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Abstract

In the frame hypothesis (Barsalou, 1992;
Löbner, 2014), human concepts are equated
with frames, which extend feature lists by
a functional structure consisting of attributes
and values. For example, a bachelor is rep-
resented by the attributes GENDER and MARI-
TAL STATUS and their values ‘male’ and ‘un-
wed’. This paper makes the point that for
many applications of concepts in cognition,
including for concepts to be associated with
lexemes in natural languages, the right struc-
tures to assume are not merely frames but
stochastic frames in which attributes are asso-
ciated with (conditional) probability distribu-
tions over values. The paper introduces the
idea of stochastic frames and three applica-
tions of this idea: vagueness, ambiguity, and
typicality.

1 Background: Frames

Frames originated in Minsky (1974) and were fur-
ther developed in the field of cognitive science by
Barsalou (1992). Frames extend feature lists by
a functional structure consisting of attributes and
values. Petersen (2007) developed a precise for-
malisation of recursive frames, in which frames
are connected directed graphs, with labeled nodes,
labeled arrows and a central node. The labels
on arrows are interpreted as partial functions over
the domain (attributes) and the labels on nodes
as classes of elements of the domain (values). A
frame F applies to an object x if there is a func-
tion f that assigns x to the central node, and that
assigns an object in the annotated class to each
node and is such that whenever an arrow labeled ai
leads from node qj to node qk, ai(f(qj)) = f(qk).
A function typ assigns an element from the set of
types TYPE to every node (see Figure 1). Figure
2 demonstrates how the frame structure applies to
a particular individual (the black cat Felix).
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Figure 1: Schema for a frame, F , (a recursive attribute-
value structure) with a central node with a value x such
that: a1, a2 ∈ A, the set of attributes; q0, q1, q2 ∈ Q,
the set of nodes; t1, t2, t3 ∈ TYPE. F applies to x
iff there is some function f such that f(q0) = x : t1,
f(q1) = y : t2, f(q2) = z : t3 where a1(f(q0)) =
f(q1) and a2(f(q1)) = f(q2).
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Figure 2: A partial frame of a specific black cat Felix,
following the schema in Figure 1.

The type of a node contains the semantic informa-
tion associated with that node. For example, the
value for the attribute AGE is necessarily a time,
and for humans it is a value between 0 and ap-
proximately 120 years. The set TYPE is usually
accompanied by an ontology (Carpenter, 1992),
which includes additional information about the
relation between the classes. For example, it de-
termines whether they are exclusive (‘red’ and
‘blue’) or one contains the other (‘crimson’ and
‘red’).

According to the frame hypothesis, frames are
the “single general format of representations” in
human cognition (Löbner, 2014, 23). However,
this hypothesis requires restrictions on the set of
admissible attributes and types to be empirically
meaningful. The frame hypothesis can be empir-
ically grounded if we assume that the types and
functions are natural in human cognition. From
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Binder et al. (2016), for example, one can con-
clude that smell, color, touch, texture, size, weight,
sound, and shape are -in combination- vital for the
recognition of many concrete natural objects (such
as trees and rocks) and animate individuals (such
as animals). From this, one can conclude that such
attributes are natural and could be some of the at-
tributes on which a natural frame is based.

Let us make a general remark on concepts that also
applies to frames. Speaking of concepts, which are
usually associated with lexemes, prejudices one
into thinking that these concepts are autonomous
parts of cognition. However, it seems equally cor-
rect to think of lexemes getting a high activation
when a certain configuration in semantic memory
is activated. In their role as what is expressed
by natural language lexemes, concepts (or their
frames) are not necessarily more than an isolatable
chunk of mental life that does not exist indepen-
dently of the processes from which it is isolated.
The same remark holds for one of the questions
we consider in this paper: what are the necessary
ingredients of a (stochastic) frame? For many pur-
poses, the explanation can be carried out with a
limited notion of a particular frame, based on an
abstraction over concrete cases or instances. In our
terms, this means, for example, assuming a par-
ticular attribute-value frame structure in any given
case. For implementation purposes, such limita-
tions are essential, but that does not mean there is
a realm of concept-like entities that exhibit these
limitations.

2 Stochastic frames

Stochastic frames are the stochastic version of the
frames defined in Petersen (2007). This incorpo-
rates the probabilistic semantics of Sutton (2015)
(also see Cooper et al., 2015) in which the basic
idea is that the nodes are associated probability
distributions over possible values.

Formally, a (minimally) stochastic frame has a
recursive attribute-value structure with a central
node with a value x and where each node in the
frame has a type from a type hierarchy, just as
classical frames do. Where (minimal) stochastic
frames differ from classical frames is that the val-
ues of attributes need not be categorical (given as
particular entities). Instead, they may be probabil-
ity distributions over entities/values of the relevant
type. For example, for a stochastic frame F ′ that

contains an attribute COLOR, the range of this at-
tribute is a probability distribution over entities of
the type Color (points in the color space). If F ′

contains an attribute HEIGHT, the range of this at-
tribute is a probability distribution over entities of
the type Height (values on a measurement scale).

A simple example is given in Figure 3 for a cat, Fe-
lix, where the agent does not know what color fur
Felix has. This contrasts with the non-stochastic,
classical frame in Figure 2 in which a categori-
cal value for Felix’s fur color is recorded. Some
values in the stochastic frame can be categori-
cal (technically, an assignment of probability 1
to a single value). For example, the value in the
stochastic Felix frame for the attribute FUR is as-
sumed to be categorical in this way if the agent
knows that Felix has fur. However, in stochastic
frames, values of attributes may be distributions
over multiple values each with > 0 probability
values. For example, a distribution over colors for
the value of attribute FUR (such that this distribu-
tion may be generated by the agent’s experiences
of the typical fur colors of cats, see section 3.3).

Felix

cat

q0

Felix’s fur
FUR

fur

q1

X
COLOR

color

q2

Figure 3: A partial stochastic frame for a cat Felix
where X is a probability distribution over points in the
color space.

This minimal conception of a stochastic frame is
extended by the addition of constraints. Con-
straints are encoded as conditional probabilities
that capture stochastic relations between the val-
ues that different nodes of the frame can obtain
(see §2.2).

As a further extension, probabilities can also be
embedded at the level of attributes, not just val-
ues. For example, the probability that cats have
fur (that the cat frame has a FUR attribute), given
that an agent may consider fur-less cats to be a
possibility.

The minimal and extended characterisations of
stochastic frames given above extend the notion of
classical frames. Stochastic values (and attributes)
allow us to model the uncertainty an agent has
about a particular entity or class of entities. Com-
bined with stochastic constraints on relations be-



80

tween nodes, as we will show, we can furthermore
model the knowledge that agents have regarding
the distributions of properties of entities of some
particular class.

Stochastic frames and classical frames more or
less converge when it comes to ground frames, i.e.,
frames for specific individuals in which every at-
tribute has a categorical value. For example, the
stochastic frame of a particular instance of ‘bach-
elor’ (say John) resembles the corresponding clas-
sical frame. (The difference between them is that,
technically, the values of attributes in a stochastic
ground frame are probability distributions over a
single value in a classical frame.)

Where classical and stochastic frames diverge is
with respect to uninstantiated frames and frames
which are only partially grounded (where some at-
tribute values are not given categorical values). A
set of ground frames can be taken as the list of ob-
servations on which an uninstantiated stochastic
frame or a partially grounded stochastic frame is
based, where the list of observations corresponds
to the probabilities the frame assigns. This is the
case for the partially grounded stochastic frame in
figure 3. The frame assigns categorical values to
the referent of Felix and to the stuff that makes up
Felix’s fur, but the distribution over colors of fur
is based on observed instances of cats and the col-
ors of fur they have. Thinking in terms of ground
instances gives a simple transition from thinking
in terms of belonging to classes with a given prob-
ability to thinking in terms of distributions over
values.

2.1 Definitions and prototypes

In its non-stochastic form, the frame hypothesis
on concepts fits best with a classical theory of
concepts, where concepts are defined by neces-
sary and jointly sufficient conditions of category
membership. For example, the concept ‘bache-
lor’ is defined as a male, adult person, who is un-
married. The classical view can be traced back
to Plato’s dialogues and was also fundamental in
the early development of formal logic. Frames ex-
tend this view by the further demand that they are
a quantifier-free conjunction of atoms of the form:
x belongs to class C and attribute ai maps x to
y. Formulated in this way, the frame hypothesis
seems to rule out any view of concepts in which
they do not characterise necessary and sufficient

conditions, such as the prototype theory.

Starting with the writings of Wittgenstein (1953)
the classical view began to lose credibility. The
vagueness of concepts, as well as many other em-
pirical results, can be taken as evidence that the
classical view in which concepts provide neces-
sary and sufficient conditions for their application
is not on the right track (see Margolis and Lau-
rence, 1999, 27).

Meanwhile, other approaches have been devel-
oped and have gained prominence. The most
widely discussed one is the prototype theory of
concepts, going back to Eleanor Rosch and her
collaborators (Rosch, 1973; Rosch and Mervis,
1975; Rosch, 1978; Rosch et al., 1976). It ex-
plains the application of a concept to an instance
in terms of its similarity to a so-called prototype.
This prototype can be understood as a central in-
stance, for example a focal color (Rosch, 1973),
but it can also be an idealised representation of
the concept (Rosch, 1978). In all variants of pro-
totype theory, a central idea is that concepts are
based on an overall similarly of instances rather
than on defined features that are common to all
instances. Conceptual spaces theory (Gärdenfors,
2000) is also based on similarity, which is under-
stood as an inverse of geometric distance. In this
approach, concepts are equated with areas in con-
ceptual spaces and instances with points in these
areas. Gärdenfors (2000) emphasizes the relation
to the prototype view, according to which an in-
stance is matched to C if it is similar to the the
centroid (central point) of the geometric area cov-
ered by C. On this understanding, a prototype is a
central point in the category. However, if the pro-
totype is not seen as a central point but as a typ-
icality weighted summary of properties one finds
in the category, prototypes are stochastic frames:
they express which properties are likely and in this
respect typical.

2.2 Constraints

Constraints were already thought to be an impor-
tant part of frames in Barsalou (1992), where pos-
itive dependencies are marked by a “+” and nega-
tive ones by a “-”. A good example is the concept
of a bird. Birds have different principal modes of
locomotion (flying, swimming, and walking), and
birds also have different physical features such as
webbed feet, or clawed feet. Flying birds with
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clawed feet are more typical. However, there are
correlations between the swimming, walking, and
flying of birds to the feet type. While birds nor-
mally have clawed feet, the webbed structure is
more expected for birds that swim. In a stochas-
tic frame, the relations between properties of birds
are captured as conditional probabilities. Figure
4 shows a partial stochastic frame annotated with
such probabilistic constraints. These constraints,
allow us not only to model the typical properties
of birds, but also to reason about properties of en-
tities on the basis of partial information, for exam-
ple, that swimming birds have a high probability
of having webbed feet.

Bird

swim 0.15
fly 0.75
walk 0.1

MAIN
LOCOMOTIO

N

clawed 0.8
webbed 0.2

FOOT STRUCTURE

P (swim|webbed) = 1

P (locomotion|webbed)

swim 0.75
fly 0.225
walk 0.025

Locomotion

Foot

Figure 4: A partial frame for an arbitrary bird with a
probabilistic constraint governing the connection be-
tween having webbed feet and the main means of lo-
comotion.

The rest of the paper runs through three appli-
cations of stochastic frames, superficially, since
these applications are covered elsewhere in greater
depth. The point of including them here is to make
it clear these applications need stochastic frames
and that they require very similar characterisations
of stochastic frames. This convergence together
with the realisation that frames need to be replaced
by stochastic frames if the frame hypothesis is ac-
cepted as true formed the basis of the authors’ co-
operation for this paper.

3 Three Applications

3.1 Vague predication

Probabilistic models of vague expressions such as
tall can capture how an utterance of a sentence
such as (1) can reduce the uncertainty hearers

have about the way the world is, for example,
John’s height, as well as about what contextual
standards are in play regarding the meaning of tall
(Lassiter, 2011).

(1) John is tall for a basketball player

In this section, we outline, first, how stochastic
frames can incorporate this insight of probabilis-
tic models of vagueness. We then discuss why a
frame-based analysis for gradable adjectives is ad-
vantageous when dealing with more complex va-
rieties of adjectival modification than the example
in (1).

We start with a derivation for John is tall (see
Figure 5). The subject NP denotes a frame for
John the central node of which is typed Person.
This frame includes height information relative to
this type (possibly affected by assumptions relat-
ing to gender etc.), namely an attribute HEIGHT,
the value of which is a probability distribution over
heights (we assume for convenience that the unit
of measurement is centimetres). On the assump-
tion that no other size information is known about
John, and on the assumption that John is a man,
this distribution should reflect the sizes of men and
so have a mean value around 1.75m, the average
height of men in the authors’ country of residence
(we suppress gender information in Figure 5).

The interpretation of tall, [[tall]], we propose, is a
function on the value of a HEIGHT attribute in a
frame such that [[tall]] can compose with any frame
that contains a HEIGHT attribute. We propose that
[[tall]] furthermore encodes a function ftall that is
applied to the value of this attribute. Where the
value of a HEIGHT attribute is represented as a tu-
ple 〈µ, σ〉 of the mean (µ) and standard deviation
(σ) of a Gaussian distribution, the function ftall
is such that ftall(〈µ, σ〉) = 〈nµ,mσ〉 for some
positive factor n and some negative factor m. In
other words, we propose that [[tall]] shifts up one’s
expectations as to average height (relative to the
height expectations for the concept to which tall
applies, and decreases the variance.

To derive tall for a basketball player, we propose
that [[tall]] first modifies a basketball player frame
(see Figure 5 for a schematic derivation). As with
the modification of the Person frame (that was in-
stantiated by John) in the previous case, the func-
tion ftall applies to the value of the HEIGHT at-
tribute. However, in this case, background knowl-
edge about the heights of basketball players can
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be different from the heights of people in general
(we tend to know that the former are taller). On
the assumption that basketball players are believed
to be on average 200cm tall, the effect of apply-
ing ftall is to shift this mean upwards and reduce
the standard deviation. The effect of this is that
the expected height of John, given the informa-
tion in (1) is drawn from a different distribution
over heights than if one were told that John is tall,
without specifying a comparison class.

Finally, we propose a constraint on the felicitous
use of comparison class for-PPs, namely that the
type for the for-PPs (e.g., BBP (basketball player))
must be a subtype of the implicit type for the sub-
ject NP (e.g., Person in John is tall for a basket-
ball player). This correctly predicts the oddity of
sentences such as John is tall for a bush.

John is tall

a

Person
BODY

Body

ftall(〈175, 8〉)HEIGHT

Height

“John”

NAME

Name

John is tall for a basketball player

a

Person
BODY

Body

ftall(〈175, 8〉)HEIGHT

Height

“John”

NAME

Name

BBP
BODY

Body

〈200, 6〉HEIGHT

Height

Updatev

a

Person

⇓

BODY

Body

ftall(〈200, 6〉)HEIGHT

Height

“John”

NAME

Name

Figure 5: Schema for deriving John is tall and John is
tall for a basketball player in stochastic frames.

The treatment for tall sketched above has in com-
mon with other probabilistic approaches to vague-
ness that vague adjectives convey probabilistic in-
formation that can be used to infer the probability
of some object having observable properties, such
as a particular height, given the knowledge and be-

liefs a hearer has about the way the world is. (See,
among others, Sutton, 2015; Lassiter, 2011; Égré,
2017). An advantage of these approaches is that
they can be formulated in such a way as to not as-
sume the presence of hidden sharp boundaries in
linguistic knowledge (a point above which entities
are P and below which, they are not-P (see Sut-
ton, 2018, for further discussion). It is unclear how
any of these insights could be modelled within a
classical frame.

The advantage of combining a probabilistic ap-
proach to vagueness with frame theory (using
stochastic frames) is the incorporation of a theory
of adjectival modification. For example, red pen
can be naturally understood as meaning, among
other things, a pen that writes in red, a pen that
has a red casing, or a pen with a red lid. How-
ever, the value red must relate to some aspect of
the pen (or of an object related to the pen in a spe-
cific context). In other words the locus for adjec-
tival modification is underspecified but nonethe-
less constrained. Frame theory captures this in
terms of the number of attributes of the right type
there are in the frame. For example, [[tall]] can ap-
ply only to HEIGHT attributes in an NP frame and
[[red]] can apply only to COLOR attributes in an NP
frame.

3.2 Ambiguity

This section is a recapitulation of the relevant parts
of Zeevat et al. (2015).

Words in natural languages can be studied for
their contribution to the truth-conditions of the ex-
pressions they are part of in particular contexts.
This gives rise to a bewildering number of non-
equivalent readings (meanings in use) for high-
frequency verbs with a long history: 84 for the
verb “fall”, 71 for “run” where it is by no means
clear that these are all the readings one needs,
given that yet further uses are frequently reported.
The situation is similar for many nouns and adjec-
tives.

Stochastic frames can accommodate those read-
ings, since they can deal with different possibil-
ities with preferences due to the frequency with
which the reading occurs, but mere accommo-
dation is not what one wants. Human language
users effortlessly disambiguate in these cases in
linear time1. This ability is modeled by stochas-

1This follows from the empirical work on which the Mar-
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tic frames in which the lexical ambiguity is not
captured as list of readings, but as one integrated
structure, with different preferentially weighted
options, once an optimal use is made of the con-
text as an additional resource in a unification like
process.

Lexical stochastic frames for verbs will have many
nodes that are presupposed from the context. The
standard cases are the obligatory arguments of the
verbs. Saying that such arguments are obligatory
means that it is obligatory for the context to supply
the relevant information. But talking of obligatory
arguments is just one aspect of the more general
case that many of the readings require values from
noun phrases or prepositional phrases or from pre-
supposition resolution to the linguistic and non-
linguistic context to be possible. Interactions with
the context will therefore deliver a particular ver-
sion of the part of the concept that refers to given
material. By unification, this will also change the
part of the concept that contains the new informa-
tion. In addition, the stochastic frame will contain
alternatives with different probabilities and in dis-
ambiguation, the more probable alternative will be
systematically preferred.

As reported in Zeevat et al. (2015), an approach of
this kind was hand-tested on the verb “fall” (all
readings in David Copperfield (Dickens, 2000))
with full success. The approach uses a logical
representation of equivalence classes of stochas-
tic frames (the ones that give the same inequali-
ties). This allows the different users to learn their
own probabilities, converging on the same equiv-
alence class under enough exposure to uses of the
word. The logical representation using (compar-
ative) probabilistic preferences rather than full-
fledged probabilities is human readable and can
also be taken as the object that establishes the
(near-)unity of the verbal meaning (what all mean-
ings in use have in common) and of the differ-
ent versions of the meaning of the same word that
users learn.

The approach in Zeevat et al. (2015) is an imple-
mentation and extension of the approach to lexi-
cal ambiguity pioneered by Smolensky (1991) and
further developed by Hogeweg (2009), which can
be described as: take the maximal amount of con-
tent that fits the context. Coercion is part of the
mechanism, not a separate process. The model

cus parser is based (Marcus, 1980)

gives a far more detailed picture than just a set
of semantic features for lexical meanings. Go-
ing for strongest readings is what distinguishes
it from approaches such as Asher (2011), which
rely on contextual disambiguation and coercion
only. Stochastic frames are more conservative
than Casasanto and Lupyan (2015) in assuming
that observed meanings are stored and serve as a
basis for computing meanings in use. Stochastic
frames can be learnt and meanings in use can be
computed from them by methods that are within
the current state of the art.

3.3 Typicality

In section 2.1, we pointed out that stochastic
frames fit well to the prototype theory of concepts:
understanding prototypes as a weighted sum of
property probabilities means to take a stochastic
frame to be the prototype of the concept. An un-
derstanding of prototype concepts as weighted at-
tribute value structures has already been used by
Smith et al. (1988) for explaining modifications
such as “red apple”. Prototype frames extend this
by explicitly using probabilistic weights. In this
section, we aim to show that stochastic frames can
be used to model one of the core phenomena of
prototype concepts, namely the existence of typi-
cal and atypical category members. For example,
apples are typical fruit, while avocados are not.
The structures in (2) are partial frames with prob-
ability information for fruit, apple and avocado.

(2) [fruit
COLOUR: red 0.3 green 0.1 yellow 0.3 or-
ange 0.2 other 0.1,
TASTE: sweet 0.6 sour 0.3 other 0.1]
[apple
COLOUR: red 0.5 green 0.2 yellow 0.2 or-
ange 0 other 0.1
TASTE: sweet 0.8 sour 0.1 other 0.1]
[avocado
COLOUR: red 0 green 0.7 yellow 0 orange
0 other 0.3,
TASTE: sweet 0 sour 0 other 1]

Probability information can be used to define diag-
nostic and frequent properties, i.e. attribute values
V , such as sweet taste (Schurz, 2012):

(3) A property V is frequent for a class C iff
P (V |C) is high
A property V is diagnostic for a class C iff
P (C|V ) is high
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The latter is well-known as the notion of cue va-
lidity. It allows a definition of the diagnosticity of
an attributeA in (4), where V1, V2, ..., Vn are alter-
native values of the attribute A:

(4) diag(A,C) =
max(P (C|V1), P (C|V2), ..., P (C|Vn))

The similarity Sim of the probability distributions
of properties on one attribute (i.e., the frequency
of the values) in a concept C and another concept,
for example, a subcategory SC, can be compared
in terms of (5):

(5) Sim(C, SC|A)) =∑n
i=1min(P (Vi|C), P (Vi|SC))

Sim can be used to express that the probability
distribution of COLOR in ‘apple’ is quite similar
to the one for ‘fruit’ (0.3 + 0.1 + 0.2. + 0.1 =
0.6) but not so similar for ‘avocado’ and ‘fruit’
(0 + 0.1 + 0 + 0 + 0.1 = 0.2).

Finally, the typicality of a subcategory is deter-
mined as the diagnosticity-weighted average sim-
ilarity in all contributing attributes:

(6) typ(C, SC) =∑n
i=1

diag(Ai|C)∑n

i=1
diag(Ai|C)

Sim(C, SC|Ai)

With this formula, one can quantify how typical
fruit apples or avocados are as an diagnosticity
weighted average of similarities in all contributing
attributes.

4 Final remarks

The paper presents a notion of a stochastic frame
that represents concepts and the linguistic knowl-
edge of agents in terms of attribute-value struc-
tures in which values may only occur with some
probability. We outlined how probabilistic con-
straints on stochastic frames facilitate reasoning
about probable features (attribute values) in con-
ditions of uncertainty. What comes out of this can
be interpreted a formalisation of the prototype the-
ory of concepts in which all other theories of con-
cepts can be understood as special cases. By triv-
ialising the distributions, one obtains the classical
view. (Products of) regions in conceptual spaces
are obtained by deriving such regions from actual
distributions (it becomes hard to see such an ac-
count of concepts as properly different from the
prototype view).

Taking this common core, we also outlined three
areas in which stochastic frames have obvious ap-
plications: vague predication, lexical ambiguity,
and the typicality of kinds. A shared property of
these phenomena is arguably that, in all cases, in-
dividuals must reason with complex, multifaceted
concepts in conditions of uncertainty, be this un-
certainty about the extension of a term (vague-
ness), uncertainty about the meaning of a term in
use (lexical ambiguity), or uncertainty about prop-
erties of the instances (the typicality of kinds). For
an explanation of all of these cases, we seem to
need not only something along the lines of a prob-
abilistic component to drive the reasoning process
and model graded or fuzzy phenomena, but also
a means of applying this reasoning tool to differ-
ent aspects or properties of the entities being rea-
soned about. Representational structures such as
frames give us the structure we need in this re-
spect. Stochastic frames, therefore, give us the
right combination of conceptual structure and a
formal theory of reasoning.
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