TDP — A Hybrid Diacritic Restoration with Transformer Decoder

DANG Trung Duc Anh

ducanhhbtt@gmail.com

Hanoi University of Science and Technology

Hanoi, Vietnam

Abstract

Diacritic restoration plays an important role in
Natural Language Processing (NLP) for many
diacritical languages such as Vietnamese,
Czech, Hungarian, etc. With the develop-
ment of deep neural network, this task could
reach a good accuracy, i.e. Fl-score is up to
97.7% for the state-of-the-art models. How-
ever, the output of these models can include
meaningless syllables, the processing time is
rather long especially with the sequence-to-
sequence method and beam search. This task
is a very first step in any text (pre-)processing,
which can be a part of another application.
Therefore, the processing time is extremely
important. To balance both accuracy and time
consuming, this paper proposes a novel hy-
brid method which includes a transformer de-
coder and a diacritic penalty layer. The trans-
former decoder is good enough for this prob-
lem since an input character only corresponds
to exact one output character. The purpose
of the penalty layer is to guide the model to
produce only possible diacritic letters of the
language. The experimental results on Viet-
namese corpus show that the proposed model
helps the predicting time reduce from about
eight to ten times compared to the previous
methods. Whereas, the accuracy of the pro-
posed method is better than (i.e. 1%) or equal
to the state-of-the-art sequence-to-sequence
without or with beam search.

*Corresponding author

NGUYEN Thi Thu Trang*

trangntt@soict.hust.edu.vn
Hanoi University of Science and Technology
Hanoi, Vietnam

1 Introduction

Diacritics are a vitally important component in many
diacritical languages such as Vietnamese, Czech,
Hungarian, etc. However, a large number of texts
without diacritics serve many purposes.

In diacritic languages, typing a diacritic word is
far more troubled than typing a non-diacritic one.
For instance, in Vietnamese, “dudng” can be typed
as "dduongwt" (Telex system). The middle or old-
aged who do not know the rules for typing or those
who want to save time typing diacritics would prefer
to type sentences without diacritics, although they
can be misleading and incomprehensible to other
people. Moreover, many public-originated foreign
systems only support non-diacritic characters, lead-
ing to a huge amount of this data type to be pro-
cessed.

There are numerous ways for restoring a sentence
to its former full diacritical marks with different
meanings. For example, in Vietnamese, the most
suitable restoration version for the non-diacritic one
“Toi muon mo the tin dung” is "T6i mudn mé thé tin
dung” (I want to open a credit card). However, each
syllable in the sentence has multiple ways to become
the form with full diacritic marks. "Muon" can be
restored as "muén" (want), "mudn" (late), "mudn"
(many) while "the" can be restored as "thé" (card),
"the" (put out), "the" (a kind of traditional cloth),
"thé" (high pitch), "thé" (and), "thé" (swear), "thé"
(wife). This leads to a number of restoration com-
binations corresponding to the input sentence that
we need to disambiguate. Therefore, recovering di-
acritics is among the most necessary but challeng-



ing problems in natural language processing. It is
particularly hard for Vietnamese, whose ratio of di-
acritical words is highest, i.e. approximately 90%,
80% of which contain ambiguity (Do et al., 2013).

A number of researches on restoring diacritic
marks used both machine learning and deep learning
approaches. For Vietnamese, three main ones have
been proposed, i.e. (i) rule and dictionary-based, (ii)
machine learning-based (Nguyen and Ock, 2010)
and (iii) deep learning-based approach (Hung, 2018;
Néplava et al., 2018; Nga et al., 2019). A typical
example of the rule and dictionary-based approach
is VietPad'. In that work, a dictionary with all
Vietnamese syllables was built to restore diacritic
marks. However, this tool could not solve a number
of ambiguous cases, leading a limited accuracy
of about 60% to 85% depending on the domain.
The machine learning-based approach (Nguyen and
Ock, 2010) achieved an accuracy of 94.7% on their
dataset, using a combination of AdaBoost and C4.5
algorithms. Recently, deep learning-based methods
with machine translation models have emerged
as the state-of-the-art solution to the problem of
diacritic restoration. The idea of this method is to
treat non-diacritic and diacritic texts as the source
and target languages in the machine translation
formulation. The best work in this approach used
a novel combination of a character-level recurrent
neural network-based model and a language model
applied to diacritics restoration and reached the
highest accuracy of 97.73% on Vietnamese (N&-
plava et al., 2018).

However, there are several shortcomings of the
above state-of-the-art methods, i.e.  producing
nonexistent outputs and time-consuming for the
task. Since the output is generated based on the
possibility that the model predicts character by char-
acter, the sequence of output text may be nonex-
istent or meaningless in the language. Moreover,
the diacritic restoration is a very-first step of text
(pre-)processing for any NLP application. For in-
stance, in question answering or chatbot systems,
users sometimes input with non-diacritical marks
which should be recovered before many next steps.
Diacritic restoration is only a small step in any NLP

"http://vietpad.sourceforge.net/

application. Therefore, the restoration time of this
task is hence extremely important in the industry.

In this paper, we propose TDP — a novel hybrid
diacritic restoration model which retains the Trans-
former Decoder at the character-level with Penalty
layer. The penalty layer is a restriction mechanism
of possible diacritical letters for the output sequence.
We have experimented the model for Vietnamese
datasets with a promising performance in both accu-
racy and predicting time. The rest of the paper is or-
ganized as follows. Section 2 describes the language
orthography and theory of the transformer model.
Session 3 presents our proposed hybrid model for
restoring diacritical marks. Section 4 discusses on
the related works to the model and techniques in our
model. In section 5, the experiments on Vietnamese
data-sets are described and discussed. Finally, the
paper draws some conclusions and perspectives of
the work.

2 Background

Since we have experimented with Vietnamese, we
provide in this section some backgrounds on Viet-
namese orthography with diacritical features. We
also present the full transformer model, parts of
which are used to construct our model.

2.1 Orthography

In any diacritic language, a limited number of di-
acritic letters can be restored for a specific non-
diacritic one.

Table 1: Possible Vietnamese diacritical letters

Non-diacritical | Possible Diacritical Letter

Letter

a a,4,2,4a4,a,4a,2,4,a4,4a, 4,
4,4,3,4,4,2

e e, é,¢88,8,e6,6,¢8048¢8

i i,1,1,1,1,1

y Y 9. 9. 9. 5, ¥

0 0,6,0,8,0,0,0,0,0,0,0,0,
6,6,0,6,0,0

u u, U, 0,0, 04,u, U, 0w 0 u

d d,d

In this paper, we describe the orthography of Viet-
namese, which has the highest ratio of diacritical



words among diacritical languages. Based on the
Latin alphabet, there are 29 letters in Vietnamese al-
phabet including 11 vowels and 18 consonants. 22
letters of them are Latin letters (“f7,%j”, “w” and “z”
are removed), and the rest are newly created ones
(boan, 2016).

Those new ones are the combination of four di-
acritics and the Roman alphabets (breve, inverted
breve, horn, d with stroke) (Poan, 2016) . The 5 tone
markings (acute, grave, hook, tilde and dot-below)
are used to describe the tone of a syllable that can be
marked on the vowel. In a word, diacritics in Viet-
namese are put on all vowel letters and one conso-
nant letter (d). Therefore, there are 22 input char-
acters without diacritics, from which 89 characters
with diacritics are inferred. The rules for convert-
ing from non-diacritic to diacritic letters are shown
in Table 1. Letters not in the table should be ignored
when restoring diacritics, i.e. ’b’, ’c’, ’g’, ’h’, ’k’, °T’,

‘m’,’n’,’p’,’q, s, Y, Y, X

2.2 Transformer model

Transformer model (Vaswani et al., 2017) is a type
of neural network architecture developed to solve
the problem of sequence transduction, or neural ma-
chine translation. It is built based on Seq2seq archi-
tecture, comprising an encoder and a decoder. The
encoder takes the input sequence and maps it into
a higher dimensional space using something like an
abstract of the input. It is then fed into the decoder,
where it is turned into an output sequence.

Before the appearance of transformers, the en-
coder and the decoder of the Seq2Seq model relied
on gated recurrent neural networks (RNNs), such as
LSTMs, with added attention mechanisms to handle
the input and output sequences without fixed length
and avoided gradient vanishing problem. How-
ever, the transformer model with only attention-
mechanisms without any RNN facilitates more par-
alleling during training computations, which brings
better results with less time for training. Transform-
ers currently have become the state-of-the-art archi-
tectures in NLP.

Self-Attention and Multi-Head Attention
(Vaswani et al.,, 2017). Self-attention can be
described as mapping a query and a set of key-value
pairs to an output. Query, key, and value vector are
calculated by multiplying the input by query, key,

Output
Probabilities

Feed
Forward
l Add & Norm ;

L Add & Norm J Mult-Hoad

Feed Attention
Forward D) Nx
——

N Add & Norm
—{_Add & Norm Masked
Multi-Head Multi-Head
Attention Attention

(N t

— J U 7
Positional Positional
Encodi P ¢ i
ncoding Encoding

Input Output

Embedding Embedding
Inputs Qutputs

(shifted right)

Figure 1: Architecture of transformer model (Vaswani et
al., 2017).

value, trainable matrix respectively. Then query,
key, value vector is fed into Scaled Dot-Product
Attention. The detailed description is shown by the
following equation:

Instead of calculating single attention at one time,
we can calculate multiple attention in parallel, but
each attention uses a different key, value, and query
matrices. This technique is called multi-head at-
tention. Each set of 3 key-value-query matrices is
a head that pays ‘“attention” to a certain piece of
content of the input. The output of all heads will
be concatenated together to form a complete vector
output. Multi-head attention lets the model jointly
attend to information from different representation
sub-spaces at different positions.

Position embedding Because it does not use any
CNN or RNN classes, the transformer needs to use
a different way to handle the order of inputs, i.e.
the effect of position encoding. Some information
about the relative or absolute position of the tokens
are injected into the input. Positional encoding can
be learned or fixed. It has the same dimension as the
embedding and the two are summed before being fed



into encoder or decoder block.

Model architecture The decoder and encoder are
the main components of the transformer model, il-
lustrated in Figure 1. Each part is a stack of the
same blocks. Encoder block has two sub-layers: a
multi-head self- attention mechanism, and a simple
feed-forward network. A residual connection is de-
ployed around each of the two sub-layers, followed
by layer normalization. Similar encoder block, de-
coder block is built based on a multi-head attention
and a feed-forward network. However, the decoder
block inserts a third sub-layer to perform multi-
head attention over the output of the encoder stack.
Besides, the self-attention sub-layer is modified to
make sure that the predictions for position i only de-
pend on the known outputs at positions less than i.

3 Proposed model

We propose a novel model TDP (Transformer De-
coder with Penalty layer) that only includes a trans-
former decoder at the character level with a penalty
layer, whose architecture is illustrated in Figure 2.
In this architecture, only the decoder blocks are kept
instead of a full transformer model. As the origin
full transformer, our model is a stack of 6 decoder
blocks. With only the decoder, we can still solve the
diacritic restoration problem since the length of the
input is the same to that of the output, and an in-
put character only corresponds to exact one output
character. The encoder is redundant for this task.
Moreover, the predicting time of the only decoder is
expected to be much quicker than the full one.

When predicting, an output character corresponds
to exact one input character in a position. Hence,
we do not need to model the position in a separate
layer. In self-attention, the memory keys and values
come from the output of the previous decoder layer
are used instead of that of the encoder. In the full ar-
chitecture, the decoder has to be repeated every time
step, corresponding to the number of input’s char-
acters. However, in the transformer decoder, we do
not need to repeat the decode every time step. We
can ignore the masking step of the decoder and only
run it once. As the result, the predicting time of our
model is expected to be reduced about x times com-
pared to the full one, whereas x is the number of
input’s characters.

As mentioned in Table 1, each input character
only has a specific number of output characters. For
example, with the input ’i’, the output can only be
one of the six characters ’i’, V", ’i’, '1, ’1, ’i’. If
the input is a consonant like ‘g’ the output of the
model must only be ‘g’. Therefore, we propose a
penalty layer which restricts the output with only
some possible values of the input letter. This layer
first looks up from a diacritic conversion dictionary
and then calculates a penalty matrix for input charac-
ters. The penalty layer is executed in parallel to the
decoder model, and then the penalty matrix will be
added to the decoder output matrix to force the out-
put character to be one of possible values, illustrated
in Equation 1. This mechanism ensures that the out-
put will not produce strange characters for the input.
For example, when the user enters the word "co", the
model sometimes predict to “ca”. This issue can be
addressed by the penalty layer.

Output = argmax(DecoderOutput + Input *
PenaltyMatrix)

The penalty matrix works like an embedding ma-
trix, each row of which is a penalty vector corre-
sponding to a non-diacritic character. If the in-
put character can be converted to the output char-
acter, the scalar at that corresponding position is
0; otherwise, it is an extremely negative number:

0  if input charater i can
convert to j

PenaltyMatriz; ; =

—ooif input charater i
can’t convert to j

We can feed the input as a sequence of syllables
instead of characters with the expectation of reduc-
ing the processing time and making the input more
meaningful. However, the amount of input and out-
put vocabulary turned to be immense. That makes
it complicated to guide the output of the model fol-
lowing the diacritical rules of the language. With the
character-level approach, the vocabulary of diacritic
conversion is small hence save much more time to
construct the penalty matrix from the input. The
penalty layer using vectorization makes the calcu-
lations much simpler and faster than using directly
diacritic rules for the input and output sentences.



Character Paosition
Vector

Vector

Suippaqui
J21aeiey)

YyYvYywvyy

Y

Diacritic
Conversicn Dictionary

Vectorization

Dictionary

Diacritic Penalty Eemes (T XTIz

Qutput
| |

Vv
u

900 o

n

EEXEE)
—©900—
— 1
Penalty
Vector

Figure 2: Architecture of the proposed hybrid model for diacritic restoration.

4 Related works

4.1 Transformer model

Since 2017, when the transformer was introduced
in (Vaswani et al.,, 2017) , it has become the ba-
sic building block of most state-of-the-art architec-
tures in NLP. In the original paper, transformer mod-
els achieve a new state of the art on both WMT
2014 English-to-German and WMT 2014 English-
to- French translation tasks with a small fraction
of the training costs of the best models from the
literature. To solve diacritic restoration problem,
the Transformer word-based model is only applied
in Yoruba Language (Orife, 2018) . When com-
pared to the other methods mentioned in the paper
(Orife, 2018) , the transformer model outperforms
with word accuracy 95.4%, 5.3% higher than the
second method on the test set.

4.2 Transformer decoder

In many NLP problems, instead of using the full
transformer model, people only use the decoder part.
This architecture was first used in generating En-
glish Wikipedia articles by summarizing long se-
quences (Liu et al., 2018). To handle this problem,
they propose a two-state method. First, they use ex-
tractive summarization to coarsely identify salient
information. Then, they use a neural abstractive

model to generate the article. Authors affirmed that
monolingual text-to-text tasks redundant informa-
tion is re-learned about language in the encoder and
decoder, so they only use the decoder. Their experi-
ment showed that their model with decoder-only for
the abstractive stage could handle very long input-
output examples, better than using both traditional
encoder-decoder architectures and recurrent neural
network (RNN).

In addition, the transformer decoder is also used
to create pre-trained language models such as GPT
model (Radford, Narasimhan, et al., n.d.; Radford,
Wu, et al., n.d.). There have been two versions of the
GPT model released. GPT is generative pre-training
of a language model on a diverse corpus of unla-
beled text, followed by discriminative fine- tuning
on each specific task. Both of two versions achieve
great results in NLP tasks. GPT-1 improves the state
of the art on 9 of the 12 datasets they study. GPT-2
is a direct scale-up of GPT-1, with more than 10X
the parameters (1.5B) and trained on more than 10X
the amount of data ( 40 GB text data). Due to au-
thor’s concerns about malicious applications of the
technology, they only release a much smaller model
for researchers instead of the trained model.

To the best of our knowledge, this is the first
time the transformer decoder is used for the diacritic



restoration task.

4.3 Hybrid method

When solving NLP problems, in order to improve
the quality of neural networks, people often com-
bine neural networks with different techniques, such
as traditional machine learning models and rule-
based models. A hybrid data-model parallel ap-
proach (Ono et al., n.d.) was used for reducing train-
ing time of sequence-to-sequence machine transla-
tion model. In abstractive summarization, to get
better performance at content selection of neural
network-based method, the work in (Gehrmann et
al., 2018) combined a standard neural model with
adata-efficient content selector to over-determine
phrases in a source document that should be parts
of the summary. Furthermore, the hybrid method re-
quires much fewer data to train, which makes it more
adaptable to new domains.

In our proposed model, we combine a transformer
decoder with a diacritic penalty layer which restricts
the output with all possible values corresponding to
the input. This guides the model more accurate, re-
duces training time and gives reasonable outputs.

S Experiment

In this section, we present some experiments for our
proposed model with a Vietnamese corpus.

5.1 Dataset

The test set that we have to work in this paper is from
banking domain. It includes 8,000 sentences.

To enhance the training set of this domain (i.e.
25,000 sentences), we retrieve more from Internet
newspapers> . This corpus contains approximately
29 Gb of Vietnamese text files and approximately
160 millions of Vietnamese sentences. Nonetheless,
due to a number of loan words and wrong spelling
in that corpus, we only keep about 7% of sentences
based on their types (i.e. interrogation, exclamation
and affirmation) and constituent words. We use a
Vietnamese dictionary VCL? as a filter. The final
dataset contains about 11 millions of Vietnamese
sentences. The valid set consists of 5,000 randomly
selected sentences from the banking training data

Zhttps://github.com/binhvq/news-corpus#full-txt-v2
*https://vlsp.hpda.vn/demo/?page=vcl

and 25,000 sentences from Internet newspapers. The
rest is used for training.

All data in the corpus contain diacritics, which is
the output that the model has to predict. The input is
sentences after being stripped off all diacritics.

5.2 Evaluation method

Many input characters have only one candidate out-
put, so the high character accuracy does not prove
that the model works well. Therefore, although
the model is at character level, we use evaluate the
model at syllable level:

#Correct PredictedSyllable
#Total PredictedSyllable

Accuracy =

5.3 Training

For the Transformer decoder, we reuse most of the
hyperparameters proposed in (Vaswani et al., 2017).
The decoder is composed of a stack of N = 6 iden-
tical blocks and each block contains 8 multi- head
attention, but the dimension d model is 128 instead
of 512 because of a small character vocabulary. The
problem of recovering diacritics does not require the
use of context too far, so we set the maximum sen-
tence length to be 60 characters to avoid padding too
long and save predicting time. Sentences longer than
60 characters will be broken down into sections of
60 characters, between which there will be an over-
lapping part with offset length = 10 characters.

Our model is trained on the hardware with the
configuration as follows: 01 Tesla V100-PCIE-
32GB GPU, Intel(R) Xeon(R) Silver 4210 CPU,
120GB RAM. We set the batch size=128 and use the
default optimizer proposed in (Vaswani et al., 2017).
The model converges after about 5 days. We evalu-
ate the final model obtained by taking the average of
the last 5 checkpoints.

5.4 Result

To compare with our model, we retrain the model ar-
chitecture proposed in (Naplava et al., 2018) on our
dataset. We compare this previous seq2seq model
with or without beam search.

The result is shown in Table 2. Our TDP model
with only transformer decoder and a penalty layer
receives a better accuracy (i.e. 1.53%) and 16 times
faster than the full transformer one. Compared to the
previous seq2seq model, although the results were
slightly lower than the model that used beam search



(0.46%), the predicting time was reduced by approx-
imately 10 times in both cases using CPU or GPU.
Our model is 1% better and about 8 times faster
than the one without beam search.

Table 2: Experimental results for hybrid diacritic restora-
tion model. The prediction is executed on Tesla V100-
PCIE-32GB GPU, Intel(R) Xeon(R) Silver 4210 CPU,
120GB RAM

Word
Model accuracy | Predicting time
(%) GPU(s) CPU(s)
Seq2Seq re-run 97.52 | 0.372 0.423
(Naplava et al.,
2018)
Seq2Seq + 98.83 | 0.433 0.533
Beam search
re-run (Na-
plava et al,
2018)
Transformer 96.84 | 0.904 0.896
model (full)
TDP model 98.37 | 0.043 0.055
(our model)

To further evaluate how the model works in prac-
tice, we have performed an error analysis by statis-
tically reporting the cases in which the model pre-
dicts incorrectly. The words which are wrongly pre-
dicted the most are listed in the table 3 below. The
results show that most of mispredicted words are the
ones that appear frequently in the banking domain
but rarely appear in the others.For example, the word
"thé" (card), "dung"(use), "huy" (cancel), "khoa"
(key or stop), "vay" (loan), "lai"(interest), ect, de-
spite being small in number, are important words
for the conversation. Inaccurate diacritic restoration
of those words can lead to complete change of sen-
tence meaning. For instance, the sentence "toi muon
dung dich vu nay" can be restored to "tdi mudn ding
dich vu nay" (I want to use this service) or "t6i mudn
dung dich vu nay"(I want to stop this service), which
are of diametrically opposite meanings. Therefore, it
is essential that the domain adaptation technique be
adopted in the future to bring enhanced efficiency to
the industry.

Table 3: The most incorrectly predicted syllables

Expected Number | Confused with
output wrong
predict
Thé 120 | Thé, thé
dung 87 | Dung, dung, diung,
ding
Huy 59 | huy
khoéa 52 | khoa
ban 51 | Ban, ban, ban
thé 51 | Thé, thé
vay 44 | vay
lai 43 | lai

6 Conclusion

In this work, we propose a hybrid diacritic restora-
tion model TDP which includes a transformer de-
coder model and a diacritic penalty layer. The trans-
former decoder can solve this problem since an input
character only corresponds to exact one output char-
acter. The only decoder also helps to decrease much
predicting time since it does not need to repeat ev-
ery time step. The purpose of the penalty layer is to
guide the model to produce only possible diacritic
letters of the language. The experimental results
on a Vietnamese corpus show that our model TDP
with only transformer decoders and a penalty layer
helps the predicting time reduce from about eight to
ten times compared to the state- of-the-art method.
Whereas, the accuracy of the proposed method is
better than (i.e. 1%) or equal to the sequence-to-
sequence without or with beam search. Although the
accuracy is quite high, the model wrongly predicts
some important words in banking domain, e.g. “thé”
(card) to “th&” (and), “mucn” (borrow) to “mudbn”
(want)... In the future, we will work on domain adap-
tation to solve this problem. In addition, we also
consider using language model to improve the qual-
ity of the model.

References

Nguyen, K.-H., & Ock, C.-Y. (2010). Diacritics
restoration in vietnamese: Letter based vs.
syllable based model (B.-T. Zhang & M. A.
Orgun, Eds.). In B.-T. Zhang & M. A. Orgun
(Eds.), PRICAI 2010: Trends in artificial



intelligence, Berlin, Heidelberg, Springer.
https://doi.org/10.1007/978-3-642-15246-
7_61

Do, T. N. D, Nguyen, D. B., Mac, D. K., & Tran,
D. D. (2013, August). Machine translation
approach for vietnamese diacritic restora-
tion, In 2013 international conference on
asian language processing. 2013 Interna-
tional Conference on Asian Language Pro-
cessing. https://doi.org/10.1109/IALP.2013.
30

Doan, T. T. (2016). Ngit dm tiéng viét [Accepted:
2017-10-09T02:27:47Z]. H. : Pai hoc Qubc
Gia Ha Noi. Retrieved September 12, 2020,
from http://repository.vnu.edu.vn/handle/
VNU_123/59688

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., & Polo-
sukhin, I. (2017). Attention is all you need.
arXiv:1706.03762 [cs], arxiv 1706.03762.
Retrieved June 26, 2020, from http://arxiv.

org/abs/1706.03762
Gehrmann, S., Deng, Y., & Rush, A. M. (2018).
Bottom-up abstractive = summarization.

arXiv:1808.10792 [cs], arxiv 1808.10792.
Retrieved July 3, 2020, from http://arxiv.
org/abs/1808.10792

Hung, B. T. (2018). Vietnamese diacritics restora-
tion using deep learning approach. 2018
10th International Conference on Knowl-
edge and Systems Engineering (KSE). https:
//doi.org/10.1109/KSE.2018.8573427

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepa-
ssi, R., Kaiser, L., & Shazeer, N. (2018).
Generating wikipedia by summarizing long
sequences. arXiv:1801.10198 [cs], arxiv
1801.10198. Retrieved July 1, 2020, from
http://arxiv.org/abs/1801.10198

Naplava, J., Straka, M., Strandk, P., & Hajic,
J. (2018, May). Diacritics restoration us-
ing neural networks, In Proceedings of
the eleventh international conference on
language resources and evaluation (LREC
2018). LREC 2018, Miyazaki, Japan, Eu-
ropean Language Resources Association
(ELRA). Retrieved June 26, 2020, from
https://www.aclweb.org/anthology/L18-
1247

Orife, 1. (2018). Attentive sequence-to-sequence
learning for diacritic restoration of
yor\‘ub\’a language text. arXiv:1804.00832
[cs], arxiv 1804.00832. Retrieved June 27,
2020, from http://arxiv.org/abs/1804.00832

Nga, C. H., Thinh, N. K., Chang, P.-C., & Wang,
J.-C. (2019, December). Deep learning
based vietnamese diacritics restoration, In
2019 IEEE international symposium on
multimedia (ISM). 2019 IEEE International
Symposium on Multimedia (ISM). https://
doi.org/10.1109/ISM46123.2019.00074

Ono, J., Utiyama, M., & Sumita, E. (n.d.). Hybrid
data-model parallel training for sequence-
to-sequence recurrent neural network ma-
chine translation, 9.

Radford, A., Narasimhan, K., Salimans, T., &
Sutskever, 1. (n.d.). Improving language un-
derstanding by generative pre-training, 12.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., & Sutskever, 1. (n.d.). Language models
are unsupervised multitask learners, 24.



