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Abstract

Emotion recognition is predominantly formulated as text classification in which textual units are
assigned to an emotion from a predefined inventory (e.g., fear, joy, anger, disgust, sadness, surprise,
trust, anticipation). More recently, semantic role labeling approaches have been developed to
extract structures from the text to answer questions like: “who is described to feel the emotion?”
(experiencer), “what causes this emotion?” (stimulus), and at which entity is it directed?” (target).
Though it has been shown that jointly modeling stimulus and emotion category prediction is
beneficial for both subtasks, it remains unclear which of these semantic roles enables a classifier
to infer the emotion. Is it the experiencer, because the identity of a person is biased towards a
particular emotion (X is always happy)? Is it a particular target (everybody loves X) or a stimulus
(doing X makes everybody sad)? We answer these questions by training emotion classification
models on five available datasets annotated with at least one semantic role by masking the fillers
of these roles in the text in a controlled manner and find that across multiple corpora, stimuli
and targets carry emotion information, while the experiencer might be considered a confounder.
Further, we analyze if informing the model about the position of the role improves the classification
decision. Particularly on literature corpora we find that the role information improves the emotion
classification.

1 Introduction

Emotion analysis is now an established research area which finds application in a variety of different
fields, including social media analysis (Purver and Battersby, 2012; Wang et al., 2012; Mohammad and
Bravo-Marquez, 2017; Ying et al., 2019, i.a.), opinion mining (Choi et al., 2006, i.a.), and computational
literary studies (Alm et al., 2005; Kim and Klinger, 2019a; Haider et al., 2020; Zehe et al., 2020, i.a.).
The most prominent task in emotion analysis is emotion categorization, where text receives assignments
from a predefined emotion inventory, such as the fundamental emotions of fear, anger, joy, anticipation,
trust, surprise, disgust, and sadness which follow theories by Ekman (1999) or Plutchik (2001). Other
tasks include the recognition of affect values, namely valence or arousal (Posner et al., 2005) or analyses
of event appraisal (Hofmann et al., 2020; Scherer, 2005).

More recently, categorization (or regression) tasks have been complemented by more fine-grained
analyses, namely emotion stimulus detection and role labeling, to detect which words denote the expe-
riencer of an emotion, the emotion cue description, or the target of an emotion. These efforts lead to
computational approaches of detecting stimulus clauses (Xia and Ding, 2019; Wei et al., 2020; Gao et al.,
2017) and emotion role labeling and sequence labeling (Mohammad et al., 2014; Bostan et al., 2020; Kim
and Klinger, 2018; Ghazi et al., 2015; Zehe et al., 2020), with different advantages and disadvantages we
discuss in Oberländer and Klinger (2020).

Further, this work led to a rich set of corpora with annotations of different subsets of roles. An example
of a sentence annotated with semantic role labels for emotion is “

[
John

EXPERIENCER

] [
hates

CUE

] [
cars

TARGET

]
because they[

pollute the environment
STIMULUS

]
.” A number of English-language resources are available: Ghazi et al. (2015)
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Whole Instance Stimulus Cue Target Exp.

Dataset # ∅len # ∅len # ∅len # ∅len # ∅len

Emotion-Stimulus, Ghazi et al. (2015) 2414 20.60 820 7.29 — — — — — —
ElectoralTweets, Mohammad et al. (2014) 4056 19.14 2427 6.25 2930 5.08 2824 1.71 29 1.76
GoodNewsEveryone, Bostan et al. (2020) 5000 13.00 4798 7.29 4736 1.60 4474 4.86 3458 2.03
REMAN, Kim and Klinger (2018) 1720 72.03 609 9.33 1720 3.82 706 5.35 1050 2.04
Emotion Cause Analysis, Gao et al. (2017) 2558 62.24 2485 9.52 — — — — — —

Table 1: Datasets with annotations of roles. # refers to the number of total instances. ∅len shows the
average length of each role filler in each dataset in the number of tokens.

manually construct a dataset following FrameNet’s emotion predicate and annotate the stimulus as its core
argument. Mohammad et al. (2014) annotate Tweets for emotion cue phrases, emotion targets, and the
emotion stimulus. In our previous work (Bostan et al., 2020) we publish news headlines annotated with
the roles of emotion experiencer, cue, target, and stimulus. Kim and Klinger (2018) annotate sentence
triples taken from literature for the same roles. A popular benchmark for emotion stimulus detection is
the Mandarin corpus by Gui et al. (2016). Gao et al. (2017) annotate English and Mandarin texts in a
comparable way on the clause level (Emotion Cause Analysis, ECA).

In this paper, we utilize role annotations to understand their influence on emotion classification. We
evaluate which of the roles’ contents enable an emotion classifier to infer the emotions. It is reasonable to
assume that the roles’ content carries different kinds of information regarding the emotion: One particular
experiencer present in a corpus might always feel the same emotion; hence, be prone to a bias the model
could pick up on. The target or stimulus might be independent of the experiencer and be sufficient to infer
the emotion. The presence of a target might limit the set of emotions that can be triggered. Finally, as
some of the corpora contain cue annotations, we assume that these are the most helpful to decide on the
expressed emotion, as they typically have explicit references towards concrete emotion names.

2 Experimental Setting

In the following, we describe our experiments to understand which of the datasets’ annotated roles
contribute to the emotion classification performance.

Datasets. We base our experiments on five available datasets that are annotated for at least one of the
roles of an experiencer, stimulus, target, or cue. The dataset by Ghazi et al. (2015) is one of the earliest
we are aware of that contains stimulus annotations. They annotate based on FrameNet’s emotion-directed
frames that have a stimulus argument in the data (we refer to their corpus as Emotion-Stimulus, ES).
Similarly early work is the Twitter corpus by Mohammad et al. (2014) (ElectoralTweets, ET). They also
follow the emotion frame semantics definition but use data concerning the 2012 U.S. election. Therefore,
their resource may be considered more diverse in language but more consistent in its domain than ES.
More recently, Bostan et al. (2020) published an annotation of news headlines (GoodNewsEveryone,
GNE). While they do not limit their corpus on a domain, they use a comparably narrow time window to
retrieve the data and sample according to the inclusion of emotion words and popularity on social media.
Kim and Klinger (2018, REMAN) and Gao et al. (2017, Emotion Cause Analysis, ECA) use literature
data, which might be considered the most challenging for emotion analysis (for ECA, we use the English
subset only).

As Table 1 shows, the literature data (REMAN, ECA) has the longest instances and also the longest
stimulus annotations. The other resources have less than one third of their length in tokens, with GNE
being the shortest. However, the overall annotation length does not differ dramatically. Cue, target, and
experiencer annotations are only available in three out of five corpora (ET, REMAN, and GNE)1.

Model Configuration. Our goal is to analyze the importance of different roles for the emotion classifi-
cation. We use two different models, namely a bidirectional long short-term memory network (Hochreiter

1For ET, 90% of the annotated experiencers are the authors of the tweets without corresponding span annotation.
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and Schmidhuber, 1997) with pretrained 300-dimensional GloVe embeddings2 and a transformer-based
model, RoBERTa (Liu et al., 2019). Both models take as input the text sequence and output the emotion
class, where the concrete set of emotion labels depends on the dataset.

The models have different advantages and disadvantages in our experimental setting. The bi-LSTM
with non-contextualized word embeddings might be more appropriate to be used in our setting in
which we manipulate the input token sequence (see below). The transformer might benefit from the
rich contextualized pretraining, which is particularly relevant given that the annotated corpora are of
comparably limited size (in the context of deep learning)3.

Setting Model Input

As-Is John hates cars because they pollute the environment
Only Stim. X X X X X pollute the environment
Only Exp. John X X X X X X X
Only Tar. X X cars X X X X X
Without Stim. John hates cars because they X X X
Without Exp. X hates cars because they pollute the environment
Without Tar. John hates X because they pollute the environment
Pos. Stim. John hates cars because they bpollute the environmente
Pos. Exp. bJohne hates cars because they pollute the environment
Pos. Tar. John hates bcarse because they pollute the environment

Table 2: Illustration of the experimental settings. X, b, e denote
special tokens added to the input according to each setting.

Setting and Hypotheses. We apply
these models in several settings (illus-
trated in Table 2), which differ in the
availability of information from the
roles, namely (1), As-Is: This is the
standard setting: The classifier has ac-
cess to the whole text. (2), Without the
text of the particular roles. (3), Only
with the text of a particular role, mask-
ing the text that does not belong to it.
Finally, (4), we keep the information
available as is, but besides inform the
model about the Position of the role.
The latter is realized by adding positional indicators, inspired by Kim and Klinger (2019b) who showed
the use of positional indicators for emotion relation classification4.

For roles that carry information relevant for emotion classification, we expect the Without setting to
show a drop in performance compared to the As-Is setting. In such cases, the Only setting might show
comparable performance, and the Position setting would show further improvements. When the role is a
confounder, the performance in the Without setting is expected to be increased over the As-Is setting.

The label set depends on each of the datasets. For ES, we use the emotion labels anger, disgust, fear,
joy, no emotion, sadness, and surprise; for ECA, we use anger, sadness, disgust, joy, fear, surprise, and
no emotion. For GNE and ET, we merge the categories according to the rules described for ET by Bostan
and Klinger (2018) and keep the primary emotions described in Plutchik’s wheel. For REMAN, we
group similarly and keep anger, disgust, fear, joy, anticipation, surprise, sadness, trust, and no emotion.
ECA has a low number of instances annotated with multiple labels, which we ignore to keep all tasks as
single-label classification. REMAN has emotion annotations only for the middle sentence in each triple.
Thus we include only these middle segments in our experiments.

The results are based on a random split of each dataset into train, validation, and test (0.8, 0.1, 0.1). We
report macro-averages across 10 runs for the bi-LSTM and 5 runs for RoBERTa.

3 Results

In the following, we discuss the results of the bi-LSTM model in detail and then point to differences to
those of the transformer-based approach. Table 3 shows the results of our experiments for the bi-LSTM-

2We use 42B tokens, pretrained on CommonCrawl (Pennington et al., 2014), https://nlp.stanford.edu/
projects/glove/

3The hyperparameters and details for the models are as follows. For the bi-LSTM, we set a dropout and recurrent dropout of
0.3 and optimize with Adam (Kingma and Ba, 2015), with a base learning rate of 0.0003, L2 regularization, on a batch size of 32,
with early stopping with patience of 3, and initialization with Kaiming (He et al., 2015). We train for up to 100 epochs for the
bi-LSTM model and 10 for the transformer-based model. Both models fine-tune their input representations during training. The
hyperparameters of the model are optimized for ECA. For the bi-LSTM, we use AllenNLP (Gardner et al., 2018) and for the trans-
former the Hugging Face library (Wolf et al., 2019) (following the training procedure described by Devlin et al. (2019)). The code
of our project is available at http://www.ims.uni-stuttgart.de/data/emotion-classification-roles.

4We experimented with adding two channels in the input embeddings which mark the tokens outside a role annotation with a
1 in one channel and the tokens which belong to the role annotation with a 1 in a second channel. The results were inferior to
using positional indicators.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
http://www.ims.uni-stuttgart.de/data/emotion-classification-roles
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As-Is Without Only Position

Dataset Role P R F1 P R F1 P R F1 P R F1

ECA Stimulus 41 39 39 48 48 48 30 25 23 52 51 51

ES Stimulus 93 89 90 94 89 90 65 23 18 95 90 92

REMAN

Cue

47 27 25

61 14 8 53 14 8 42 23 19
Stimulus 41 22 19 91 11 4 44 14 12
Experiencer 29 23 19 60 11 6 32 25 21
Target 19 12 9 57 10 3 31 23 21

ET
Cue

51 26 25
63 23 22 79 18 15 62 25 23

Stimulus 50 23 21 59 15 11 57 27 27
Experiencer 53 26 24 80 12 7 48 23 20
Target 56 27 26 64 16 14 65 24 21

GNE

Cue

34 14 12

62 13 10 93 10 5 64 13 10
Stimulus 93 10 5 85 11 7 60 13 9
Experiencer 55 18 15 93 10 5 63 15 13
Target 86 12 8 93 10 5 62 14 11

Table 3: Results of our bi-LSTM based model for emotion classification, with access to all tokens (As-Is),
Only to the respective role, to all tokens Without the respective role, and all tokens together with the
Positional indicators of the role added. All F1 scores are macro averaged, the scores which are higher than
in the As-Is setting are bold.

based model. Intuitively, we would expect the As-Is setting to outperform both the Without and Only
settings because there is more information available to the model. Conversely, because information is
added in Position, we expect it to outperform the As-Is setting. As we see in column As-Is, the scores for
the emotion classification task differ substantially, even when all available information is shown to the
model. In the Without setting, we see that removing information can sometimes help a model improve
its decision. For instance, when we mask the labels of the respective role, we observe a performance
increase for the experiencer role in GNE, which could potentially point to an unwanted bias for particular
experiencers in this corpus. This is also the case for the stimulus role in ECA and the target role in ET.

As expected, an important role for emotion classification is the cue. In REMAN, the performance drops
the most when the classifier does not see the cue span and gains the most when only the cue is available.
For all other corpora, the cue role is not as important, but performance still shows a drop when it is not
available (Without). Similarly, for all datasets except ECA, the performance drops when the stimulus is
not shown. On the other hand, the stimulus alone is insufficient to infer the emotion with competitive
performance. Noteworthy here is the corpus ES, in which the performance drop is particularly high.

These results show that the information contained in different roles is of varying importance and
depends on the data’s source and domain. In the setting Position, we leave all information accessible to
the model but add positional indicators for the investigated role to the input for emotion classification.
We see improvements in most cases, except REMAN, for which adding the positional information hurts
the classification for all roles. This result could be because REMAN has very long annotation spans.
Both ECA and ES show an improvement for their annotated role (stimulus). For ET, an increase in
performance is shown when additional knowledge about the stimulus position is given, and for GNE, a
slight improvement is shown when the model is given the experiencer’s position information.

Table 4 shows the results of the transformer-based model evaluated in the same settings. As expected,
the model shows performance improvements across all datasets in comparison to the bi-LSTM model. In
the As-Is setting, we see a substantial increase in performance for REMAN. This result can be explained
by the fact that the pretrained large language model has seen more literary English than the embeddings
used as pretrained input to the bi-LSTM. GNE and ET scores are also improved across the roles. In the
Without setting, we do not see the same patterns as for the bi-LSTM based model; the scores when hiding
the stimulus for ECA, the target for ET, and experiencer for GNE do not increase over the scores of the
As-Is setting.

This might have two reasons: On one hand, it is less likely to improve upon already high values
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As-Is Without Only Position

Dataset Role P R F1 P R F1 P R F1 P R F1

ECA Stimulus 68 70 68 4 17 7 4 17 7 73 73 73

ES Stimulus 99 98 98 99 99 99 3 14 5 99 97 98

REMAN

Cue

67 60 66

3 12 5 3 12 5 79 77 78
Stimulus 45 54 47 2 11 4 43 47 43
Experiencer 60 60 56 2 11 4 62 56 56
Target 46 42 42 2 11 3 44 45 42

ET

Cue
34 33 34

32 29 30 5 12 7 31 30 30
Stimulus 37 33 34 9 15 11 33 32 32
Experiencer 34 34 34 5 12 7 34 34 34
Target 35 34 34 5 12 7 35 33 33

GNE

Cue

32 31 31

32 27 27 3 10 5 29 28 28
Stimulus 7 11 7 24 23 23 35 33 34
Experiencer 31 30 30 3 10 5 35 32 33
Target 3 10 5 3 10 5 35 31 32

Table 4: Results of our transformer based model (RoBERTa) for emotion classification.

when changing the model configuration. On the other hand, and more interestingly, it might be that the
contextualized embeddings compensate for missing information. Interestingly for the Position setting, the
results are improving on all datasets, and REMAN gains from the cue’s positional indicators. The dataset
that stands out in this setting is ET, for which we see a slight decrease in performance across all roles
available. The Only setting shows that the stimulus captures most of the emotion information for GNE
and ET. The result for GNE is due to the particularly lengthy stimuli spans that sometimes stretch over the
whole instance.

4 Conclusion and Future Work

Our experiments show that the importance of semantic roles for emotion classification differs between
datasets and roles: The stimulus and cue are critical for classification, which correspond to the direct
report of a feeling and the description that triggered an emotion. This result is shown in the drop in
performance when removing these roles. This information is not redundantly available outside of these
arguments.

It is particularly beneficial for the model’s performance to have access to the position of cues and
stimuli. This suggests that the classifier learns to tackle the problem differently when this information
is available, especially so for ECA and ES – the cases in which literature has been annotated and the
instances are comparably long.

The bi-LSTM model indicates that the experiencer role is a confounder in GNE. The performance
can be increased when the model does not have access to its content. Similar results are observed for
ET, in which the target role is a confounder. However, these results should be taken with a grain of salt
given that they are not confirmed while switching to the transformer-based model. The differences in
results between the bi-LSTM and the transformer also motivate further research, as they suggest that the
contextualized representation might compensate for missing information, and is, therefore, more robust.

Finally, our results across both models and multiple datasets indicate that emotion classification
approaches indeed benefit from semantic roles’ information by adding the positional information. Similarly
to targeted and aspect-based sentiment analysis, this motivates future work, in which emotion classification
and role labeling should be modelled jointly. In this case, it can also be interesting to investigate what
happens when the positional indicators are added to all roles jointly.
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Appendix

Qualitative Discussion of Examples
We analyze a subset of interesting cases from the results section in the following, to better understand
why removing stimuli from ECA improves the results and further why the same can be observed on ET
for targets.

We show examples for these cases in Table 5. We observe in instances correctly classified in the
Without setting that removing the stimulus makes the classification task easier by removing potential
sources for overfitting: The remaining tokens contain the explicit cue, even though they are not explicitly
annotated for ECA. For instance, in “

[
his angry outbreak

STIMULUS

] [
saddened

CUE

] [
me

EXPERIENCER

]
”, we see that removing

the stimulus which also contains a reference to another emotion, the task of picking the most dominant
emotion from the remaining tokens is more straight-forward.

This holds similarly for other examples in ECA, in which the stimulus describes an event that could
also be evaluated as scary; however, the experiencer mentions that he is surprised (“To my surprise”).

Label

without

Dataset Gold All Stim. Exp. Cue Targ. Text

GNE J Su J Su Su Su
[

Djokovic
EXPERIENCER

] [
happy

CUE

] [
to carry on cruising

STIMULUS

]
GNE J Su J Su A Su

[
Trump

EXPERIENCER

] [
upbeat

CUE

] [
on potential for US-Japan trade deal.

STIMULUS

]
ECA J F J – – –

[
“Michie Reetchie”

STIMULUS

]
, said Xavier, and again he burst into laughter that

choked further speech. He controlled himself and laid his finger on his
vein.

ECA Su F Su – – – One morning Pop sent me down to the river to catch some fish for breakfast.
To my surprise

[
there was a canoe in the water and there was no one in

STIMULUS

]
.

Immediately I jumped into the river and brought the canoe to the side.
ECA F S F – – – I did not answer, fearing

[
to tell him that I had been awake watching him

STIMULUS

]
ECA A S A – – – A massy stone and shook the ranks of Troy, as when in anger[

against long - screaming cranes
STIMULUS

]
a watcher of the field leaps from the

ground in swift hand whirling round his head the sling and speeds the stone
against them scattering.

ECA D A D – – –
[
A year after being fired from his job

STIMULUS

]
he has a lot of resentment towards

his former boss.

ET D T D T S D Three words to describe the entire
[
#GOP convention

TARGET

][
Mean and demeaning.

CUE

]
ET A D D D D A

[
#Republicans

TARGET

]
are a joke .

[
Clint Eastwood

STIMULUS

]
is their mascot ! America is

in trouble if
[
these idiots

CUE

]
win ! #RNC

ET J T T J T J
[
Obama Voter

TARGET

] [
Says Vote for Obama

STIMULUS

] [
YES WE CAN AGAIN !

CUE

]
ET J Ant T T T J

[
So excited

CUE

]
to vote this upcoming

[
election

TARGET

][
finally exercising my right to choose our next president

STIMULUS

]
#Obama

ET D A A A A D
[
Romney

TARGET

]
is gonna put The Onion out of business .

[
#TheStench

CUE

]
REMAN J noemo noemo J noemo – And

[
she

EXPERIENCER

]
returned the quiet but jubilant kiss that he laid upon her

lips.

Table 5: Examples in which the prediction is incorrect when the model is applied on the whole instance,
but it is correct when the respective role is removed. The correct prediction is marked in bold face. J: Joy,
T: Trust, Su: Surprise, Ant: Anticipation, D: Disgust, F: Fear, A: Anger, S: Sadness
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Detailed Results for Additional Positional Information
We have seen in the results that adding position information of the semantic roles increases the performance
for both datasets which contain examples drawn from literature. This is particularly interesting for future
research on jointly modelling roles and classification. Therefore, we show details per emotion class in
Table 6 (only for the bi-LSTM model).

We see for the ECA dataset, that when the positional information is made accessible to the model, the
classifier learns better to predict all emotion classes with a substantial improvement for anger and disgust.
Similarly, ES improves over all emotions with the exception of disgust and sadness.

Data Emotion All Stimulus Position

P R F1 P R F1

ECA

Anger 15 11 13 36 44 40
Disgust 25 06 09 11 11 11
Fear 56 56 56 78 70 74
Joy 57 58 57 65 58 61
Sadness 50 67 57 57 72 64
Surprise 40 38 39 63 53 58

Macro 40 39 38 52 51 51

ES

Anger 90 97 94 92 98 95
Disgust 85 54 67 100 45 63
Fear 97 88 93 95 95 95
Joy 93 92 92 100 92 96
Sadness 94 99 97 90 96 93
Shame 100 94 97 100 100 100
Surprise 91 95 93 88 100 94

Macro 93 89 90 95 90 91

Table 6: Results per emotion for ECA and ES with and without positional stimuli information. Bold
numbers indicate that their value is greater than in the As-Is setting.
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Analysis of Content of Roles
Table 7 shows the most frequent tokens marked as cue, stimulus, experiencer or target over each dataset.
They differ substantially per dataset and reflect well the respective source. The counts suggest a Zipfian
distribution for ElectoralTweets (stimulus and target) and GoodNewsEveryone (experiencer, stimulus).
This could explain the results obtained in the Without setting by the bi-LSTM-based model. The most
common tokens annotated with the target role in ElectoralTweets also show the polarized nature of those
who tweeted about the election.

Figure 1 shows the distribution of the most frequent tokens (across all roles) for the most frequent
emotions of ET and GNE. The plots marked with “overall” show the prior distribution of emotions in the
respective dataset. We see that for the emotion admiration, “president” stands out. Further we note that
“Romney” is associated with dislike in this corpus.

For GNE we observe that the most frequent tokens are occurring less in instances annotated with
positive surprise than overall, and more in instances annotated with anger (except for “Biden”) showing
that these tokens could be biased towards more negative emotions. This shows a bias of the dataset
towards negative emotion when it comes to the most prominent tokens.

Role Tokens

ECA Stim. see (80), like (49), man (49), go (43), life (43), father (43), time (42), day (34), came (33), son (32)

ES Stim. see (36), way (12), find (11), left (9), people (9), prospect (8), thought (8), like (8), losing (8), work (7)

R
E

M
A

N Cue love (32), suddenly (31), afraid (15), smile (12), beautiful (11), trust (11), pleasure (10), ugly (7), things (7),
wish (6)

Stim. little (10), another (8), face (8), got (7), lord (7), left (7), great (7), wife (7), men (6), life (6)
Exp. man (23), woman (12), boy (7), old (7), isabel (6), people (6), god (5), father (5), heart (5), henry (5)
Target man (22), little (9), things (8), woman (8), see (8), old (7), god (6), wife (6), another (6), true (5)

ET

Cue Obama (136), Romney (105), vote (89), like (65), Mitt (56), people (53), get (52), president (50),
really (49), excited (49)

Stim. Obama (249), Romney (211), vote (108), Mitt (87), Barack (74), president (66), people (51),
speech (40), like (40), get (35)

Exp. gop, anyone, presidency, clint
Target Obama (446), Romney (420), Mitt (146), Barack (112), People (53), president (40), election (20), debate (19),

Michelle (19), Clinton (15)

GNE

Cue killed (38), crisis (33), attacks (33), death (26), war (25), arrested (24), racist (24), help (22), new (20), fight (19)
Stim. Trump (279), border (68), Mueller (58), back (57), report (56), Iran (57), report (56), war (55),

people (55), deal (55)
Exp. Trump (401), Donald (66), man (46), democrats (44), Biden (40), House (37), woman (36), police (35),

Mueller (34), Sanders (33)
Target Trump (345), new (94), Mueller (54), House (44), border (43), people (42), democrats (41), deal (36),

report (36), president (35)

Table 7: Most frequent 10 tokens with frequencies for each role and dataset.
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Figure 1: Emotion distribution of instances containing the respective tokens (% for the top-5 most frequent
emotions for each dataset). “overall” represents the emotion distribution for those emotions across all
instances.
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