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Abstract

In this paper, we present emotion lexicons of Croatian, Dutch and Slovene, based on manually
corrected automatic translations of the English NRC Emotion lexicon. We evaluate the impact
of the translation changes by measuring the change in supervised classification results of so-
cially unacceptable utterances when lexicon information is used for feature construction. We
further showcase the usage of the lexicons by calculating the difference in emotion distributions
in texts containing and not containing socially unacceptable discourse, comparing them across
four languages (English, Croatian, Dutch, Slovene) and two topics (migrants and LGBT). We
show significant and consistent improvements in automatic classification across all languages
and topics, as well as consistent (and expected) emotion distributions across all languages and
topics, proving for the manually corrected lexicons to be a useful addition to the severely lacking
area of emotion lexicons, the crucial resource for emotive analysis of text.

1 Introduction

Emotion lexicons are rather scarce resources for most languages (Buechel et al., 2020), although they
are a very important ingredient for robust emotion detection in text (Mohammad et al., 2018). They
are mostly differentiated between depending on the way they encode emotions – either via continuous
or discrete representations (Calvo and Mac Kim, 2013). In this work, we present emotion lexicons for
three languages – Croatian, Dutch and Slovene, developed by manually correcting automatic translations
that are part of the NRC Emotion Lexicon (Mohammad and Turney, 2013). In that lexicon, sentiment
(positive or negative) and a discrete model of emotion covering anger, anticipation, disgust, fear, joy,
sadness, surprise and trust, are encoded via a binary variable for each emotion. The size of the lexicon
is 14,182 entries, and automatic translations of that lexicon were performed by the authors in 2017 via
Google Translate.

The three languages in question are generally not covered well with emotional lexicons. The first lex-
ical dataset encoding emotion for Croatian was published recently (Ćoso et al., 2019), encoding valence
and arousal for 3,022 words. For Dutch two resources exist – the LIWC (Tausczik and Pennebaker, 2010)
translation into Dutch (Boot et al., 2017) covering around 4,500 entries, and the norms for 4,300 Dutch
words for dominance, valence and arousal (Moors et al., 2013). There are no available emotion lexicons
for the Slovene language except the automatic translation of the NRC lexicon.

Just recently, an automatic approach to building emotion lexicons for many languages beyond mere
translation has emerged (Buechel et al., 2020) and its results cover all three languages in question, show-
ing reasonable correlations with the available small psychological norms in various languages.

2 The Lexicon Translation Procedure

We base our approach to building reliable emotion lexicons for the three languages in question on a very
simple approach – we manually correct automatic translations of an existing English emotion lexicon.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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These automatic translations consist to the greatest part of single-word translations, only rare entries
being translated with short phrases.

We used different translators for each language as our aim was for the translations to be performed by
native speakers. We used a uniform translation methodology across the three languages, ensuring com-
parability between the resulting lexicons. The guidelines presented to the translators were the following:

• While translating, the sentiment and emotion labels should be taken into account by the translator.

• If a source word is polysemous, we translate only those senses that relate to the given sentiment and
emotion.

• We include all target synonyms of the source word that are frequent and that are not polysemous or
homonymous with target words of a different sentiment and emotion association.1

• Given that the original lexicon was not part-of-speech encoded, we do not encode it in the transla-
tions either. We add translations in multiple parts-of-speech if this follows the guidelines above.

While we decided to correct translations of all entries for Croatian and Slovene, for Dutch we only
corrected those entries that were marked for emotion, i.e., they had at least one positive value among
the two sentiment and eight binary variables encoded in the lexicon. The reason for this decision was
the limited availability of the Dutch translator and the fact that the emotion-marked part of the lexicon is
most useful for various applications. Given this decision, the resulting lexicons of Croatian and Slovene
have 14,182 entries, while the Dutch version has only 6,468 entries.

Translating the lexicons resulted in a different level of modifications in each of the three languages. In
Table 1, we present the distribution of emotion-marked (left) and emotion-empty (right) entries regarding
whether (1) the original translation was kept, (2) the original was extended with additional translations,
or (3) the entry was fully modified. Among the marked entries the fewest interventions were necessary
in the Dutch lexicon. This might be due to two facts: (1) the English-Dutch automatic translation is
performing in general better than the English-Croatian and English-Slovene one, and (2) the Dutch in-
flectional system is closer to the English one than that of Croatian and Slovene, the latter both being
(South) Slavic languages. For the emotion-empty entries that were translated to Croatian and Slovene
only, these have required overall less intervention when compared to emotion-full entries. A higher
number of emotion-empty entries was kept in their original state and a lower number of these entries was
fully modified. This phenomenon might derive from the fact that emotion-marked words are to some
level culture-specific (Jackson et al., 2019; Markov et al., 2018), but even more to our intuition that
emotion-marked words are harder to machine-translate than those that are emotion-empty.

marked empty
original extended fully modified original extended fully modified

Croatian 45.9% 22.7% 31.5% 54.8% 16.5% 28.7%
Dutch 68.2% 19.1% 12.7% - - -
Slovene 31.0% 7.8% 61.2% 35.9% 7.2% 56.9%

Table 1: The per-language distribution of emotion-loaded (left) and empty (right) entries that were kept
untouched, were only extended, or were fully modified during the manual correction process.

3 Analyses

In this section, we present two types of analyses of the manually corrected LiLaH emotion lexicons – one
based on machine learning that compares the original automatically translated NRC and the manually
corrected LiLaH lexicon, and another based on descriptive statistics, exploiting only the LiLaH emotion
lexicon.

1The percentage of entries translated into more than a single translation is the following by language: Croatian has 27% of
such translations, Dutch 24%, and Slovene 24%.
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In the first analysis, we measure the impact of the corrections performed in the lexicon on the task of
supervised classification of messages potentially containing socially unacceptable discourse (SUD; hate
speech being one type of SUD).

In the second analysis, we perform a descriptive analysis of emotion difference between socially un-
acceptable and socially acceptable discourse (SUD and non-SUD onwards), showcasing the potential of
the new lexicon for data analysis.

We perform both analyses on the same set of datasets with manual annotations of SUD - the FRENK
Croatian, English and Slovene datasets and the LiLaH Dutch dataset. All four datasets consist of com-
ment threads of mainstream media Facebook posts in Croatia, Great Britain, Slovenia and Flanders. The
comment threads in the datasets belong to two topics: migrants and LGBT. The size of the datasets varies,
per language and topic, between 3836 and 6941 comments. Each comment in a thread is annotated with
an annotation schema encoding the type and target of SUD (Ljubešić et al., 2019). In this work, we only
use the basic information whether a comment contains SUD or not. The percentage of SUD comments
in the datasets lies between 32% (Dutch LGBT) and 64% (Croatian LGBT).

3.1 Machine Learning Experiments

For our machine learning experiments we transform each text in the datasets in a frequency distri-
bution of emotion associations (or their lack thereof). Let us assume that we discriminate only be-
tween two emotions, anger and joy. For a textual instance “I am so happy”, which we lemmatize
into a sequence “I be so happy”, in our lexicon we cover only the word “happy” with joy associ-
ated, but not anger. We represent this utterance, given that there are four words in the utterance, as
{anger yes:0,anger no:4,joy yes:1,joy no:3} .2

We perform our experiments by training a binary SVM classifier with an RBF kernel over the textual
data transformed with (1) the automatic NRC lexicon and (2) the manually corrected LiLaH lexicon. In
Table 2, we present the results of the classification experiments over the three languages of the LiLaH lex-
icon, and the two topics, migrants and LGBT. We evaluate each system via macro F1 by cross-validating.
As a lower bound we use the stratified random baseline. We finally calculate the ∆ as the percentage
of error reduction that was obtained by manually correcting the machine translated lexicon, considering
the random baseline results as our lower bound. All bold results are statistically significantly higher than
their counterpart given the McNemar test (McNemar, 1947) at a significance level of p < 0.0001.

topic lang random automatic manual ∆

migrants sl 0.495 0.614 0.639 4.9%
lgbt sl 0.500 0.581 0.636 11.0%
migrants nl 0.501 0.601 0.646 9.0%
lgbt nl 0.503 0.617 0.648 6.2%
migrants hr 0.501 0.625 0.648 4.6%
lgbt hr 0.498 0.619 0.636 3.4%

Table 2: The macro F1 results of the binary supervised classification experiments on using the automati-
cally translated lexicon or the manually corrected one.

The results show that the manually corrected lexicons improve over the system using automatic trans-
lation in each of the six (three languages, two topics) cases, all the improvements being statistically
significant. The percentage of the error reduction obtained by moving from the automatically translated
lexicon to the manually corrected one, using the random baseline as a lower bound, lies between 3.4%
and 11%. These results show that the manually corrected lexicons contain more signal than the automat-
ically translated ones for the task at hand. One has keep in mind that machine learning was used here
not to obtain best possible results on the task, but just to measure the impact of the improvements of the
lexicon on the formal description of the task at hand, and thereby on other similar problems.

2Different representations of the data, e.g., recording only positive associations, not negative ones, resulted in slightly lower
results, but yielding the same conclusions.
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Figure 1: Difference in emotion distribution between texts containing socially unacceptable discourse
and not containing such discourse, across the two topics (migrants left, LGBT right) throughout the four
languages.

3.2 Emotion Difference Analysis

In this subsection, we do not focus on the difference between the automatically translated and the man-
ually corrected lexicon, but simply apply the manually corrected lexicon over the FRENK and LiLaH
datasets to showcase both its usefulness and robustness. Given that in this analysis we are not inter-
ested in the difference between the automatically and manually translated lexicon, we are able to include
English into this analysis and perform it on all four languages.

We measure the emotion difference between the text containing and not containing SUD as the differ-
ence in their probability distribution of emotion associations. For each of the two categories we count
the number or tokens that are associated with a specific emotion, and then calculate the probability dis-
tribution over the eight emotions. Finally, we simply subtract the distribution calculated on texts not
containing SUD from the distribution calculated on texts containing SUD. By doing so we discard the
problem of some emotions being more represented in the underlying lexicons than others. The resulting
emotion differences are presented in Figure 1 separately for the topic of migrants and LGBT throughout
the four languages.

The results show in the first place a high consistency between the four languages. Overall, on both
topics, anger, disgust, fear and sadness are more prevalent in SUD texts, while the remaining four
emotions are more prevalent in non-SUD texts.

The most prominent differences between the four languages can be observed on the emotion of fear
for the topic of migrants, with Croatian expressing an even higher level of fear among the non-SUD
texts, which is probably due to a very hardlined discussion of the topic. Another notable difference on
the series of emotions can be observed on the topic of LGBT for the Dutch language, which contains an
overall less aggressive discussion on that topic in comparison to the three other languages.

Regarding the differences between the two topics, SUD texts on the LGBT topic seem to contain more
disgust and sadness and less joy, while SUD texts on the topic of migrants are imbued with more anger.

4 Conclusion

In this paper, we presented the LiLaH emotion lexicons – manually corrected automatic translations
of the NRC Emotion Lexicon into Croatian, Dutch and Slovene. We have shown that the manually
corrected lexicons are more potent in a supervised learning scenario where the lexicon information is
used for data representation. We have additionally showcased a usage scenario of the LiLaH lexicons for
emotion text analysis – we analysed emotional differences between texts containing socially acceptable
and unacceptable discourse, showing a large amount of consistency across languages and topics, with
some interesting peculiarities. The presented lexicons are available for download at http://hdl.
handle.net/11356/1318 (Daelemans et al., 2020).
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Sven Buechel, Susanna Rücker, and Udo Hahn. 2020. Learning and Evaluating Emotion Lexicons for 91 Lan-
guages. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
1202–1217, Online, July. Association for Computational Linguistics.

Rafael A Calvo and Sunghwan Mac Kim. 2013. Emotions in text: dimensional and categorical models. Compu-
tational Intelligence, 29(3):527–543.
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