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Abstract
The recent advances in Natural Language Processing have only been a boon for well represented languages, negating research in lesser
known global languages. This is in part due to the availability of curated data and research resources. One of the current challenges
concerning low-resourced languages are clear guidelines on the collection, curation and preparation of datasets for different use-cases. In
this work, we take on the task of creating two datasets that are focused on news headlines (i.e short text) for Setswana and Sepedi and the
creation of a news topic classification task from these datasets. In this study, we document our work, propose baselines for classification,
and investigate an approach on data augmentation better suited to low-resourced languages in order to improve the performance of the
classifiers.

1. Introduction
The most pressing issues with regard to low-resource lan-
guages are the lack of sufficient language resources, like
features related to automation. In this study, we intro-
duce an investigation of a low-resource language that pro-
vides automatic formulation and customisation of new ca-
pabilities from existing ones. While there are more than
six thousand languages spoken globally, the availability of
resources among each of those are extraordinarily unbal-
anced (Nettle, 1998). For example, if we focus on language
resources annotated on the public domain, as of November
2019, AG corpus released about 496, 835 news articles re-
lated to the English language from more than 200 sources1.
Additionally, the Reuters News Dataset (Lewis, 1997) com-
prise roughly 10, 788 annotated texts from the Reuters fi-
nancial newswire. Moreover, the New York Times An-
notated Corpusholds over 1.8 million articles (Sandhaus,
2008). Lastly, Google Translate only supports around 100
languages (Johnson et al., 2017). significant amount of
knowledge exists for only a small number of languages,
neglecting 17% out of the world’s language categories la-
belled as low-resource, and there are currently no standard
annotated tokens in low-resource languages (Strassel and
Tracey, 2016). This in turn, makes it challenging to develop
various mechanisms and tools used for Natural Language
Processing (NLP).
In South Africa, most of the news websites (private and
public) are published in English, despite there being 11 offi-
cial languages (including English). In this paper, we list the
premium newspapers by circulation as per the first Quar-
ter of 2019 (Bureau of Circulations, 2019) (Table 1). Cur-
rently, there is a lack of information surrounding 8 of the
11 official South African languages, with the exception of
English, Afrikaans and isiZulu which contain most of the
reported datasets. n this work, we aim to provide a general
framework for two of the 11 South African languages, to
create an annotated linguistic resource for Setswana and Se-

1http://groups.di.unipi.it/˜gulli

pedi news headlines. In this study, we applied data sources
of the news headlines from the South African Broadcast
Corporation (SABC) 2, their social media streams and a few
acoustic news. Unfortunately, at the time of this study, we
did not have any direct access to news reports, and hope-
fully this study can promote collaboration between the na-
tional broadcaster and NLP researchers.

Table 1: Top newspapers in South Africa with their lan-
guages

Paper Language Circulation
Sunday Times English 260132
Soccer Laduma English 252041
Daily Sun English 141187
Rapport Afrikaans 113636
Isolezwe isiZulu 86342
Sowetan English 70120
Isolezwe ngeSonto isiZulu 65489
Isolezwe ngoMgqibelo isiZulu 64676
Son Afrikaans 62842

The rest of the work is organized as follows. Section 2. dis-
cusses prior work that has gone into building local corpora
in South Africa and how they have been used. Section 3.
presents the proposed approach to build a local news cor-
pora and annotating the corpora with categories. From here,
we focus on ways to gather data for vectorization and build-
ing word embeddings (needing an expanded corpus). We
also release and make pre-trained word embeddings for 2
local languages as part of this work (Marivate and Sefara,
2020a). Section 4. investigate building classification mod-
els for the Setswana and Sepedi news and improve those
classifiers using a 2 step augmentation approach inspired
by work on hierarchical language models (Yu et al., 2019).
Finally, Section 5. concludes and proposes a path forward
for this work.

2http://www.sabc.co.za/

http://groups.di.unipi.it/~gulli
http://www.sabc.co.za/
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2. Prior Work

Creating sizeable language resources for low resource lan-
guages is important in improving available data for study
(Zoph et al., 2016) and cultural preservation. Focusing on
the African continent, we note that there are few annotated
datasets that are openly available for Natural Language
Processing tasks such as classification. In South Africa,
the South African Center for Digital Language Resources
(SADiLaR) 3 has worked to curate datasets of local South
African languages. There remain gaps such as accessing
large corpora and data from sources such as broadcasters
and news organizations as they have sizeable catalogs that
are yet to make it into the public domain. In this work,
we work to fill such a gap by collecting, annotating and
training classifier models for news headlines in Setswana
and Sepedi. As the data that we do find publicly is still
small, we also have to deal with the challenges of Machine
Learning on small data. Machine learning systems perform
poorly in presence of small training sets due to overfitting.
To avoid this problem, data augmentation can be used. The
technique is well known in the field of image processing
(Cubuk et al., 2019). Data augmentation refers to the aug-
mentation of the training set with artificial, generated, train-
ing examples. This technique is used less frequently in NLP
but a number of few studies applied data augmentation.

Silfverberg et al. (2017) use data augmentation to coun-
teract overfitting where recurrent neural network (RNN)
Encoder-Decoder is implemented specifically geared to-
ward a low-resource setting. Authors apply data augmen-
tation by finding words that share word stem for example
fizzle and fizzling share fizzl. Then authors replace a stem
with another string.

Zhang et al. (2015) apply data augmentation by using syn-
onyms as substitute words for the original words. How-
ever, Kobayashi (2018) states that synonyms are very lim-
ited and the synonym-based augmentation cannot produce
numerous different patterns from the original texts. Hence,
Kobayashi (2018) proposes contextual data augmentation
by replacing words that are predicted by a language model
given the context surrounding the original words to be aug-
mented.

As Wei and Zou (2019) states that these techniques are
valid, they are not often used in practice because they have
a high cost of implementation relative to performance gain.
They propose an easy data augmentation as techniques for
boosting performance on text classification tasks. These
techniques involve synonym replacement, random inser-
tion, random swap, and random deletion of a word. Au-
thors observed good performance when using fraction of
the dataset (%):1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
as the data size increases, the accuracy also increases for
augmented and original data. Original data obtained high-
est accuracy of 88.3% at 100% data size while augmented
data obtained accuracy of 88.6% at 50% data size.

3www.sadilar.org

3. Developing news classification models for
Setswana and Sepedi

In this work, we investigate the development of a 2 step text
augmentation method in order to be improve classification
models for Setswana and Sepedi. To do this we had to first
identify a suitable data source. Collect the data, and then
annotate the datasets with news categories. After the data
is collected and annotated, we then worked to create classi-
fication models from the data as is and then use a word em-
bedding and document embedding augmentation approach.
In this section discuss how data was collected as well as the
approach we use to build classification models.

3.1. Data Collection, Cleaning and Annotation
Before we can train classification models, we first have to
collect data for 2 distinct processes. First, we present our
collected news dataset as well as its annotation. We then
discuss how we collected larger datasets for better vectori-
sation.

3.1.1. News data collection and annotation
The news data we collected is from the SABC4 Facebook
pages. The SABC is the public broadcaster for South
Africa. Specifically, data was collected from Motswed-
ing FM (An SABC Setswana radio station) 5 and Thobela
FM (An SABC Sepedi radio station) 6. We scraped the
news headlines that are published as posts on both Face-
book pages. We claim no copyright for the content but used
the data for research purposes. We summarize the datasets
in Table 2. We visualize the token distributions in Setswana
and Sepedi in Figures 1 and 2 respectively.

Table 2: News Data Sets
Setswana Sepedi

Corpus Size (headlines) 219 491
Number of Tokens (words) 1561 3018

Figure 1: Setswana Wordcloud

4http://www.sabc.co.za/
5https://www.facebook.com/MotswedingFM/
6https://www.facebook.com/thobelafmyaka/

www.sadilar.org


17

Figure 2: Sepedi Wordcloud

As can be seen, the datasets are relatively small and as such,
we have to look at other ways to build vectorizers that can
better generalize as the word token diversity would be very
low.
We annotated the datasets by categorizing the news head-
lines into: Legal, General News,Sports, Other, Politics,
Traffic News, Community Activities, Crime, Business and
Foreign Affairs. Annotation was done after reading the
headlines and coming up with categories that fit both
datasets. We show the distribution of the labels in both the
Setswana and Sepedi data sets in Figures 3 and 4 respec-
tively. For this work, we only explore single label catego-
rization for each article. It remains future work to look at
the multi-label case. As such, there might be some noise
in the labels. Examples from the Sepedi annotated news
corpus are shown next:

Tsela ya N1 ka Borwa kgauswi le Mantsole
Weighbridge ka mo Limpopo ebe e tswaletswe
lebakanyana ka morago ga kotsi yeo e hlagilego.
Traffic

Tona ya toka Michael Masutha,ore bahlankedi ba
kgoro ya ditirelo tsa tshokollo ya bagolegwa bao
ba tateditswego dithieeletsong tsa khomisene ya
go nyakisisa mabarebare a go gogwa ga mmuso
ka nko,ba swanetse go hlalosa gore ke ka lebaka
la eng ba sa swanelwa go fegwa mesomong
Legal

The full dataset is made available online (Marivate and Se-
fara, 2020b) for further research use and improvements to
the annotation7. As previously discussed, we used larger
corpora to create language vectorizers for downstream NLP
tasks. We discuss this next.

3.1.2. Vectorizers
Before we get into the annotated dataset, we needed to cre-
ate pre-trained vectorizers in order to be able to build more
classifiers that generalize better later on. For this reason
we collected different corpora for each language in such as

7https://zenodo.org/record/3668495
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Figure 3: Setswana news title category distribution
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Figure 4: Sepedi news title category distribution

way that we could create Bag of Words, TFIDF, Word2vec
(Mikolov et al., 2013) and FastText (Bojanowski et al.,
2017) vectorizers (Table 3). We also make these vectorizers
available for other researchers to use.

Table 3: Vectorizer Corpora Sizes in number of lines (num-
ber of tokens)

Source Setswana Sepedi
Wikipedia 478(21924)8 300(10190)9

JW30010 874464(70251) 618275(53004)
Bible 31102(42233) 29723(38709)
Constitution11 7077(3940) 6564(3819)
SADILAR12 33144(61766) 67036(87838)
Total 946264(152027) 721977(149355)

3.2. News Classification Models
We explore the use of a few classification algorithms to
train news classification models. Specifically we train

• Logistic Regression,

• Support Vector Classification,

• XGBoost, and

• MLP Neural Network.

To deal with the challenge of having a small amount of
data on short text, we use data augmentation methods,
specifically a word embedding based augmentation (Wang

https://zenodo.org/record/3668495
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and Yang, 2015), approach that has been shown to work
well on short text (Marivate and Sefara, 2019). We use
this approach since we are not able to use other augmen-
tation methods such as synonym based (requires devel-
oped Wordnet Synsets (Kobayashi, 2018)), language mod-
els (larger corpora needed train) and back-translation (not
readily available for South African languages). We develop
and present the use of both word and document embeddings
(as an augmentation quality check) inspired by a hierarchi-
cal approach to augmentation (Yu et al., 2019).

4. Experiments and Results
This Section presents the experiments and results. As this
is still work in progress, we present some avenues explored
in both training classifiers and evaluating them for the task
of news headline classification for Setswana and Sepedi.

4.1. Experimental Setup
For each classification problem, we perform 5 fold cross
validation. For the bag-of-words and TFIDF vectorizers,
we use a maximum token size of 20,000. For word embed-
dings and language embeddings we use size 50. All vector-
izers were trained on the large corpora presented earlier.

4.1.1. Baseline Experiments
We run the baseline experiments with the original data us-
ing 5-fold cross validation. We show the performance (in
terms of weighted F1 score) in the Figures 5 and 6. We
show the baseline results as orig. For both the Bag-of-
Words (TF) and TFIDF, the MLP performs very well com-
paratively to the other methods. In general the TFIDF per-
forms better.
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Figure 5: Baseline classification model performance for
Setswana news title categorization
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Figure 6: Baseline classification model performance for Se-
pedi news title categorization

4.1.2. Augmentation
We applied augmentation in different ways. First for Se-
pedi and Setswana word embeddings (word2vec), we use
word embedding-based augmentation. We augment each
dataset 20 times on the training data while the validation
data is left intact so as to be comparable to the earlier base-
lines. We show the effect of augmentation in Figures 5 and
6 (performance labeled with aug).
The contextual, word2vec based, word augmentation im-
proves the performance of most of the classifiers. If we now
introduce a quality check using doc2vec (Algorithm 1) we
also notice the impact on the performance for Sepedi (Fig-
ure 6 aug qual ). We were not able to complete experiments
with Setswana for the contextual augmentation with a qual-
ity check, but will continue working to better under stand
the impact of such an algorithm in general. For example, it
remains further work to investigate the effects of different
similarity thresholds for the algorithm on the overall perfor-
mance, how such an algorithm works on highly resourced
languages vs low resourced languages, how we can make
the algorithm efficient etc.
It also interesting to look at how performance of classifiers
that were only trained with word2vec features would fair.
Deep neural networks are not used in this current work and
as such we did not use recurrent neural networks, but we
can create sentence features from - word2vec by either us-
ing: the mean of all word vectors in a sentence, the me-
dian of all word vectors in a sentence or the concatenated
power means (Rücklé et al., 2018). We show the perfor-
mance of using this approach with the classifiers used for
Bag of Words and TFIDF earlier in Figure 7.
The performance for this approach is slightly worse with
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Algorithm 1: Contextual (Word2vec-based) augmenta-
tion algorithm with a doc2vec quality check
Input: s: a sentence, run: maximum number of

attempts at augmentation
Output: ŝ a sentence with words replaced

1 def Augment(s,run):
2 Let

#»

V be a vocabulary;
3 for i in range(run) :
4 wi ← randomly select a word from s;
5 #»w ← find similar words of wi;
6 s0 ← randomly select a word from #»w given

weights as distance;
7 ŝ←replace wi with similar word s0;
8 #»s ← Doc2vec(s);
9

#»

ŝ ← Doc2vec(ŝ);
10 similarity← Cosine Similarity( #»s ,

#»

ŝ );
11 if similarity > threshold :
12 return(ŝ);
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Figure 7: Word2Vec feature based performance for news
headline classification

the best results for Sepedi news headline classification be-
ing with XGBoost on the augmented data. We hope to im-
prove this performance using word2vec feature vectors us-
ing recurrent neural networks but currently are of the view
that increasing the corpora sizes and the diversity of cor-
pora for the pre-trained word embeddings may yield even
better results.
Finally, we show the confusion matrix of the best model
in Sepedi on a test set in Figure 8. The classifier cate-
gorizes General News, Politics and Legal news headlines
best. For others there is more error. A larger news headline
dataset is required and classification performance will also
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Figure 8: Confusion Matrix of News headline classification
models

need to be compared to models trained on full news data
(with the article body). For the Setswana classifiers, the
confusion matrix shows that the data skew results in mod-
els that mostly can categorize between categories General
News and Other. We need to look at re-sampling techniques
to improve this performance as well as increasing the initial
dataset size.

5. Conclusion and Future Work
This work introduced the collection and annotation of
Setswana and Sepedi news headline data. It remains a chal-
lenge that in South Africa, 9 of the 11 official languages
have little data such as this that is available to researchers
in order to build downstream models that can be used in
different applications. Through this work we hope to pro-
vide an example of what may be possible even when we
have a limited annotated dataset. We exploit the availabil-
ity of other free text data in Setswana and Sepedi in order to
build pre-trained vectorizers for the languages (which are
released as part of this work) and then train classification
models for news categories.
It remains future work to collect more local language news
headlines and text to train more models. We have identified
other government news sources that can be used. On train-
ing embedding models with the data we have collected, fur-
ther studies are needed to look at how augmentation using
the embedding models improve the quality of augmenta-
tion.
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