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Abstract

Natural Language Inference models have
reached almost human-level performance but
their generalisation capabilities have not been
yet fully characterized. In particular, sensitiv-
ity to small changes in the data is a current
area of investigation. In this paper, we focus
on the effect of punctuation on such models.
Our findings can be broadly summarized as
follows: (1) irrelevant changes in punctuation
are correctly ignored by the recent transformer
models (BERT) while older RNN-based mod-
els were sensitive to them. (2) All models,
both transformers and RNN-based models, are
incapable of taking into account small relevant
changes in the punctuation.

1 Introduction

In recent years models for Natural Language In-
ference (NLI) have reached almost human-level
performance. These models frame inference
as a classification problem, whose input is a
premise/hypothesis pair. It has been noted that
small changes in the pair, can flip the prediction
(Glockner et al., 2018). In this paper, we explore
the effect of punctuation1 in neural models in nat-
ural language inference.

Small changes in a premise/hypothesis pair are
of two kinds. First, the change can be of an ir-
relevant kind. For example, we can expect that
removing a sentence-final stop should not change
the relationship between a premise and hypoth-
esis sentence. Second, a textually small change
could flip the relationship between hypothesis and
premise. For example, adding a negation word is a
small textual change that has a lot of semantic con-
tent. But it is not only words that can have a large
impact on the meaning of a sentence. Commas,

1The set of punctuation symbols we consider are:
’!"#$%&()*+,-./:;<=>?@[]\ˆ ‘{}| ’

for example, may indicate which words belong to-
gether and which do not in a list. Ideally, an NLI
model should be insensitive to changes of the first
kind, but still, properly recognize changes of the
second kind.

In this paper, we test both hypotheses for the
case of punctuation. Namely:

• (H1) Deep-learning based classifiers are sen-
sitive to irrelevant punctuation.

• (H2) Deep-learning classifiers take relevant
punctuation into account correctly.

This work is part of the larger question concern-
ing the ability of NLI models to generalize. There
are a number of papers that report several prob-
lems of generalizability: Glockner et al. (2018)
have shown that several NLI models break consid-
erably easily when, instead of tested on the origi-
nal SNLI (Bowman et al., 2015) test set, they are
tested on a test set which is constructed by taking
premises from the training set and creating several
hypotheses from them by changing at most one
word within the premise. Talman and Chatzikyr-
iakidis (2018) show that NLI models break down
when one trains in one dataset, but then test on
the test set of a similar dataset (e.g. training
on MNLI (Williams et al., 2017) and testing on
SNLI). Wang et al. (2019) report problems in gen-
eralizability when the two pairs are swapped. The
idea is that one should expect the same accuracy
for contradiction and neutral when the pairs are
swapped (neutral remains neutral, and contradic-
tion remains a contradiction2), and a lower ac-
curacy for entailment (given that entailment turns
neutral when the pairs are swapped).

2Even though one can imagine exotic, non-symmetric
definitions of “neutral” and “contradiction”, we are not aware
of any system or dataset using such a definition.
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2 Datasets and experiments

Our experiments are performed on the Multi-
Genre Natural Language Inference (MNLI) cor-
pus (Williams et al., 2017) (and variants thereof,
as described below). MNLI consists of 433k
human-written sentence pairs labeled with entail-
ment, contradiction and neutral. MNLI contains
sentence pairs from ten distinct genres3 of both
written and spoken English. Only five genres are
included in the training set. The development
and test sets have been divided into matched and
mismatched, where the former includes only sen-
tences from the same genres as the training data
and the latter include sentences from the remain-
ing genres not present in the training data.

We consider three variants of MNLI:

(orig) This variant is the original MNLI with no
changes whatsoever.

(p) To obtain this variant we make punctuation
consistent throughout examples by adding
full stops at the end of each sentence.

(¬p) To obtain this variant we remove all non-
alphanumeric characters from each sentence.
This also remove special characters that are
sometimes not classified as punctuation, such
as the dollar sign. However, such characters
occur so seldom that they have little influence
on the results, either way (see Table 1).

Appending a sentence-final stop is in general
reasonable, especially for the non-dialogue exam-
ples. For the dialogue part of the MNLI dataset,
this is unnatural as final stops typically are not ex-
pressed in dialogue.

To convey an idea of the amount of data that
our transformation impact, we show the raw and
relative count4 of punctuation symbols in Table 1.
In total, relative to word-tokens, punctuation sym-
bols account for about 11.5% of the tokens.

2.1 Experiments

We perform two sets of experiments:
In the first set, designed to test (H1), we train

NLI models for either of the three (orig, p, ¬p)

3face to face conversations, telephone ones, letters, oxford
university press publications, etc.

4Relative to the number of total tokens in the MNLI
dataset

SYMBOL COUNT %
, 672354 3.544
. 632460 3.334
’ 426014 2.246
- 188124 0.992
) 66498 0.351
( 66210 0.349
? 41530 0.219
” 27246 0.144
; 18182 0.096
! 11384 0.060
$ 8724 0.046
: 6162 0.033
/ 5746 0.030
[ 1920 0.010
] 1872 0.010
& 1032 0.005
% 1014 0.005

666 0.003
* 186 0.001
@ 162 0.001
= 150 0.001
# 114 0.001
+ 66 0.0003
‘ 24 0.0001
˜ 12 6.32e-05
\ 12 6.32e-05
{ 12 6.32e-05

Table 1: Count of punctuation symbols used in the
training examples of MNLI.

variants and test on either the p or¬p variants. Ad-
ditionally, we train on orig and test on orig, as a
baseline result.

In the second set, we designed a dataset to test
(H2), that is, whether NLI models are able to de-
tect semantically relevant punctuation. This ex-
periment is performed the same way as the first
set, but we replace the MNLI test data with our
own dataset. The dataset we constructed for this
contain a number of problems whose correct label
depends on the presence or absence of punctua-
tion. Here are some representative examples (&
separates the premise from the hypothesis, label
follows in parentheses):

(1) I thank, my mother, Anna, Smith and John &
I thank four people (E)

(2) I thank, my mother Anna, Smith and John &
I thank two people (C)
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(3) The notion of good, god, is incomprehensible
& Good is incomprehensible (E)

(4) The notion of good, god, is incomprehensible
& Good god is incomprehensible (C)

The first two examples are cases where the com-
mas are used to denote the conjunction of more
than one conjunct. Removing the comma between
“my mother” and “Anna” in 2 has a significant ef-
fect on counting: what is taken to be two entities
in 1, are one in 2. In 3 and 4, we get a different
label depending on whether the hypothesis refers
to the property “good” (E) or the adjectival modi-
fication “good god” (C). The test set consists of 18
examples which can be seen in Table 4.

3 Models

The experiments are performed using three mod-
els:

BiLSTM The simplest model is a bidirectional
LSTM that encodes the premise and hypothesis,
then applies max pooling. The model then con-
catenates the premise and hypothesis in the stan-
dard fashion (Conneau et al., 2017; Talman et al.,
2019): [p;h; p − h; p ∗ h] where p is the premise
representation and h the hypothesis representa-
tion. A three-layer perceptron with leaky ReLU
activation between the layers then assigns a class
to the example.

HBMP The second model is described by Tal-
man et al. (2019). The model is a three-layer
bidirectional LSTM, wherein between the layers
a representation is extracted through max pooling.
The final representation for each sentence is the
concatenation of all intermediate representations
[h0;h1, h2]. The same representation as with the
BiLSTM, [p;h; p − h; p ∗ h] where p and h re-
spectively is the concatenation of all intermediate
representations, is then passed to a three-layer per-
ceptron with leaky ReLU activation and dropout.

BERT Our third model is a transformer model,
BERT (Devlin et al., 2018). We use the BERT base
model from the transformer library (Wolf et al.,
2019). To train BERT we use a three layer per-
ceptron with Leaky ReLU activations on top of
the BERT model and fine-tune. The BERT model
process the premise and hypothesis in parallel and
there is no need to explicitly combine them as with
the previous models. For the classification of a

sentence pair, we use the CLS token generated by
BERT that contain a summary of the sentences.

4 Experimental setup

For each architecture (BERT, HBMP, and BiL-
STM) we perform experiments by training four
models, two trained and validated on the dataset
with punctuation and two models trained and vali-
dated on the dataset without punctuation. To asses
the effect of our data augmentation we test the
model on the other dataset, i.e. a model trained
and validated without punctuation is tested on the
dataset with punctuation. We measure the perfor-
mance in terms of accuracy.

For HBMP and the BiLSTM models we use the
default hyperparameters reported by Talman et al.
(2019) with GloVe (Pennington et al., 2014) word
embeddings5. The BERT model is fine-tuned with
the default model hyperparameters. We use the
Adam optimizer with a learning rate of 0.00002
and a batch size of 24.

5 Results

5.1 First experiment set

The results from the first experiment are shown
below in Table 2. The experiment shows the ac-
curacy for the models trained on the MNLI varia-
tions with and without punctuation and their accu-
racy on all variations.

The results indicate that when the RNN-based
models are tested on the same dataset as it is
trained on, the results are similar to that of the
original model. However, when we test on the
opposite dataset the performance drops drastically
(about 30 percentage points). We see that the drop
in accuracy is about the same for both the matched
and mismatched test set. In contrast to the RNN-
based models, the transformer model only shows a
slight difference in accuracy when presented with
test data different from its training data.

5.2 Second experiment set

Full results from the second experiment can be
found in Table 4, a subset of the examples can be
found in Table 3. The experiment shows the pre-
dictions by the HBMP and BERT models trained
with and without punctuation on our hand-crafted
dataset.

5Trained on 840 billion tokens.
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MODEL TEST MA MM
BiLSTMorig .724 .723
BiLSTMp p .723 .724
BiLSTMp ¬p .428 .414
BiLSTM¬p ¬p .714 .727
BiLSTM¬p p .424 .430
HBMPorig .729 .733
HBMPp p .728 .729
HBMPp ¬p .430 .408
HBMP¬p ¬p .729 .732
HBMP¬p p .436 .427
BERTorig .833 .839
BERTp p .835 .837
BERTp ¬p .816 .822
BERT¬p ¬p .819 .820
BERT¬p p .830 .833

Table 2: The effect on punctuation on all three models
in terms of accuracy of the MNLI dataset. MA indi-
cate the matched and MM the mismatched test split.
original is trained on the unaugmented data, p models
trained with punctuation and ¬p models trained with-
out punctuation

5.3 Experiment one analysis

The experiment shows that the BLSTM and
HBMP models trained with punctuation drops sig-
nificantly in accuracy when tested on data without
punctuation. This indicates that when removing
punctuation the model changes its prediction in-
correctly. Most of the removed punctuation does
not change the meaning, rather some information
irrelevant the the relationship between the two sen-
tences (such as sentence-final stop).

Inspecting the output of the HBMP model we
can see that in many cases, removing a sentence-
final stop flips the models’ prediction. In example
(5) and (6), both the model trained on punctuation
and the one without fail to predict that the final
stop does not add any meaning.

(5) P = not yourself .
H = only you . (C)
HBMPp = C
HBMP¬p = E
BERTp = N
BERT¬p = N

(6) P = not yourself
H = only you (C)
HBMPp = E
HBMP¬p = C
BERTp =N
BERT¬p = N

In examples (7) and (8)6, the sentence-final stop
has been removed, as well as a comma. In such
a case, the comma does not add any meaning but
acts as a separator of clauses. The removal or addi-
tion of this comma flips the prediction of the mod-
els. This shows that irrelevant changes both in-
volving commas and sentence-final stops can flip
the model’s prediction without any semantic moti-
vation.

(7) P = so they set about clearing the land for
agriculture , setting fire to massive tracts of
forest .
H = as a result , the land was devastated by
erosion . (N)
HBMPp = N
HBMP¬p = C
BERTp = N
BERT¬p = N

(8) P = so they set about clearing the land for
agriculture setting fire to massive tracts of
forest
H = as a result the land was devastated by ero-
sion (N)
HBMPp = C
HBMP¬p = N
BERTp =E
BERT¬p = C

BERT assigns the neutral class regardless of punc-
tuation in examples (5) to (7), indicating that the
choice of punctuation in training and test does not
impact its decision. For example (8) there is no
punctuation in the premise and hypothesis, but
the different BERT models assign two different
classes, entailment by the model trained on punc-
tuation and contradiction by the model trained
without punctuation.

A possible explanation for why the accuracy
of BERT does not behave similarly to that of the
LSTM based models in Table 3 is that the pre-
training of BERT allows the model to better ig-
nore variations in the input. However, the HBMP

6For clarity, the premise is indicated by P and the hypoth-
esis by H.
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n Premise Hypothesis Gold Pred Model
0 I thank, my mother, Anna, Smith and John I thank four people E N HBMP¬p

1 I thank, my mother, Anna Smith and John I thank three people E N HBMP¬p

8 I hear John says ’come here’ I hear John speaking E E HBMP¬p

9 I hear ’John says come here’ I hear John speaking C N HBMP¬p

14 No, god is good God is good E E HBMP¬p

15 No god is good There is no good god E E HBMP¬p

16 No, god is good There is no good god C E HBMP¬p

17 No god is good God is good C C HBMP¬p

0 I thank, my mother, Anna, Smith and John I thank four people E E HBMPp

1 I thank, my mother, Anna Smith and John I thank three people E E HBMPp

8 I hear John says ’come here’ I hear John speaking E E HBMPp

9 I hear ’John says come here’ I hear John speaking C E HBMPp

14 No, god is good God is good E E HBMPp

15 No god is good There is no good god E E HBMPp

16 No, god is good There is no good god C E HBMPp

17 No god is good God is good C C HBMPp

0 I thank, my mother, Anna, Smith and John I thank four people E E BERT¬p

1 I thank, my mother, Anna Smith and John I thank three people E E BERT¬p

8 I hear John says ’come here’ I hear John speaking E C BERT¬p

9 I hear ’John says come here’ I hear John speaking C E BERT¬p

14 No, god is good God is good E E BERT¬p

15 No god is good There is no good god E E BERT¬p

16 No, god is good There is no good god C E BERT¬p

17 No god is good God is good C E BERT¬p

0 I thank, my mother, Anna, Smith and John I thank four people E E BERTp

1 I thank, my mother, Anna Smith and John I thank three people E E BERTp

8 I hear John says ’come here’ I hear John speaking E C BERTp

9 I hear ’John says come here’ I hear John speaking C E BERTp

14 No, god is good God is good E E BERTp

15 No god is good There is no good god E E BERTp

16 No, god is good There is no good god C E BERTp

17 No god is good God is good C E BERTp

Table 3: Results on a subset of the examples in our constructed dataset. E is entailment, N is neutral and C is
contradiction. The model column indicate which HBMP model configuration was used (trained with punctuation
p, or without ¬p).

model also uses pre-trained information in the
form of GLoVE vectors, yet we do not see HBMP
handling the discrepancy between the training and
the test well. Albeit the pre-training of GLoVE
and BERT are different, in the essence they are the
same. Both model the meaning of words based
on their surroundings in the neural architecture.
Thus, the relevant difference between the mod-
els relevant to the absence or presence of punc-
tuation is whether the model use self-attention or
an LSTM to create representations of sentences.
From this, we pose a tentative hypothesis that self-
attention more easily learn to ignore irrelevant in-
put tokens for a task than the LSTM. However, to
confirm this we need to perform more expensive
experiments.

5.4 Experiment two analysis

None of the models perform very well for this
dataset. The HBMPp model has an accuracy
of 61.1% while the HBMP¬p has an accuracy
of 48.8%. The BERTp model has an accuracy

of 44.4% while the BERT¬p has an accuracy of
48.8%.

For example, both models are tricked by comma
removal in (2). An interesting case involves cases
where the comma is removed from “No, god”
turning it into a negative quantifier “no god”. The
models are tricked when asked to infer “There is
no good god” from “No, god is good” (they pre-
dict E instead of C). Another example where the
models are tricked by comma removal is when list-
ing items. In the example ”I thank, my mother,
Anna Smith and John” there are three entities be-
ing thanked. The comma placement indicates that
”Anna Smith” is one person, and not two. Only
HBMPp fails to predicts that ”I thank three peo-
ple” is an entailment for this example. The quota-
tion examples are also challenging. Both systems
are tricked when they are asked to judge whether
“I hear John speaking” follows: a) from “I hear
John says ‘come here’ ”, and b) “I hear ‘John
says come here’ ”. Both HBMP models correctly
predict a) but fail on b). However, they give a
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different wrong label, (N) for HBMP¬p and (E)
for HBMPp. For BERT, both the model trained
on p and ¬p make the same predictions, further
supporting our hypothesis that bert does not take
meaningful punctuation into account, even when
trained with punctuation.

6 Conclusions

The conclusions of this paper can be summarized
as follows:

Only BERT is robust to irrelevant changes in
punctuation (H1 is validated for BERT). The other
models see a significant drop in performance when
for any mismatch of the presence of punctuation
between training and testing sets. However, the
presence or absence of the full stop at the end of a
sentence has little effect.

This statement rests on the observation that
punctuation is generally semantically insignificant
in MNLI. This fact has not been tested using a
model but rather relies on manual inspection of the
data.

We have evidence that no model is capable of
taking into account cases where punctuation is
meaningful. At this stage of our research, this
evidence does not rely on a large body of data.
This result is not surprising because of the above
observation (namely, there is not enough mean-
ingful punctuation in the training set). Yet, we
use pre-trained embeddings (BERT) which have
been trained on very large dataset, and it could
not be ruled out a priori that such embeddings did
not contain information related to the meaning of
punctuation.

As a general remark, it seems to us useful, if
not necessary, to extend the present datasets for
NLI to include examples where punctuation is ac-
tually meaningful. In general, this is part of a dis-
cussion of extending current datasets to include
cases of inference where more fined-grained phe-
nomena are taken into consideration Chatzikyri-
akidis et al. (2017); Bernardy and Chatzikyriakidis
(2019, 2020). This also connects with the gen-
eralization capabilities of NLI models that were
briefly brought up in the introduction. However,
the goal should not only be to create many diverse
datasets that can get very fine-grained for numer-
ous syntactic phenomena. What we further need
are models that will have the ability to generalize
well to new data after they have been trained on
datasets that represent a much more diverse and

rich picture of NLI, and are not prone to similar
problems as these have been reported in the litera-
ture (Glockner et al., 2018; Talman and Chatzikyr-
iakidis, 2018; Wang et al., 2019; Poliak et al.,
2018).

7 Future work

In future work, we plan to continue pursuing the
question of model generalizability by investigat-
ing how neural models for natural language in-
ference can be adapted to take into account fine-
grained semantic phenomena. More specifically,
how can models be adapted to learn what consti-
tutes a meaningful part of a sentence, in terms of
semantics, and what is not meaningful. We can no-
tice that the phenomena of punctuation is primar-
ily ”syntactic sugar”, by constructing a sentence
in a certain way syntactically (by inserting or re-
moving punctuation). To exploit this we plan to
incorporate syntactic representations of sentences.
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n Premise Hypothesis Gold Pred Model
0 I thank, my mother, Anna, Smith and John I thank four people E N HBMP¬p
1 I thank, my mother, Anna Smith and John I thank three people E N HBMP¬p
2 I thank, my mother Anna, Smith and John I thank two people C E HBMP¬p
3 I thank, my mother Anna Smith and John I thank three people C E HBMP¬p
4 I thank, my mother Anna, Smith and John I thank more than two people E N HBMP¬p
5 I thank my mother Anna, Smith and John My mother is called Anna Smith N N HBMP¬p
6 I thank my mother, Anna Smith and John My mother is called Anna Smith N N HBMP¬p
7 I thank my mother Anna Smith and John My mother is called Anna Smith E E HBMP¬p
8 I hear John says ’come here’ I hear John speaking E E HBMP¬p
9 I hear ’John says come here’ I hear John speaking C N HBMP¬p
10 The notion of good, god, is incomprehensible Good is incomprehensible E N HBMP¬p
11 The notion of good god is incomprehensible Good god is incomprehensible E E HBMP¬p
12 The notion of good, god, is incomprehensible Good god is incomprehensible C E HBMP¬p
13 The notion of good god is incomprehensible Good is incomprehensible N C HBMP¬p
14 No, god is good God is good E E HBMP¬p
15 No god is good There is no good god E E HBMP¬p
16 No, god is good There is no good god C E HBMP¬p
17 No god is good God is good C C HBMP¬p
0 I thank, my mother, Anna, Smith and John I thank four people E E HBMPp
1 I thank, my mother, Anna Smith and John I thank three people E E HBMPp
2 I thank, my mother Anna, Smith and John I thank two people C E HBMPp
3 I thank, my mother Anna Smith and John I thank three people C E HBMPp
4 I thank, my mother Anna, Smith and John I thank more than two people E N HBMPp
5 I thank my mother Anna, Smith and John My mother is called Anna Smith N N HBMPp
6 I thank my mother, Anna Smith and John My mother is called Anna Smith N N HBMPp
7 I thank my mother Anna Smith and John My mother is called Anna Smith E E HBMPp
8 I hear John says ’come here’ I hear John speaking E E HBMPp
9 I hear ’John says come here’ I hear John speaking C E HBMPp
10 The notion of good, god, is incomprehensible Good is incomprehensible E E HBMPp
11 The notion of good god is incomprehensible Good god is incomprehensible E E HBMPp
12 The notion of good, god, is incomprehensible Good god is incomprehensible C E HBMPp
13 The notion of good god is incomprehensible Good is incomprehensible N C HBMPp
14 No, god is good God is good E E HBMPp
15 No god is good There is no good god E E HBMPp
16 No, god is good There is no good god C E HBMPp
17 No god is good God is good C C HBMPp
0 I thank, my mother, Anna, Smith and John I thank four people E E BERT¬p
1 I thank, my mother, Anna Smith and John I thank three people E E BERT¬p
2 I thank, my mother Anna, Smith and John I thank two people C C BERT¬p
3 I thank, my mother Anna Smith and John I thank three people C E BERT¬p
4 I thank, my mother Anna, Smith and John I thank more than two people E C BERT¬p
5 I thank my mother Anna, Smith and John My mother is called Anna Smith N E BERT¬p
6 I thank my mother, Anna Smith and John My mother is called Anna Smith N E BERT¬p
7 I thank my mother Anna Smith and John My mother is called Anna Smith E E BERT¬p
8 I hear John says ’come here’ I hear John speaking E E BERT¬p
9 I hear ’John says come here’ I hear John speaking C E BERT¬p
10 The notion of good, god, is incomprehensible Good is incomprehensible E E BERT¬p
11 The notion of good god is incomprehensible Good god is incomprehensible E E BERT¬p
12 The notion of good, god, is incomprehensible Good god is incomprehensible C E BERT¬p
13 The notion of good god is incomprehensible Good is incomprehensible N E BERT¬p
14 No, god is good God is good E E BERT¬p
15 No god is good There is no good god E E BERT¬p
16 No, god is good There is no good god C E BERT¬p
17 No god is good God is good C E BERT¬p
0 I thank, my mother, Anna, Smith and John I thank four people E E BERTp
1 I thank, my mother, Anna Smith and John I thank three people E E BERTp
2 I thank, my mother Anna, Smith and John I thank two people C C BERTp
3 I thank, my mother Anna Smith and John I thank three people C E BERTp
4 I thank, my mother Anna, Smith and John I thank more than two people E C BERTp
5 I thank my mother Anna, Smith and John My mother is called Anna Smith N E BERTp
6 I thank my mother, Anna Smith and John My mother is called Anna Smith N E BERTp
7 I thank my mother Anna Smith and John My mother is called Anna Smith E E BERTp
8 I hear John says ’come here’ I hear John speaking E E BERTp
9 I hear ’John says come here’ I hear John speaking C E BERTp
10 The notion of good, god, is incomprehensible Good is incomprehensible E E BERTp
11 The notion of good god is incomprehensible Good god is incomprehensible E E BERTp
12 The notion of good, god, is incomprehensible Good god is incomprehensible C E BERTp
13 The notion of good god is incomprehensible Good is incomprehensible N E BERTp
14 No, god is good God is good E E BERTp
15 No god is good There is no good god E E BERTp
16 No, god is good There is no good god C E BERTp
17 No god is good God is good C E BERTp

Table 4: Constructed dataset. E is entailment, N is neutral and C is contradiction. The Model column indicate which model
was used (trained with punctuation p, or without ¬p).


