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Abstract
Functional Distributional Semantics provides
a computationally tractable framework for
learning truth-conditional semantics from a
corpus. Previous work in this framework has
provided a probabilistic version of first-order
logic, recasting quantification as Bayesian in-
ference. In this paper, I show how the previ-
ous formulation gives trivial truth values when
a precise quantifier is used with vague predi-
cates. I propose an improved account, avoid-
ing this problem by treating a vague predicate
as a distribution over precise predicates. I con-
nect this account to recent work in the Rational
Speech Acts framework on modelling generic
quantification, and I extend this to modelling
donkey sentences. Finally, I explain how the
generic quantifier can be both pragmatically
complex and yet computationally simpler than
precise quantifiers.

1 Introduction

Model-theoretic semantics defines meaning in
terms of truth, relative to model structures. In the
simplest case, a model structure consists of a set
of individuals (also called entities). The mean-
ing of a content word is a predicate, formalised
as a truth-conditional function which maps indi-
viduals to truth values (either truth or falsehood).
Because of this precisely defined notion of truth,
model theory naturally supports logic, and has be-
come a prominent approach to formal semantics.
For detailed expositions, see: Cann (1993); Allan
(2001); Kamp and Reyle (2013).

Mainstream approaches to distributional se-
mantics represent the meaning of a word as a
vector (for example: Turney and Pantel, 2010;
Mikolov et al., 2013; for an overview, see: Emer-
son, 2020b). In contrast, Functional Distributional
Semantics represents the meaning of a word as
a truth-conditional function (Emerson and Copes-
take, 2016; Emerson, 2018). It is therefore a

promising framework for automatically learning
truth-conditional semantics from large datasets.

In previous work (Emerson and Copestake,
2017b, §3.5, henceforth E&C), I sketched how this
approach can be extended with a probabilistic ver-
sion of first-order logic, where quantifiers are in-
terpreted in terms of conditional probabilities. I
summarise this approach in §2 and §3.

There are four main contributions of this paper.
In §4.1, I first point out a problem with my pre-
vious approach. Quantifiers like every and some
are treated as precise, but predicates are vague.
This leads to trivial truth values, with every triv-
ially false, and some trivially true.

Secondly, I show in §4.2–4.4 how this problem
can fixed by treating a vague predicate as a distri-
bution over precise predicates.

Thirdly, in §5 I look at vague quantifiers and
generic sentences, which present a challenge for
classical (non-probabilistic) theories. I build on
Tessler and Goodman (2019)’s account of gener-
ics using Rational Speech Acts, a Bayesian ap-
proach to pragmatics (Frank and Goodman, 2012).
I show how generic quantification is computation-
ally simpler than classical quantification, consis-
tent with evidence that generics are a “default”
mode of processing (for example: Leslie, 2008;
Gelman et al., 2015).

Finally, I show in §6 how this probabilistic ap-
proach can provide an account of donkey sen-
tences, another challenge for classical theories. In
particular, I consider generic donkey sentences,
which are doubly challenging, and which provide
counter-examples to the claim that donkey pro-
nouns are associated with universal quantifiers.

Taking the above together, in this paper I show
how a probabilistic first-order logic can be asso-
ciated with a neural network model for distribu-
tional semantics, in a way that sheds light on long-
standing problems in formal semantics.
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2 Generalised Quantifiers

Partee (2012) recounts how quantifiers have
played an important role in the development of
model-theoretic semantics, seeing a major break-
through with Montague (1973)’s work, and cul-
minating in the theory of generalised quantifiers
(Barwise and Cooper, 1981; Van Benthem, 1984).

Ultimately, model theory requires quantifiers to
give truth values to propositions. An example of a
logical proposition is given in Fig. 1, with a quan-
tifier for each logical variable. This also assumes
a neo-Davidsonian approach to event semantics
(Davidson, 1967; Parsons, 1990).

Equivalently, we can represent a logical propo-
sition as a scope tree, as in Fig. 2. The truth of the
scope tree can be calculated by working bottom-
up through the tree. The leaves of the tree are log-
ical expressions with free variables. They can be
assigned truth values if each variable is fixed as
an individual in the model structure. To assign a
truth value to the whole proposition, we work up
through the tree, quantifying the variables one at
at time. Once we reach the root, all variables have
been quantified, and we are left with a truth value.

Each quantifier is a non-terminal node with two
children – its restriction (on the left) and its body
(on the right). It quantifies exactly one variable,
called its bound variable. Each node also has free
variables. For each leaf, its free variables are ex-
actly the variables appearing in the logical expres-
sion. For each quantifier, its free variables are the
union of the free variables of its restriction and
body, minus its own bound variable. For a well-
formed scope tree, the root has no free variables.
Each node in the tree defines a truth value, given a
fixed value for each free variable.

The truth value for a quantifier node is defined
based on its restriction and body. Given values for
the quantifier’s free variables, the restriction and
body only depend on the quantifier’s bound vari-
able. The restriction and body therefore each de-
fine a set of individuals in the model structure –
the individuals for which the restriction is true, and
the individuals for which the body is true. We can
write these as R(v) and B(v), respectively, where
v denotes the values of all free variables.

Generalised quantifier theory says that a quan-
tifier’s truth value only depends on two quantities:
the cardinality of the restriction |R(v)|, and the
cardinality of the intersection of the restriction and
body |R(v) ∩ B(v)|. Table 1 gives examples.

∀x picture(x)→
∃z∃y tell(y)∧story(z)∧ARG1(y, x)∧ARG2(y, z)

Figure 1: A first-order logical proposition, representing
the most likely reading of Every picture tells a story.
Scope ambiguity is not discussed in this paper.

every(x)

picture(x) a(z)

story(z) ∃(y)

> tell(y) ∧ ARG1(y, x)
∧ ARG2(y, z)

Figure 2: A scope tree, equivalent to Fig. 1 above. Each
non-terminal node is a quantifier, with its bound vari-
able in brackets. Its left child is its restriction, and its
right child its body.

Quantifier Condition
some |R(v) ∩ B(v)| > 0

every |R(v) ∩ B(v)| = |R(v)|
no |R(v) ∩ B(v)| = 0

most |R(v) ∩ B(v)| > 1
2 |R(v)|

Table 1: Classical truth conditions for precise quanti-
fiers, in generalised quantifier theory.

3 Generalised Quantifiers in Functional
Distributional Semantics

Functional Distributional Semantics defines a
probabilistic graphical model for distributional se-
mantics. Importantly (from the point of view of
formal semantics), this graphical model incorpo-
rates a probabilistic version of model theory.

This is illustrated in Fig. 3. The top row defines
a distribution over situations, each situation being
an event with two participants.1 This generalises
a model structure comprising a set of situations,
as in classical situation semantics (Barwise and
Perry, 1983). Each individual is represented by a
pixie, a point in a high-dimensional space, which
represents the features of the individual. Two in-
dividuals could be represented by the same pixie,
and the space of pixies can be seen as a conceptual
space in the sense of Gärdenfors (2000, 2014).

1For situations with different structures (multiple events
or different numbers of participants), we can define a family
of such graphical models. Structuring the graphical model
in terms of semantic roles makes the simplifying assumption
that situation structure is isomorphic to a semantic depen-
dency graph such as DMRS (Copestake et al., 2005; Copes-
take, 2009). In the general case, the assumption fails. For
example, the ARG3 of sell corresponds to the ARG1 of buy.
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Y ZX
ARG2ARG1

∈ X

Tr,X Tr, Y Tr, Z

∈ {⊥,>} V

Figure 3: Probabilistic model theory, as formalised in
Functional Distributional Semantics. Each node is a
random variable. The plate (box in bottom row) de-
notes repetition of nodes.
Top row: pixie-valued random variables X , Y , Z to-
gether represent a situation composed of three individ-
uals. They are jointly distributed according to the se-
mantic roles ARG1 and ARG2. Their joint distribution
can be seen as a probabilistic model structure.
Bottom row: each predicate r in the vocabulary V has
a probabilistic truth-conditional function, which can be
applied to each individual. This gives a truth-valued
random variable for each individual for each predicate.

The bottom row of the graphical model defines
a distribution over truth values, so that each pred-
icate has some probability of being true of each
individual. Each predicate can therefore be seen
as a probabilistic truth-conditional function.

In this paper, I will not discuss learning such
a model (for an up-to-date approach, see: Emer-
son, 2020a). Instead, the focus is on how we can
manipulate a trained model, to move from single
predicates to complex propositions.

In previous work (E&C), I sketched an account
of quantification. The idea is to follow generalised
quantifier theory, but with a truth-valued random
variable for each node in the scope tree. Similarly
to the classical case, the distributions for these
nodes are defined bottom-up through the tree.

In the classical theory, we only need to know the
cardinalities |R(v)| and |R(v)∩B(v)|. In fact, all
the conditions in Table 1 can be expressed in terms
of the ratio |R(v)∩B(v)|

|R(v)| . It therefore makes sense
to consider the conditional probability P (b | r, v),
because this uses the same ratio, as shown in (1).2

P (b | r, v) =
P (r, b | v)

P (r | v)
(1)

More precisely, B and R are truth-valued ran-
dom variables for the body and restriction, and V
is a tuple-of-pixies-valued random variable, with

2I use uppercase for random variables, lowercase for val-
ues. I abbreviate P (X=x) as P (x), and P (T =>) as P (t).
For example, P (b | r, v) means P (B=> |R=>, V =v).

Quantifier Condition
some P (b | r, v) > 0

every P (b | r, v) = 1

no P (b | r, v) = 0

most P (b | r, v) > 1
2

Table 2: Truth conditions for precise quantifiers, in
terms of the conditional probability of the body given
the restriction (and given all free variables). These con-
ditions mirror Table 1.

one pixie for each free variable. Intuitively, the
truth of a quantified expression depends on how
likely B is to be true, given that R is true.3

Truth conditions for quantifiers can be defined
in terms of P (b | r, v), as shown in Table 2. For
these precise quantifiers, the truth value is deter-
ministic – if the condition in Table 2 holds, the
quantifier’s random variable Q has probability 1
of being true, otherwise it has probability 0. How-
ever, taking a probabilistic approach means that
we can naturally model vague quantifiers like few
and many. I did not give further details on this
point in E&C, but I will expand on this in §5.

4 Quantification with Vague Predicates

Truth-conditional functions that give probabilities
strictly between 0 and 1 are motivated for both
practical and theoretical reasons. Practically, such
a function can be implemented as a feedforward
neural network with a final sigmoid unit (as used
by E&C), whose output is never exactly 0 or 1.
Theoretically, using intermediate probabilities of
truth allows a natural account of vagueness (Good-
man and Lassiter, 2015; Sutton, 2015, 2017).

However, as we will see in the following sub-
section, intermediate probabilities pose a problem
for E&C’s account of quantification.

4.1 Trivial Truth Values

Combining the conditions in Table 2 with vague
predicates causes a problem, which can be illus-
trated with a simple example. Consider a model
structure containing only a single individual, and
consider only the single predicate red, which is
true of this individual with probability p. Now
consider the sentences (1) and (2).

3This would not seem to cover so-called cardinal quanti-
fiers like one and two. Under Link (1983)’s lattice-theoretic
approach, a model structure contains plural individuals, so
numbers can be treated as normal predicates like adjectives.
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(1) Everything is red.
(2) Something is red.
The body of each quantifier is simply the predi-

cate red. For simplicity, we can assume that every-
thing and something put no constraints on their re-
strictions. We need to calculate P (b | r, v). There
are no free variables, and R is always true, so this
is simply P (b). Because there is only one individ-
ual, this is simply the probability p.

This means that (1) is true iff p = 1, and (2) is
false iff p = 0. However, we have seen above
how predicates will never be true with probability
exactly 0 or exactly 1. This means (1) is always
false, and (2) is always true, even though we have
assumed nothing about the individual!

4.2 Distributions over Precise Predicates
To avoid the problem in §4.1, we must only com-
bine precise quantifiers with precise predicates
(i.e. classical truth-conditional functions). To do
this, we can view a vague predicate not as defin-
ing a probability of truth for each individual, but
as defining a distribution over precise predicates.
This induces a distribution for the quantifier.

Consider the example in §4.1. With probabil-
ity p, red is a precise predicate that is true of the
individual. In this case, both (1) and (2) are true.
With probability 1−p, red is a precise predicate
that is false of the individual. In this case, both
(1) and (2) are false. Combining these cases, both
(1) and (2) are true with probability p, which has
avoided trivial truth values.

Formalising a vague predicate as a distribution
over precise predicates was also argued for by Las-
siter (2011). It can be seen as an improved version
of supervaluationism (Fine, 1975; Kamp, 1975;
Keefe, 2000, chapter 7), which avoids the problem
of higher-order vagueness, as shown by Lassiter.

4.3 Probabilistic Scope Trees
To generalise the account in §4.2 to arbitrary scope
trees (see §4.4) and vague quantifiers (see §5), it is
helpful to introduce a graphical notation for prob-
abilistic scope trees, illustrated in Fig. 4. This
makes the E&C account easier to visualise. The
improved proposal in this paper modifies how the
distribution for each truth value node is defined.

For a classical scope tree, the truth of a quanti-
fier node depends on its free variables, and is de-
fined in terms of the extensions of its restriction
and body, in a way that removes the bound vari-
able. For a probabilistic scope tree, the distribu-

Y ZX
ARG2ARG1

Tα,X Tβ,Y Tγ,Z

T1

T2

T3

conditional
dependence

probabilistic
scope tree

Figure 4: A probabilistic scope tree. T1, T2, T3 corre-
spond to non-terminal nodes in Fig. 2, going up through
the tree. One random variable is marginalised out at a
time, until T3 is no longer dependent on any variables.

tion for a quantifier node is conditionally depen-
dent on its free variables, and is defined in terms
of the distributions for its restriction and body,
marginalising out the bound variable. The dis-
tributions at the leaves of the tree are defined by
predicates, inducing a distribution for each quan-
tifier node as we work up through the tree.

Fig. 4 corresponds to Fig. 2, if we set α, β,
γ to be picture, tell, story. The distributions for
Tα,X , Tβ,Y , Tγ,Z are determined by the predi-
cates. We have three quantifier nodes in the clas-
sical scope tree, and hence three additional truth
value nodes in the probabilistic scope tree. We first
define a distribution for T1, which represents the
∃(y) quantifier, and which depends on its free vari-
ablesX andZ. It is true if, for situations involving
the fixed pixies x and z, there is nonzero probabil-
ity that they are the ARG1 and ARG2 of a telling-
event pixie. Next, we define a distribution for T2,
which represents the a(z) quantifier, and depends
on the free variable X . It is true if, for situations
involving the fixed pixie x and story pixie z, there
is nonzero probability that T1 is true. Finally, we
define a distribution for T3, which represents the
every(x) quantifier, and has no free variables. It is
true if, for situations involving a picture pixie X ,
we are certain that T2 is true.

4.4 Probabilistic Scope Trees with Vague
Predicates as Distributions

In this section I show how to define the quantifier
nodes in §4.3 so that they are nontrivial.
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Y ZX
ARG1 ARG2

Tα,X Tβ,Y Tγ,Z

T1

T2

T3

Πα Πβ Πγ

Π1

Π2

Π3

conditional dependence of
truth values

conditional dependence of
truth-conditional functions

Figure 5: The probabilistic scope tree in Fig. 4, explicitly showing random variables over precise functions.

To explicitly represent each vague truth-
conditional function as a random variable over
precise functions, we need to add a function node
for each truth value node in the graphical model.
For example, this transforms Fig. 4 into Fig. 5.

For a truth value node T that is a leaf of the
scope tree (the second row of Fig. 5), the distri-
bution P (t) over truth values follows the descrip-
tion in §4.2. A precise predicate π : X → {>,⊥}
maps pixies to truth values. Given π and a pixie x,
the distribution for T is deterministic: T = π(x)
with probability 1. A distribution Π over pre-
cise predicates π defines a vague predicate ψ, by
marginalising out this distribution:4

P (t |x) = ψ(x) = Eπ [π(x)] (2)

More generally, a truth value node Q is depen-
dent on its free variables V . We can represent this
in terms of a precise function π : X n → {>,⊥},
where n is the number of free variables. Given val-
ues v for the free variables, a distribution Π over
precise predicates π defines a vague predicate ψ,
by marginalising out this distribution:

P (q | v) = ψ(v) = Eπ [π(v)] (3)

What remains to be shown is that the E&C
account of quantification (in §3) can be adapted
so that a quantifier’s distribution ΠQ over precise
functions πQ can be defined in terms of its restric-
tion function πR and body function πB . This can

4I write expectations with a subscript to indicate the ran-
dom variable being marginalised out. To write the expecta-
tion in (2) explicitly as a sum: Eπ [π(x)] =

∑
π[π(x)P(π)].

be seen as probabilistic semantic composition: the
aim is to combine two truth-conditional functions
to produce a distribution over truth-conditional
functions. This is illustrated by the nodes Π1, Π2,
Π3 in Fig. 5, which are conditionally dependent
on other function nodes (indicated by the purple
edges), forming a probabilistic scope tree.

Expanding (3) so it is dependent on the re-
striction and body functions, we have (4). The
aim is now to re-write the distribution for Q, us-
ing an adapted version of E&C, in order to de-
rive πQ in terms of πR and πB . As explained
in §3, the E&C account defines Q using the con-
ditional probability P (b | r, v). More precisely,
P (q | v) = fQ(P (b | r, v)) for some fQ, such as
those defined by Table 2. With vague functions
now considered as distributions over precise func-
tions, the conditional probability must be amended
to P (b | r, v, πR, πB), as in (5), given precise func-
tions πR and πB for the restriction and body. This
can be re-written as a ratio of probabilities (corre-
sponding to the classical sets), summing over pos-
sible values for the bound variable(s) U , as in (6).
We can factorise out the distribution forU , accord-
ing to the conditional dependence structure (illus-
trated in Fig. 5), as in (7). Finally, we can express
R and B in terms of the functions πR and πB , and
write the sum as an expectation, as in (8). Note
that πR and πB take u ∪ v as an argument – by
definition of a scope tree, if we combine a quan-
tifier’s bound and free variables, we get the free
variables of its restriction and body. I have written
u ∪ v rather than {u} ∪ v, to leave open the possi-
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bility that the quantifier has more than one bound
variable, which will be relevant in §5.

P (q | v, πR, πB) = EπQ|πR,πB [πQ(v)] (4)

= fQ
(
P (b | r, v, πR, πB)

)
(5)

= fQ

(∑
u P (b, r, u | v, πR, πB)∑
u P (r, u | v, πR, πB)

)
(6)

= fQ

(∑
u P (u | v)P (r, b |u, v, πR, πB)∑

u P (u | v)P (r |u, v, πR)

)
(7)

= fQ

(
Eu|v

[
πR(u ∪ v)πB(u ∪ v)

]
Eu|v

[
πR(u ∪ v)

] )
(8)

(8) gives a probability of truth, hence a vague
function. Viewing it as a distribution over precise
functions (as in §4.2), we finally have a definition
of πQ in terms of πR and πB . Concretely, πQ re-
turns truth iff (8) is above a threshold. A uniform
distribution over thresholds in [0, 1] gives a distri-
bution over such functions.

Abbreviating the notation, we can write (9). A
quantifier’s truth-conditional function depends on
the restriction and body functions, marginalising
out the bound variable. The ratio of expectations
mirrors the classical ratio of cardinalities.

πQ ∼ fQ
(
Eu [πRπB]

Eu [πR]

)
(9)

We can now recursively define functions for
quantifier nodes, given functions in the leaves. We
can therefore see Fig. 4 as an abbreviated notation
for Fig. 5. The dotted edges do not indicate condi-
tional dependence of truth values, but conditional
dependence of truth-conditional functions.

5 Vague Quantifiers and Generics

While some, every, no, and most can be given pre-
cise truth conditions, other natural language quan-
tifiers are vague. In particular, we can consider the
terms few and many.5

Under a classical account (for example: Barwise
and Cooper, 1981), many means thatR(v) ∩ B(v)
is large compared toR(v), but how large is under-
specified; similarly, few means this ratio is small.
The underspecification of a proportion can natu-
rally be represented as a distribution. So, we can
define the meaning of a vague generalised quanti-
fier to be a function from P (b | r, v) to a probabil-
ity of truth, as illustrated in Fig. 6.

5Partee (1988) surveys work suggesting that few and many
are ambiguous between a vague cardinal reading and a vague
proportional reading. As mentioned in Footnote 3, we can
treat cardinals as predicates rather than quantifiers.

some every no most

many few

Figure 6: Probabilities of truth for various quantifiers.
Each x-axis is P (b | r, v, πR, πB), and each y-axis is
P (q | v, πR, πB), plotting the function fQ in orange.
All axes range from 0 to 1. Quantifiers in the bottom
row are vague, requiring intermediate probabilities.

A particularly challenging case of natural lan-
guage quantification involves generic sentences,
such as: dogs bark, ducks lay eggs, and mosquitoes
carry malaria. Generics are ubiquitous in natu-
ral language, but they are challenging for classi-
cal models, because the truth conditions seem to
depend heavily on lexical semantics and on the
context of use (for discussion, see: Carlson, 1977;
Carlson and Pelletier, 1995; Leslie, 2008).

While it is tempting to treat generic quantifi-
cation as underspecification of a precise quanti-
fier (for example: Herbelot, 2010; Herbelot and
Copestake, 2011), this is at odds with evidence
that generics are easier for children to acquire than
precise quantifiers (Hollander et al., 2002; Leslie,
2008; Gelman et al., 2015), and also easier for
adults to process (Khemlani et al., 2007).

In contrast, Tessler and Goodman (2019) anal-
yse generic sentences as being semantically sim-
ple, with the complexity coming down to prag-
matic inference. They use Rational Speech Acts
(RSA), a Bayesian approach to pragmatics (Frank
and Goodman, 2012; Goodman and Frank, 2016).
In this framework, literal truth is separated from
pragmatic meaning. Communication is viewed as
a game where a listener has a prior belief about
a situation, and a speaker wants to update the lis-
tener’s belief. Given a truth-conditional function,
a literal listener updates their belief by condition-
ing on truth, ruling out situations for which the
function returns false. A pragmatic speaker who
observes a situation can choose an utterance which
is informative for a literal listener – in particular,
the utterance which maximises a literal listener’s
posterior probability for the observed situation. A
pragmatic listener can update their belief by con-
ditioning on a pragmatic speaker’s utterance.
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Tessler and Goodman’s insight is that this infer-
ence of pragmatic meanings can account for the
behaviour of generic sentences. The literal mean-
ing of a generic can be simple (it is more likely to
be true as the proportion increases), but the prag-
matic meaning can have a rich dependence on the
world knowledge encoded in the prior over situ-
ations. For example, Mosquitoes carry malaria
does not mean that all mosquitoes do (in fact,
many do not) but it can be informative for the lis-
tener: as most animals never carry malaria, even a
small proportion is pragmatically relevant.

Building on this, we could model the generic
quantifier by setting fQ as the identity function
(the same as many in Fig. 6). From (8), the prob-
ability of truth is then as shown in (10). However,
marginalising out ΠR and ΠB is computationally
expensive, as it requires summing over all possible
functions. We can approximate this by reversing
the order of the expectations, and so marginalis-
ing out ΠR and ΠB before U , as shown in (11),
where ψR and ψB are vague functions. Evaluating
a vague function is computationally simple.

EπR,πB

[
Eu|v

[
πR(u ∪ v)πB(u ∪ v)

]
Eu|v

[
πR(u ∪ v)

] ]
(10)

≈
Eu|v

[
ψR(u ∪ v)ψB(u ∪ v)

]
Eu|v

[
ψR(u ∪ v)

] (11)

Abbreviating this, similarly to (9), we can write:

ψQ =
Eu [ψRψB]

Eu [ψR]
(12)

For precise quantifiers, using vague functions
gives trivial truth values (discussed in §4.1), but
for generics, (10) and (11) give similar probabili-
ties of truth. To put it another way, a vague quan-
tifier doesn’t need precise functions. Modelling
generics with (10) was driven by the intuition that
generics are vague but semantically simple. The
alternative in (11) is even simpler, because we only
need to calculate Eu|v once in total, rather than
once for each possible πR and πB . This would
make generics computationally simpler than other
quantifiers, consistent with the evidence that they
are easier to acquire and to process.

In fact, (11) takes us back to E&C’s conditional
probability, as shown in (13).

ψQ(v) =

∑
u P (u | v)P (r |u, v)P (b |u, v)∑

u P (u | v)P (r |u, v)

= P (b | r, v) (13)

Y ZX
ARG2ARG1

Tα,X Tβ,Y Tγ,ZTδ,X

R

Q

Figure 7: Emerson and Copestake (2017a)’s logical in-
ference, re-analysed as generic quantification. R is the
restriction, the logical conjunction of Tα,X , Tβ,Y , and
Tγ,Z , while Tδ,X is the body. Generic quantification
gives P(q) = P (tδ,X | tα,X , tβ,Y , tγ,Z), marginalising
out all three bound variables (X , Y , and Z).

This means the logical inference proposed by
Emerson and Copestake (2017a) can in fact be
seen as generic quantification. This is illustrated
in Fig. 7, which corresponds to a sentence like
Rooms that have stoves are kitchens, if α, β, γ, δ
are set to room, have, stove, kitchen.6

Not only does this approach to quantification
deal with both precise and vague quantifiers in a
uniform way, it can also explain why generics are
easier to process than precise quantifiers.

6 Donkey Sentences

An example of a donkey sentence is shown in (3).
They are challenging for classical semantic the-
ories, because naive composition, shown in (4),
leaves a variable (y) outside the scope of its quan-
tifier (Geach, 1962). The tempting solution in (5)
requires a universal quantifier for an indefinite
(a donkey), which would be non-compositional.7

(3) Every farmer who owns a donkey feeds it.

(4) ∀x
[(

farmer(x) ∧ ∃y[donkey(y) ∧
own(x, y)]

)
→ feed(x, y)

]
(5) ∀x∀y

[(
farmer(x) ∧ donkey(y) ∧

own(x, y)
)
→ feed(x, y)

]
Kanazawa (1994), Brasoveanu (2008), and

King and Lewis (2016) discuss how donkey sen-
tences seem to admit multiple readings, which
vary in the strength of their truth conditions, and
which depend on both lexical semantics and the

6An example from RELPRON (Rimell et al., 2016).
7For simplicity, (4) and (5) suppress event variables.
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Figure 8: Analysis of a generic donkey sentence, us-
ing generic quantification. The quantifier node Q has
restriction R (a logical conjunction) and body Tδ,W .

context of use. This kind of dependence is exactly
what Tessler and Goodman (2019) explained us-
ing RSA, so I will apply the same tools here.

As discussed in §5, generics are more basic than
classical quantifiers, so I first consider generic
donkey sentences, as illustrated in (6)–(8). An
analysis of (3) is given in Appendix A.

(6) Farmers who own donkeys feed them.
(7) Linguists who use probabilistic models

love them.
(8) Mosquitoes which bite birds infect them

with malaria.

Example (8) shows it is inappropriate to use
a universal quantifier: not all mosquitoes carry
malaria, and not all bitten birds are infected (even
if bitten by a malaria-carrying mosquito). How-
ever, this sentence still communicates that malaria
is spread between birds by mosquitoes. This relies
on pragmatic inference, from prior knowledge that
most animals cannot spread malaria.

Despite the challenge for classical theories,
generic donkey sentences can be straightforwardly
handled by my proposed probabilistic approach.
An example is shown in Fig. 8, which corresponds
to (6), if α, β, γ, δ are set to farmer, own, donkey,
feed. Intuitively, the more likely it is that a farmer
owning a donkey implies the farmer feeding the
donkey, the more likely it is for the sentence to be
true. Given world knowledge and a discourse con-
text, this can lead to a sharp threshold for being
uttered, using RSA’s pragmatic inference.

7 Related Work

Functional Distributional Semantics is related to
other probabilistic semantic approaches. Good-
man and Lassiter (2015) and Bernardy et al. (2018,
2019) represent meaning as a probabilistic pro-
gram. This paper brings Functional Distributional
Semantics closer to their work, because a proba-
bilistic scope tree can be seen as a probabilistic
program. An important practical difference is that
Functional Distributional Semantics represents all
predicates in the same way (as functions of pixies),
allowing a model to be trained on corpus data.

Probabilistic TTR (Cooper, 2005; Cooper et al.,
2015) also represents meaning as a probabilistic
truth-conditional function. However, in this pa-
per I have provided an alternative compositional
semantics, in order to deal with vague quantifiers
and generics. In principle, my proposal could be
incorporated into a probabilistic TTR appproach.
Furthermore, although Cooper et al. (2015) dis-
cuss learning, they assume a richer input than
available in distributional semantics.

Some hybrid distributional-logical systems ex-
ist (for example: Lewis and Steedman, 2013;
Grefenstette, 2013; Herbelot and Vecchi, 2015;
Beltagy et al., 2016), but these do not discuss chal-
lenging cases like generics and donkey sentences.

Explaining the multiple readings of donkey sen-
tences using pragmatic inference has been pro-
posed using non-probabilistic tools (for example:
Champollion, 2016; Champollion et al., 2019). I
have provided a concrete computational method
to calculate such inferences, in the same way that
Tessler and Goodman (2019) have provided a con-
crete account of generics.

8 Conclusion

In this paper, I have presented a compositional
semantics for both precise and vague quanti-
fiers, in the probabilistic framework of Functional
Distributional Semantics. I have re-interpreted
previous work in this framework as performing
generic quantification, building on the approach of
Tessler and Goodman (2019). I have shown how
generic quantification is computationally simpler
than classical quantification, consistent with evi-
dence that generics are a “default” mode of pro-
cessing. Finally, I have presented examples of
generic donkey sentences, which are doubly chal-
lenging for classical theories, but straightforward
under my proposed approach.
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A Classical Donkey Sentences

In this analysis of a classical donkey sentence, the
donkey pronoun is associated with a generic quan-
tifier, while all other quantifiers are precise. The
generic quantifier allows the range of readings as-
sociated with donkey sentences.

The above figure corresponds to example (3), if
α, β, γ, δ are set to farmer, own, donkey, feed.
Intuitively, this analysis says that, if all farmers
who own at least one donkey feed at least a pro-
portion p of their donkeys, then this sentence is
true with probability p.

The probability of truth gradually increases
with the proportion p. Given world knowledge
and a discourse context, this can lead to a sharp
threshold proportion above which it is uttered, us-
ing pragmatic inference in the RSA framework. If
distinguishing small proportions is pragmatically
relevant, the weak reading becomes preferred. If
distinguishing large proportions is pragmatically
relevant, the strong reading becomes preferred.

I will now go over all nodes in the graph. Firstly,
the distributions for Tα,X , Tβ,Y , Tγ,Z , Tδ,W are
determined by the predicates.

The remaining truth value nodes are labelled for
convenience. TRC and TDP are logical conjunc-
tions (for the relative clause and donkey pronoun,
respectively). The remaining five nodes are quan-
tifier nodes, each quantifying one variable.

Note that Z is quantified twice (by Q∃ and

QGEN). This would be surprising in a classical
logic, but is not a problem here – marginalising out
a random variable means that the quantifier node
is not dependent on that variable, but the random
variable is still part of the joint distribution, so it
can be referred to by other nodes. Because of this
double quantification, the scope “tree” is actually
a scope DAG (directed acyclic graph).
QE1 and QE2 marginalise out the event vari-

ables, respectively Y andW , with trivially true re-
strictions and bodies Tβ,Y and Tδ,W , leaving free
variables X and Z. They can be treated like some
in Fig. 6. For given pixies x and z, QE1 is true if
x owns z; QE2 is true if x feeds z.
Q∃ marginalises out Z, with TRC as restriction

and QE1 as body, leaving the free variable X . It
can be treated like some in Fig. 6. For a given x, it
is true if x is a farmer and there is a donkey z such
that QE1 is true.
QGEN also marginalises out Z, with TDP as re-

striction and QE2 as body, leaving the free vari-
able X . It uses the generic quantifier, as in (11).
For a given x, it considers donkeys z for which
QRC is true; the probability of truth is the propor-
tion of such z for which QE2 is true (out of don-
keys owned by farmer x, the proportion fed by x).

Finally, Q∀ marginalises out X , with T∃ as re-
striction and QGEN as body, leaving no free vari-
ables. It is treated as in Fig. 6. It is true if, when-
ever T∃ is true of x, QGEN is true of x, considering
QGEN as a distribution over precise functions.


