these results
do not reflect the performance of the models on
out-of-distribution test sets. They proposed such
adversarial test sets targeting specific biases appar-
ent in the original NLI datasets to show that SOTA
models are vulnerable to these superficial patterns.

2.2 Adversarial NLI Datasets

HANS is an extensive evaluation set proposed by
McCoy et al. (2019b), that consists of three types
of adversarial examples: lexical overlap, subse-
quence and constituent. Lexical overlap is the most
general category, indicating all the words in the
hypothesis sentence are present in the premise as
well. An example from this category with entail-
ment gold label is the following: “The banker near
the judge saw the actor. = The banker saw the
actor” Subsequence is a special case of lexical
overlap, indicating that the hypothesis is a contigu-
ous subsequence of the premise. The following pair
is an example from this category with entailment
gold label: “The artist and the student called the
judge. = The student called the judge.” Lastly,
constituent is a special case of the subsequence, de-
noting that the hypothesis is a complete subtree of
the premise’s constituency parse tree. An instance
from constituent category with non-entailment gold
label is as following: “If the actor slept, the judge
saw the artist. = The actor slept.” It is worth not-
ing that although there is a hierarchical relation be-
tween the categories, their instances do not overlap.
Therefore, they will be treated as distinct categories
throughout the paper. The sentences included in
this dataset were created using templates and en-
sured to be plausible. Moreover, the verbs were
chosen from the frequently used verbs in MultiNLI
so that the models trained on MultiNLI are familiar
with them. Differently than MultiNLI, this dataset
has binary labels, a label is either entailment or
non-entailment. Finally, this dataset has two parti-
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Figure 1: Multi-task BERT model for SRL and NLI.

Each task-specific head contains a linear layer to trans-
form the embeddings into the task’s label space.

a Sentence or a Sentence Pair
(including [CLS] and [SEP] tokens)

tions with identical size, a test set to evaluate the
models and an augmentation set to augment the
MultiNLI training set. In our experiments, we treat
the augmentation set as a validation set and do not
use it for training.

The Comparisons dataset (Dasgupta et al., 2018)
attempts to evaluate the models trained on SNLI for
three types of adversarial examples: same, more-
less, not. The same category consists of hypothesis-
premise pairs having exactly the same words in
a different order. An example with contradiction
gold label is as following: “The woman is more
cheerful than the man. = The man is more cheerful
than the woman.” The more-less type contains in-
stances whose sentence pair differ by including the
word “more” or the word “less”, and possibly in
word order. The following pair is an example from
this category with entailment label: “The woman
is more cheerful than the man. = The man is less
cheerful than the woman.” The third category is
the not type, representing the instances having the
negation word “not” either in the hypothesis or in
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the premise, but not in both. The word order of
the sentences might differ as well. A sentence pair
from this category with entailment gold label is
the following: “The woman is more cheerful than
the man. = The man is not more cheerful than
the woman.” The authors created this dataset by
automatically generating examples fitting into one
of the described categories using a vocabulary sim-
ilar to SNLI’s. Moreover, they analyzed SNLI and
showed that it has many examples fitting into the
examined categories with labels mostly supporting
the heuristic choice. Unlike SNLI, this dataset does
not have the neutral label. It has the entailment la-
bel for the positive examples and the contradiction
label for the negative examples.

2.3 Semantic Role Labeling as an Auxiliary
Objective for Sentence Understanding

In this work, we use the English Ontonotes v5.0
SRL dataset with the CONLL-2012 shared task
format (Pradhan et al., 2013) which gives the
predicate-argument structure for each sentence.
The auxiliary task we used is formulated as pre-
diction of the arguments for a given predicate in a
sentence. Therefore, each predicate in a sentence
together with the semantic role label spans associ-
ated with it yield a different training instance. The
number of training instances in the whole dataset
is around 280,000.

3 Model Description

We propose a multi-task BERT model to jointly pre-
dict semantic roles and perform natural language
inference. BERT is used as the shared encoder mod-
ule and two separate decoder heads are appended
on top of it to perform task-specific operations. The
overall picture of the model can be seen from Fig-
ure 1. Following Liu et al. (2019), the tasks share
the encoder part of the model including the lexicon
encoder and all BERT layers.

We follow the original sentence pair classifica-
tion formulation for BERT while training it for NLI
task. On the input side, we concatenate the premise
and hypothesis tokens, add a [SEP] token at the end
of both sentences, and finally add a [CLS] token
at the beginning of the whole sequence. Figure 2
shows the token embedding for an example sen-
tence pair. While processing an NLI input, we take
the [CLS] token embedding at the BERT’s output
and treat it as the summary of the whole sequence.
The dimension of this embedding is reduced to
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Figure 2: Input representation of “The judge by the actor stopped the banker. = The banker stopped the actor.

sentence pair for NLI task.

three after passing through a two-layer MLP since
there are three labels in MultiNLI and SNLI. Fi-
nally, a softmax is applied to get the probability for
each label class. Following McCoy et al. (2019b),
when we evaluate the model on HANS or Compar-
isons, we collapse the predicted contradiction and
neutral labels into a single negative label to output
binary labels.

For the SRL training, we adapt an architecture
similar to the one proposed by Shi and Lin (2019).
In our implementation, we indicate the predicate
using the segment embeddings by assigning 1 to
the predicate word pieces and O to the other tokens.
Figure 3 denotes the embeddings used for the SRL.
We opt for a simple decoder and rely purely on
the self attention to capture contextual information.
The embedding of each token is directly passed
through a two-layer MLP independently, and the
SRL tag is determined by a final softmax layer. We
use the Inside Outside Beginning (IOB)! tagging
for spans, and a Viterbi decoder to ensure predic-
tion of valid spans during testing. As Figure 2 and 3
show, the segment embeddings represent different
things for SRL and NLI inputs. In NLI, segment
embeddings separate the sentences whereas they
indicate the target verb in SRL. Moreover, how the

'In TOB style tagging, each span begins with a B- tag and
continues with /- tags except for Other tokens, which takes O
tags.

Input

i

BERT outputs are processed is also different be-
tween the tasks. In spite of these differences, the
training is expected to optimize the BERT weights
so that it can generate embeddings suitable for both
tasks. Intuitively, this representation will be less
prone to dataset biases in the NLI thanks to ex-
plicitly forcing the model to pay attention to the
semantic roles of the words.

4 Experiments and Results

In this section, we present the experiments we con-
ducted by training the BERT based model in single-
task and multi-task learning setups. MultiNLI and
SNLI datasets are used to train the models whereas
HANS and Comparisons are used for evaluation.
For the multi-task learning experiments, we used
the SRL dataset for joint training with NLI. In both
of the HANS and Comparisons experiments, we
tuned the hyperparameters using a validation set
from the same distribution as the adversarial test set.
Nevertheless, we also tested our highest performing
models on the original MultiNLI and SNLI valida-
tion sets to make sure our multi-task BERT model
performs well on those as well. Indeed, the multi-
task model performance on the original validation
sets turned out to be similar (accuracy difference is
around +0.5%, depending on the hyperparameters)
to the single-task BERT performance.
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Figure 3: Input representation of “John saw a yellow bird flying in the sky.” sentence for SRL task when the

predicate is saw.

81



4.1 HANS Experiments

We experimented with direct training on NLI, se-
quential transfer learning using SRL, and a multi-
task learning approach to train on the NLI and SRL
tasks jointly. As HANS was proposed as an ad-
versarial evaluation set for the NLI models trained
on MultiNLI, we use it as the NLI training dataset.
Following McCoy et al. (2019b), we output non-
entailment label when a model predicts contradic-
tion or neutral.

4.1.1 Single-task MultiNLI Training

We trained a single-task BERT model on the
MultiNLI dataset to be used as the baseline for the
HANS evaluation. The BERT weights are initial-
ized with the pre-trained weights from Devlin et al.
(2018) whereas the classifier head is randomly ini-
tialized. During training, all weights are updated.
We used the HANS augmentation dataset as the
development set for hyperparameter tuning.

As reported by McCoy et al. (2019b), BERT
performs poorly on HANS although better than
bag-of-words or LSTM (Hochreiter and Schmidhu-
ber, 1997) based models. However, the follow-up
work by McCoy et al. (2019a) showed BERT’s per-
formance on HANS varied dramatically depend-
ing on the order of instances fed during training
and the initial weights of the classifier head, both
of which can be varied by changing the random
seeds. To further investigate that, they repeated
the training of BERT 100 times with the same set-
tings except that randomness and compared the
results. The largest variance was encountered on
the lexical overlap category when the gold label
is non-entailment whereas the other results were
close among different runs. In our experiment, we
got a 51% accuracy on lexical overlap, which is
close to the upper limit of the range (6% — 54%)
reported by McCoy et al. (2019a). Table 2 includes

Correct: Entailment

the comparison of the original results (McCoy et al.,
2019b) with our run. Our results are comparable
so we use this model as the baseline for single-task
BERT.

4.1.2 Multi-task Training for SRL and
MultiNLI

In this part, we present the result of training BERT
on SRL and MultiNLI jointly with the multi-task
approach described in Section 3. We used the
HANS augmentation dataset as the validation set
for MultiNLI, and CoNLL-2012 development set
for SRL validation. We validated the trained model
against both validation set separately at the end of
each epoch. Then, the model performed highest on
the HANS augmentation set was evaluated on the
HANS test set. The results are shown in Table 2,
together with the single-task results for comparison.
The multi-task approach improved the overall accu-
racy by 4%. Although there is a slight decrease in
the results when the correct label is entailment, this
is an expected drop. The accuracy of the single-task
model reaches 100% on the subsequence category,
and is at least 96% on the remaining two categories
when the correct label is entailment. Since the
MultiNLI instances involving a heuristic examined
by HANS are mostly labeled with entailment, the
models tend to assign entailment labels to such
examples in the HANS dataset. Because our multi-
task model is less severely affected by the heuris-
tics, it is less likely to output entailment when these
heuristics are encountered. As one would expect,
the gains come from the instances whose correct
label is non-entailment. Noticeably, the multi-task
training improved the accuracy for this label in all
three categories dramatically.

To examine the improvements in more detail,
we present the results broken down into subcate-
gories in Table 3. We refer the readers to McCoy

Correct: Non-entailment

BERT model Lexical Subseq. Const. | Lexical Subseq. Const. | Avg.
McCoy et al. (2019b) 0.95 0.99 1.00 0.16 0.04 0.16 | 0.55
Single-task 0.96 1.00 0.99 0.51 0.05 0.18 | 0.62
Multi-task 0.91 0.98 0.95 0.71 0.13 0.25 | 0.66

Table 2: Comparison of the previous work (McCoy et al., 2019b) and our single-task and multi-task BERT models
on HANS. All models started from pre-trained weights. The multi-task model was jointly trained on SRL and
MultiNLI whereas single-task models were only trained on MultiNLI. The highest accuracy for each category is
indicated with bold. Note that (McCoy et al., 2019b) results on the entailment and non-entailment categories were
obtained by averaging the subcases using the BERT column of Table 7 and Table 8§ respectively in their paper.
(Lexical: lexical overlap, Subseq.: subsequence, Const.: constituent)



Category ‘ Single-Task | Multi-Task
Lexical Overlap

Subject-object 0.68 0.83
swap

Preposition 0.68 0.79
Relative clause 0.60 0.73
Conjunction 0.55 0.70
Passive 0.01 0.51
Subsequence

NP/S ambiguity 0.00 0.03
Prepositional . 0.14 0.20
phrase on subject

Relatlv.e clause 0.10 0.24
on subject

Past participle 0.00 0.06
NP/Z ambiguity 0.02 0.15
Constituent

Embedded 0.46 0.71
under if

After if 0.00 0.00
clause

Embedded 0.31 0.47
under verb

Disjunction 0.07 0.02
Adverb 0.08 0.06

Table 3: Fine-grained comparison of single-task and
multi-task BERT on HANS’s three different categories
when the correct label is non-entailment. The rows de-
note the heuristic type found in the sentences.

et al. (2019b) for details and examples of the sub-
categories. The top part of the Table 3 shows the
fine-grained results for the lexical overlap category
with the non-entailment gold labels. Although all
subcategories improved, the largest gain comes
from the passive examples. The passive case with
non-entailment labels includes examples with sen-
tence pairs almost identical to each other, only one
of them has an active verb while the other has the
passive form of it. An example sentence pair is
the following: “The senators were helped by the
managers. = The senators helped the managers.”
The single-task model misclassified almost all non-
entailment examples involving passive sentences
whereas the multi-task model could predict them
correctly half of the time. This is a significant im-
provement, the multi-task model has begun to iden-
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tify the meaning changes when a verb is switched
from passive to active while the word order is kept
unchanged.

The middle section of Table 3 shows the results
on the subsequence category for the non-entailment
gold labels. All subcategories improved although
the degree is less than lexical overlap. The largest
improvement is found on relative clause on sub-
Jject, which represents the sentence pairs differing
by their subjects such that the premise’s subject
is a relative clause and the hypothesis’s subject is
a particular segment of that clause that leads to
non-entailment. An example sentence pair from
this category is the following: “The secretary that
admired the senator saw the actor. = The senator
saw the actor.”. When trained with a multi-task ap-
proach, the model makes some progress on recog-
nizing that the overall meaning of a relative clause
does not necessarily entail a part of it.

The last category we investigated is constituents
with non-entailment gold labels, whose results are
given in the bottom part of Table 3. There are signif-
icant improvements in two subcategories whereas
the remaining three did not improve or very slightly
dropped. The largest improvement (25% accuracy)
is on embedded under if subcategory, which de-
notes the examples with a premise having an if (or
unless) clause whereas the hypothesis has the result
part of the if clause. An example from this subcat-
egory is: “Unless the authors saw the students, the
doctors resigned. = The doctors resigned.” The
second largest gain (16% accuracy) comes from
embedded under verb subcategory, which is simi-
lar to the previous one, except that the embedding
is achieved using a verb. An example is: “The
tourists said that the lawyer saw the banker. =
The lawyer saw the banker.”.

As shown by the HANS results, there are solid
improvements on NLI evaluation after switching to
the multi-task training. However one needs to ask
if the joint training hurts the other task, SRL. In
the multi-task experiment, the F1 score on SRL
test dataset is 86.0 which is comparable to the
single model SOTA results noted by Shi and Lin
(2019). Therefore, the joint training did not harm
the SRL performance, while improving the out-of-
distribution performance on NLI.

4.1.3 Sequential Transfer Learning from
SRL to MultiNLI

We experimented with sequential transfer learn-
ing to test if a simple transfer learning strategy is



more
Model same | /less | not | Avg.
BOW-MLP 50.0 | 50.0 | 49.9 | 50.0
InferSent 51.4 | 50.1 | 47.8 | 49.8
BERT 85.3 | 47.9 | 44.5| 59.2
MTL-BERT | 80.5 | 479 | 51.3 | 59.9

Table 4: Percent accuracy of the models on Compar-
isons dataset. BERT based models are our implementa-
tions while the others are from Dasgupta et al. (2018).
Multi-task (MTL) BERT is trained on SRL and SNLI.
The highest accuracy for each category is indicated
with bold. Note that the BOW-MLP and InferSent rows
are obtained by merging the neutral and contradiction
labels in Figure 2 and 3 from Dasgupta et al. (2018).

enough to carry information from the SRL task so
that the model is more robust to the biases in the
NLI dataset. First, an SRL tagger head with ran-
dom weights is appended on top of the pre-trained
BERT encoder. This model is fine-tuned on SRL
until the F1 score on the SRL validation set is maxi-
mized. The model weights from the epoch resulting
in the highest SRL development set score is stored.
Then, its SRL head is stripped, and an NLI classi-
fier head with random weights is appended on top
of the [CLS] token. Finally, the model is trained on
MultiNLI and validated against HANS augmenta-
tion set. After training, the model is evaluated on
HANS test set. The result is within the accuracy
range for the single-task training results reported
by McCoy et al. (2019a). This shows that our trans-
fer learning strategy did not improve HANS results
over the BERT trained only on MultiNLI. We an-
ticipate that this is because the model forgets most
of the knowledge about the SRL task during NLI
training. To avoid that, we switched to multi-task
setup presented in Section 3 to learn SRL and NLI
jointly so that the semantic role knowledge is not
forgotten.

4.2 Comparisons Dataset Results

We trained BERT with single-task and multi-task
learning approaches and compared them on the

Training set: SNLI

Comparisons dataset. First, we used the SNLI
dataset as the NLI training source following Das-
gupta et al. (2018). We used the validation set
released with the Comparisons dataset for hyper-
parameter optimization during training of both the
single-task and multi-task models. Unlike SNLI,
this dataset contains only two labels, entailment
and contradiction. Therefore, differently than Das-
gupta et al. (2018), we converted the predicted
neutral labels to contradiction to have a unified
negative label. Table 4 compares the overall perfor-
mance of our BERT based models and the previ-
ously examined models on the test set. InferSent
(Conneau et al., 2017) is a sentence encoding based
NLI model that uses LSTM as the encoder. Al-
though it is more complex than the bag-of-words
(BOW-MLP) model, their performances are sim-
ilar on this set. We see that the performance of
BERT models on the same category are much bet-
ter than the simpler models. The high performance
of BERT models on this category can be attributed
to the fact that the BERT was pre-trained on a large
corpus with missing word prediction and next sen-
tence prediction tasks, making it more aware of the
word order. However, in the remaining two cate-
gories, both the single-task and multi-task BERT
perform relatively close to the remaining models.

MultiNLI is a more diverse dataset compared
to SNLI, including examples from several genres.
Therefore, we also tried MultiNLI as the NLI train-
ing source and replicated the experiments to see
how the single-task and multi-task BERT perfor-
mance will change. The results are given in Table
5 together with the SNLI based results for compar-
ison. We see that switching to MultiNLI improved
both models substantially. However, the increase
in the multi-task model is significantly more promi-
nent, showing the advantage of the joint training
with SRL. The multi-task model correctly classifies
almost all test examples in the more/less category
and most of the not category. However, the trend of
observing better performance on the same category
from the single-task model holds here as well. This
result is surprising and needs further investigation.

Training set: MultiNLI

BERT Model | same ‘ more/less ‘ not ‘ Avg. | same ‘ more/less ‘ not ‘ Avg.
Single-task 85.3 479 | 44.5 | 59.2 | 74.1 88.3 | 74.3 | 78.9
Multi-task 80.5 479 | 51.3 | 59.9 | 63.3 97.3 1 91.9 | 84.2

Table 5: Percent accuracy of the BERT models on Comparisons dataset.
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4.3 Training Details

We used the PyTorch (Paszke et al., 2017) frame-
work and the AllenNLP (Gardner et al., 2018) li-
brary for implementation. We adapted some code
to implement the multi-task training logic from
Sanh et al. (2019)’s hierarchical multi-task learn-
ing project®. In all experiments, we used the base
version of BERT by initializing it with the weights
released by Devlin et al. (2018).

We use uniform mini-batches, i.e. a mini-batch
contains instances from a single-task. Each dataset
is divided into mini-batches with the same size and
an iterator for each of them is created that can cycle
through a dataset and provide batches indefinitely.
In a training step, we decide which task to train
with a probabilistic sampling, get a mini-batch from
the iterator for that task, and perform a forward
pass on it and back-propagate the loss. During the
back-propagation, we update the task-specific head
of the chosen task, as well as the BERT encoder.
Following Sanh et al. (2019), we use proportional
sampling to decide on the task type at the beginning
of each training step.

Recent studies generally use a single global op-
timizer for all tasks (Sanh et al., 2019; Liu et al.,
2019). In this work, we tried both this approach
and using a different optimizer for each task. The
advantage of using multiple optimizers is that the
learning rates of the individual tasks can be set to
different values, and each task can have its own
learning rate scheduler. We used BertAdam op-
timizer from HuggingFace, and set its maximum
learning rate to 2e-5 or 5e-5 according to the vali-
dation accuracy on the NLI evaluation task. More-
over, we employed a slanted triangular learning
rate scheduler (Howard and Ruder, 2018) with a
cut fraction of 0.1 and decay factor of 0.38. In all
experiments the maximum sequence length is set
to 256, and longer sequences are truncated. In all
training experiments, 4 GPUs were used in parallel
and the datasets were divided into mini-batches of
size 12 based on GPU memory limitations.

5 Related Work

In this section, we discuss various solution ap-
proaches proposed for the NLI task. We start with
a sentence embedding based approach and con-
tinue with a data augmentation method targeting
the generalization problem of NLI models. Then,

https://github.com/huggingface/hmtl
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we discuss some models benefiting from syntax or
semantic roles and touch on multi-task models.

Some previous studies used sentence embedding
based approaches to solve NLI. Noticeably, In-
ferSent (Conneau et al., 2017) uses an LSTM to
encode the premise and hypothesis sentences in-
dependently. Then, it concatenates the premise,
hypothesis embeddings and two feature vectors
obtained by their element-wise multiplication and
absolute difference to get the overall sentence pair
representation. Finally, an MLP layer followed by
a softmax is used to calculate the class scores. Be-
ing trained on SNLI, this model suffers from the
biases in its training data and performed close to
the BOW model on the Comparisons evaluation
set.

There are a number of studies that use data aug-
mentation to address the generalization problem
revealed by NLI challenge datasets like HANS and
Comparisons. McCoy et al. (2019b); Dasgupta et al.
(2018); Nie et al. (2018) created augmentation sets
consisting of training instances with properties sim-
ilar to the proposed adversarial evaluation set. The
augmentation set is focused on the examined phe-
nomena and considerably smaller than the original
training set in general. Nevertheless, the models
are shown to achieve very strong results, even close
to %100 accuracy on the evaluation sets after train-
ing with augmented datasets. However, there are
some problems with an augmentation approach per-
formed this way, i.e. using a new dataset targeting
the inspected phenomena in the proposed evalua-
tion set. First of all, it is not clear if they do result
in improvement on the language understanding of
the model in general. Rather, the model at hand is
patched so that it can excel on some specific cases
that the new evaluation dataset examines. However,
one can presumably find other adversarial exam-
ple classes for a given training dataset, so creating
an augmentation set for each possible adversarial
class may not be feasible. Moreover, Nie et al.
(2018) showed that augmenting the training dataset
by targeting some specific category of adversar-
ial examples might be harmful to other types of
adversarial examples. In other words, dataset aug-
mentation with such limited focus might lead to
overfitting to the targeted adversaries and hurt the
overall robustness. Therefore, in this work, we took
a different approach and introduced an inductive
bias on the model by explicitly enforcing it to pro-
duce representations suitable to extract semantic


https://github.com/huggingface/hmtl

role information.

Some recent studies have investigated the bene-
fits of semantic role labeling on the performance
of natural language inference models. Noticeably,
Zhang et al. (2020, 2018) used SRL as a supple-
mentary task for text comprehension tasks such as
textual entailment and question answering. Similar
to our work, they used PropBank (Palmer et al.,
2005) style role annotations and treated SRL as a
sequence tagging problem. Zhang et al. (2020)’s
approach is different from ours in that they use a
pre-trained, SOTA SRL model to provide semantic
embeddings to enrich the contextual embeddings
from BERT. They kept the SRL model frozen and
trained other parts of the model including the BERT
encoder. Similarly, Zhang et al. (2018) employed
two different networks where one of them is an
SRL model responsible for generating the semantic
embeddings to support the other network which
is trained to solve the downstream task at hand.
Moreover, both networks in this model use pre-
trained word embeddings such as ELMo (Peters
et al., 2018) or GloVe (Pennington et al., 2014).
The main difference of our approach from these
is that we use a single network and train it in a
multi-task fashion by sharing encoder representa-
tions among different tasks. Moreover, unlike our
work, they evaluated their models on the original
datasets e.g. MultiNLI, so their focus was not to
improve the model performance on the adversarial
evaluation sets.

Instead of semantic role information, some re-
cent works investigated the benefits of syntax to
support the natural language inference models. No-
ticeably, Pang et al. (2019) used the hidden word
representations of an externally trained, high per-
forming dependency parser to enrich the BERT
based NLI models. With this approach, the mod-
els achieved some modest increase on the overall
HANS results.

Multi-task models powered with pre-trained lan-
guage model based encoders have achieved SOTA
performance on natural language understanding
benchmarks such as GLUE (Wang et al., 2018),
and SuperGLUE (Wang et al., 2019). However,
there is not much work focusing on simultaneously
solving both a word-level semantics task such as
SRL and a sentence-level understanding such as
NLI which requires higher level reasoning. Instead,
the existing approaches such as Liu et al. (2019);
Clark et al. (2019) combine multiple sentence-level
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understanding tasks to solve them jointly without
any aid from lower level tasks focusing on syntax
or word-level semantics. Our approach differs from
them in that we hypothesize using both word-level
semantics and high level reasoning tasks might be a
more suitable approach to learn deeper understand-
ing of the sentences, thereby suffering less from
the dataset biases in reasoning tasks such as NLI.

Some previous work attempted to cast NLI to a
different natural language understanding task such
as question answering. Particularly, McCann et al.
(2018) suggested a collection of various tasks in-
cluding NLI for a benchmark and proposed a novel
approach to solve all those tasks using a single
multi-task model. They casted each task to the
question answering problem and trained a model
to solve all of them jointly.

6 Conclusion and Future Work

This work presents a multi-task learning approach
using SRL task to apply an inductive bias on a
BERT based NLI model. Our experiments show
that joint training with SRL makes the model more
robust to the superficial patterns in the NLI train-
ing data. As opposed to the augmentation based
solutions focused on specific adversarial classes,
this approach has the advantage of being applica-
ble to a variety of adversaries without overfitting
to some of them. Having access to the semantic
role information improves the sentence understand-
ing of the model, hence making it generalize better
to the unseen dataset distributions including the
adversarial ones such as HANS and Comparisons.
The SRL task utilized in this work processes a sin-
gle predicate per data instance. The future work
might incorporate joint prediction of all predicates
and corresponding roles to analyze its effect on
adversarial NLI evaluation performance.
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