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Abstract

Transformers have recently achieved promis-
ing results in many natural language process-
ing tasks; however, the understanding of trans-
formers for information extraction in business
scenarios is still an open question. This paper
bridges the gap by introducing an investiga-
tion to understand the behavior of transform-
ers in extracting information from domain-
specific business documents. To do that, we
employ transformers for taking advantage of
these architectures trained on a huge amount
of general data and fine-tune transformers
to our down-stream IE task by using trans-
fer learning. Experimental results on three
Japanese datasets show that there are small
margins among transformers in terms of F-
scores but some models can achieve high ac-
curacy with a small number of training data.

1 Introduction

The significant growth of data provides a chance
for humans to approach information from many
sources. Yet, it also makes an obstacle for distilling
useful knowledge. To address this issue, information
extraction (IE) can be considered as an appropri-
ate solution for converting unstructured to structured
data. From the research side, due to its large impact,
IE has received attention from the research commu-
nity with many studies (Corro and Gemulla, 2013;
Angeli et al., 2015; Nguyen et al., 2019). From the
business site, IE is a crucial step for digital transfor-
mation (Inmon and Nesavich, 2007; Herbert, 2017;
Lin et al., 2019). The outputs of IE systems can be

used in many natural language processing (NLP) ap-
plications, e.g. question answering, information re-
trieval (Shimaoka et al., 2016), or the automatic gen-
eration of ontology (Fleischman and Hovy, 2002).

The recent success of transformers draws a new
direction for many NLP tasks. For example, BERT
(Devlin et al., 2019) pioneers to creating a contex-
tual language model for language understanding. As
a result, BERT has achieved promising results on
many NLP tasks, including IE. Following the suc-
cess of BERT, a lot of transformer architecture has
developed such as ALBERT (Lan et al., 2020), Dis-
tillBERT (Sanh et al., 2019), or ELECTRA (Clark
et al., 2019). It leverages the adaptation of trans-
formers for IE. For example, (Nguyen et al., 2019)
adapted BERT to extract information from business
documents. These studies achieved promising re-
sults; however, we argue that there exist gaps that
limit the understanding of transformers for IE from
domain-specific business documents. The first gap
is that previous work only investigates the IE task
with one transformer model, e.g. BERT. The second
gap is that several important aspects of transformers
were not studied well, e.g. the relationship between
the number of training samples and performance.

This paper bridges the two gaps by investigating
the behavior of transformers for extracting informa-
tion from business documents, in actual scenarios.
To do that, we empower IE models by using trans-
formers in the form of transfer learning. Precisely,
transformers are used to utilize the power of these
models trained on the huge amount of general data.
Then the transformer-based IE models are fine-tuned
in the downstream IE task. By using transform-



ers for transfer learning, we simulate actual business
cases that have a small number of training data. This
paper makes three main contributions:

• It analyzes the behavior of transformers for IE
in the context of business scenarios. The analy-
sis examines the transformers in three aspects:
performance comparison, the relationship be-
tween performance and the number of train-
ing samples, and training time. To the best
of our knowledge, we are the first conducting
the comprehensive investigation for IE from
domain-specific business documents in a low-
resource language, i.e. Japanese.

• It introduces a public dataset1 for the IE task of
business documents. The dataset mimics actual
business cases in which IE models are trained
with a small number of training data.

• It releases a pre-trained model2 based on
ELECTRA (Clark et al., 2019), which facili-
tates studies of NLP tasks on Japanese.

2 Related Work

Information extraction is an important task of NLP
and has investigated in a long time with many stud-
ies. There are two main approaches for IE, us-
ing dictionaries (Watanabe et al., 2007) and ma-
chine learning (Corro and Gemulla, 2013; Angeli
et al., 2015; Lample et al., 2016). The first ap-
proach usually defines a dictionary for extracting in-
formation. Input documents are parsed to tokens
which are matched to each item in the dictionary
for extraction. The second approach usually uses
training data to train a classifier that can distinguish
extracted or non-extracted information (Corro and
Gemulla, 2013; Angeli et al., 2015; Lample et al.,
2016). Using a dictionary-based method can achieve
high accuracy, but it is time-consuming and labor-
expensive for dictionary preparation. In contrast,
machine learning models exploit linguistic features
(Angeli et al., 2015) or hidden features learned from
LSTM for classification (Lample et al., 2016). As
a result, it can reduce the cost of dictionary mainte-
nance and easy to adapt to other domains. In prac-
tice, several research projects focus on the nested

1https://github.com/DungLe13/bidding-dataset
2https://github.com/thaiduongx26/electra japanese

named entities and have great progress so far (Finkel
and Manning, 2009; Lample et al., 2016).

NER is a specific task of IE in which high-level
concepts such as people, places, organizations usu-
ally need to extract. For example, CoNLL 2003
defined four types of entities, including locations,
mixed entities, organizations, and persons (Sang et
al., 2003). However, for document analysis in prac-
tical business cases, entity types should be at a more
detailed level (Corro et al., 2015; Nguyen et al.,
2019). To address this problem, fine-grained en-
tity extraction was introduced and applied to sev-
eral NLP applications such as question answering,
information retrieval (Lee et al., 2006; Shimaoka
et al., 2016), or the automatic generation of ontol-
ogy (Fleischman and Hovy, 2002). The recent suc-
cess of transformers draws a new method for NER.
BERT (Devlin et al., 2019), ALBERT (Lan et al.,
2020), DistillBERT (Sanh et al., 2019), and ELEC-
TRA (Clark et al., 2019) are four pre-trained trans-
formers which achieve promising results many NLP
tasks. This paper employs the power of those trans-
formers as transfer learning for our IE problem. This
employment allows us to simulate our business cases
which only have a small number of training samples.

The work of (Nguyen et al., 2019) is perhaps the
most relevant to our task. In this paper, the au-
thors adapted BERT for extracting information from
domain-specific documents. However, understand-
ing the behavior of BERT in terms of extracting from
business documents is still an open question. We dig
a deeper level to observe IE models by comparing
four transformers. We believe that this comparison
provides a comprehensive analysis of transformers
for such IE task in actual business cases.

3 Task Definition and Data Preparation

3.1 Task definition
As mentioned, we deal with the task of IE with lim-
ited data for business documents. Given a document
and pre-defined tags (keywords), IE models need to
extract corresponding information to the tags. For-
mally, the task can be formally defined as follows.

• Input: a document and a set of tags.

• Output: extracted information corresponding
to the tags.



Our IE task is quite different from the common
NER task in which we need to extract a large num-
ber of entity types, e.g. 24 (Table 1) while the com-
mon NER task extracts a small number of entities,
e.g. four types of CoNLL. Also, due to the restric-
tion of actual business cases, we use a small number
of training samples instead of using a large number
of training examples e.g. around 15,000 samples in
CoNLL (Sang et al., 2003).

3.2 Data preparation
It is hard to use published datasets, e.g. CoNLL
(Sang et al., 2003) for comparison due to our differ-
ent purpose with common NER tasks. We, therefore,
prepared three datasets, for testing IE models.

3.2.1 CinData
Because there are gaps in using common IE

datasets to our task, we created a new corpus named
CinData. To do that, we collected 124 public
Japanese bidding documents from the Japan Oil,
Gas and Metals National Corporation (JOGMEC).3

Each document is a public notice, which outlines
the information about the bidding process, including
the dates of the contract, the deadlines for submis-
sion, and the contacts of the department or person in
charge. These documents are raw texts, so we need
to define a set of tags for the annotation process. To
do that, we consulted our legal team for the defini-
tion. The discussion and definition were internally
conducted. Finally, we defined 19 names that repre-
sent the categories of extracted information, which
we formally refer to as ‘‘tags". The list of tags
covers common important information of a bidding
document. The list is unique and remains unchanged
in all three train/dev/test sets. Please refer to the Ap-
pendix for the description of tags.

The collected documents are PDF files, so they
were converted to the text format for easy use. To do
that, we used pdfplumber,4 as a parser, combined
with heuristic rules: bullets, numberings, indentica-
tion, title, table for keeping the structure of docu-
ments. After parsing, our QAs (quality assurance -
people who have at least the N3 Japanese-Language
Proficiency Test certificate, with N1 is the highest
level) checked and corrected errors of outputs.

3http://www.jogmec.go.jp/news/bid/search.php
4https://github.com/jsvine/pdfplumber

The annotation was internally conducted with two
annotators in two steps. In the first step, each an-
notator was assigned a set of documents. With each
document, the annotator read predefined tags and as-
signed start and end positions for corresponding seg-
ments. The second step is cross-validation, in which
documents were cross-checked and corrected based
on the negotiation of the annotators. The agreement
computed by Cohen Kappa5 of two annotators is
0.8275 (before correction), showing that the anno-
tators have a high agreement in annotating data.

3.2.2 Bidding and sale documents
To have a better assessment of IE models, we pre-

pared two other datasets used internally in our com-
pany. The first contains bidding documents in differ-
ent domains compared to the CinData. The second
includes sale documents of hardware devices. Due
to the policy, we can not disclose these datasets.

3.2.3 Data observation
Table 1 shows statistics of the three datasets. As

Statistics CinData Bidding docs Sale docs
#training docs 82 78 300
#dev docs 22 - -
#testing 20 22 165
#chars/doc 3,030 22,537 2,083
#sentss/doc 120 616 56
# of tags 19 24 8

Table 1: Data observation on three datasets.

observed, the number of training samples is small.
It supports the point that in business cases, having
a large number of training data is a big obstacle. In
this sense, we also simulated our dataset with lim-
ited training samples. The documents are quite long,
with a quite large number of sentences and charac-
ters per sample. A large number of entity types, e.g.
19 or 24 also challenges IE models.

4 Extraction with Transformers

This section introduces the IE models based on
transformers. We first describe transformers and
then show transfer learning, information extraction,
and the training process of the models.

5http://graphpad.com/quickcalcs/kappa1.cfm



4.1 Transformers
The Transformer is the first transduction model
relying entirely on self-attention to compute rep-
resentations of its input and output without us-
ing sequence-aligned RNNs or convolution (quoted
from (Vaswani et al., 2017)). The Transformer
complies with the overall architecture of encoder-
decoder using stacked self-attention and point-wise,
fully connected layers. The attention function of the
transformer is computed by mapping a query and a
set of key-value pairs to an output. Then, the output
is computed as a weighted sum of the values, where
the weight of each value is computed by a compati-
bility function of the query with the correlated key.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dimension dk of keys, and dimension
dv of values Moreover, Transformer performs
the attention function in parallel, resulting dv-
dimensional output values using “multi-head at-
tention” as following: MultiHead(Q,K, V ) =
Concat(head1, ..., headh)WO where headi =
Attention(QWQ

i ,KWK
i , V W V

i )
This paper investigates the IE task with four

transformer-based models: BERT, ALBERT, Distil-
BERT, and ELECTRA. We selected BERT because
it pioneers the transformer direction (Devlin et al.,
2019), after that, its variation also achieves promis-
ing results. For ELECTRA, it is up-to-date archi-
tecture that obtains improvements compared to the
BERT family (Clark et al., 2019).

BERT BERT, introduced by (Devlin et al., 2019),
was the state-of-the-art model for many benchmark
datasets in multiple NLP tasks. It utilized the bidi-
rectional pre-training to represent a language as
dense and low-dimensional vectors. The model is
pre-trained using two unsupervised tasks, namely
masked language modeling and next sentence pre-
diction. In Masked Language Modeling, 15% of
all WorkPiece tokens in a sequence are either (i) re-
placed with a [MASK] token, or (ii) replaced with a
random token, or (iii) remained the same. By learn-
ing to predict the masked tokens, the model learns
the representation of tokens in association with the
context surrounding it. In Next Sentence Predic-
tion, the model learns the relationships between two

sentences by predicting whether sentence B follows
sentence A in a sequence.

DistilBERT DistilBERT leverages knowledge
distillation, in which a compact model - the student
- is trained to reproduce the performance of a large
model - the teacher (Sanh et al., 2019). Following
this setting, the student - DistilBERT, which has the
same architecture as BERT but fewer layers learn to
perform pre-trained tasks by mimicking the output
distribution of the teacher network - the original
BERT model. The model uses the triple loss, which
combines the losses of the masked language model,
distillation, and cosine-distance. It also follows
the practice of previous variations of BERT-based
models by using dynamic masking and omitting the
next sentence prediction objective.

ALBERT ALBERT is a lighter version of the
original BERT, which incorporates two important
techniques to reduce the number of parameters used
in the model (Lan et al., 2020). The first one is a fac-
torized embedding parameterization. Instead of pro-
jecting the one-hot vectors into a high-dimensional
hidden space of size H, the model decomposes this
step into two smaller steps. It first projects these
vectors into a lower-dimensional embedding space
size E, and then projects it into the hidden space.
This reduces the embedding parameters significantly
when E << H. The second technique is cross-layer
parameter sharing, where all parameters are shared
across multiple layers. This prevents the number of
parameters from growing as the number of layers
increases. In addition to the aforementioned tech-
niques, ALBERT also employs an inter-sentence co-
herent loss in the replacement of the next sentence
prediction task during the pre-training process.

ELECTRA ELECTRA is a replaced token de-
tection method that trains a discriminative model
predicting whether each token in the corrupted in-
put could be replaced by a generator sample (Clark
et al., 2019). Compared to BERT and its varia-
tions, ELECTRA makes two important differences.
First, instead of training a [MASK] language model
trained on the small subset that was masked, ELEC-
TRA trains a language model on all input tokens.
Second, ELECTRA was trained in a discriminative
fashion to predict whether each token in the cor-



rupted input was replaced by a generator sample or
not rather than predicting the original identities of
the corrupted tokens. In addition, ELECTRA makes
an important consideration for pre-training methods
that should be efficiently computed without large
amounts of data.

We employed the success of ELECTRA (Clark
et al., 2019) to our IE task. Since ELECTRA is
only for non-Japanese languages, we trained the
Japanese ELECTRA model for our purpose. To
do that, we collected Japanese Wiki-data then used
the code of ELECTRA6 for training an ELECTRA-
small model. The difference compared to the origi-
nal model is that we used SentencePiece instead of
WordPiece because it is hard to apply word segmen-
tation to Japanese. The idea of SentencePiece7 bases
on subword units and unigram language model,
which help us to train our ELECTRA without any
language-specific pre- and post-processing. More
importantly, SentencePiece allows our ELECTRA
to extend the vocabulary which is benificial for the
training process. The size of our vocabulary for
Japanese-wiki is 32,000. The pre-training task of
Electra-small took 6 days with 1M steps by us-
ing a single GPU Radeon VII 16GB. The follow-
ing figure shows the loss during the training process.

After training, we applied the model to the
datasets. The idea is similar to BERT-QA, in which
we fed hidden representation from ELECTRA to an
MLP for classification.

4.2 Transfer learning

Transformers provide an appropriate solution for
data representation by using contextual embeddings

6https://github.com/google-research/electra
7https://github.com/google/sentencepiece#comparisons-

with-other-implementations

learned from a large amount of data. However, they
should be adapted to downstream tasks by using
training data in specific domains. To do that, we
fine-tuned the models to the downstream IE task by
using the samples data of each dataset. The pre-
trained weights of transformers were first reused and
then adjusted in the fine-tuning process.

4.3 Information extraction

Output vectors from the transfer learning layer were
put into the extraction layer for extracting informa-
tion. To do that, the extraction was formulated as a
question answering (QA) task, thanks to the sugges-
tion of BERT (Devlin et al., 2019). A question (tag)
and corresponding segment were fed into transform-
ers to learn hidden representation. The extraction
predicts start and positions based on the probability
of the word i in this span. The final score of a po-
tential answer spanned from position i to position j
defined as maxi,j(S∆Ti + E∆Tj) with j ≥ i.

Pstarti =
eS.Ti∑
eS.Tj

; Pendi =
eE.Ti∑
eE.Tj

(2)

The extraction uses the positions start and end to
extract information corresponding to input tags.

4.4 Training

We used a multilingual BERT-base model trained
for 102 languages (including Japanese) on a huge
amount of texts from Wikipedia (Devlin et al.,
2019). The BERT model has 12 layers, a hidden
layer of 430, 768 neurons, 12 heads. For Distill-
BERT, we used a multilingual model pretrained with
the supervision of BERT-base-multilingual-cased on
the concatenation of Wikipedia in 104 different lan-
guages. The model has 6 layers, 768 dimensions,
and 12 heads. For ALBERT,8 we used the pre-
trained Japanese model with 12 layers, the hidden
size of 768, and the embedding size of 128. For
ELECTRA, we used our pre-trained model trained
on Japanese Wiki data. The ELECTRA-small has
12 layers, with a hidden size of 256.

Thanks to the suggestion of BERT, we formulated
the training process as a QA task. Tags and cor-
responding segments were fed into the models for

8https://huggingface.co/ALINEAR/albert-japanese-v2



learning. The training was done in two steps: pre-
training and fine-tuning. For the first step, the pre-
trained weights of transformers were reused, while
the weights of the rest layers were generated with a
truncated normal distribution. All models were fine-
tuned in 20 epochs by using the cross-entropy loss
function between predicted and correct information.
The training process was done with a single GPU.

5 Settings and Evaluation Metrics

Settings We used training samples in Table 1 for
training IE models and applied the model on the test
sets. Due to our investigation purpose, we did not
fine-tune IE models by using the development set of
CinData. Instead of doing that, we report the perfor-
mance on this set. For transformers, Table 2 summa-
rizes its information. All models were trained by us-
ing the same data segmentation, settings, and GPU.

Model Layers Parameters
BERT-base 12 110M
DistillBERT 6 66M
ALBERT 12 12M
ELECTRA 12 14M

Table 2: Information of transformers.

As observed, BERT and DistillBERT have a large
number of parameters while ALBERT and ELEC-
TRA are significantly compressed.

Evaluation metrics Extracted information was
matched with correct answers for computing F-
scores based on precision and recall metrics. The
F-score of a model on a dataset is the average of F-
scores on all tags computed by fields.

6 Results and Discussion

6.1 F-scores Comparison

Table 3 summarizes the comparison of transformer-
based IE models on four datasets. As we can ob-
serve that the IE models based on BERT and ELEC-
TRA achieve promising results. For example, the
model of BERT is the best in two cases (CinData
(dev) and CinData(test)) and ELECTRA obtains the
highest F-score on the bidding dataset. For BERT, it
is understandable that it has the largest model which

includes 110M parameters. This enables BERT to
capture the context of words from the input (the re-
lationship between a tag-segment pair). As a re-
sult, the IE model using BERT achieves promising
results. An interesting point comes from ELEC-
TRA. It is a small model with 14M parameters,
compared to BERT (110M) and DistilBERT (66M);
however, the ELECTRA-based IE model outputs
competitive F-scores on four datasets. For example,
the IE model using ELECTRA is better than BERT
of 1.15 F-score on bidding documents (0.9115 vs.
0.9000), which is the most challenging dataset with
very long documents. The possible reason comes
from the training process of ELECTRA that can
contribute to the ELECTRA-based IE model. As
mentioned in Section 4.1, we used SentencePiece in-
stead of WordPiece due to the word segmentation of
Japanese. This is different from BERT, DistilBERT,
and ALBERT which used WordPiece for Japanese.
The promising F-scores of ELECTRA with a small
pre-trained model draw a new direction for adapting
transformers to our IE task and confirm the results
of ELECTRA (Clark et al., 2019).

Method CinData (dev) CinData (test)
BERT (QA) 0.8887 0.9175
DistilBERT 0.8831 0.8983
ALBERT 0.8585 0.8926
ELECTRA 0.8879 0.9133
Method Bidding docs Sale docs
BERT (QA) 0.9000 0.8456
DistilBERT 0.8811 0.8944
ALBERT 0.8655 0.7734
ELECTRA 0.9115 0.8901

Table 3: Comparison of methods according the average
of F1-score. Bold is the best and italic is the second best.

The extension of BERT does not show the best
performance on four datasets. For example, Dis-
tilBERT is only the best on sale documents with
tiny margins compared to other models, even it is
the second larger model (66M parameters). It is
understandable that DistilBERT tries to compress
the model size while approximating the performance
with BERT. In other cases, DistilBERT and AL-
BERT output lower F-scores than BERT and ELEC-
TRA. A possible reason comes from the size of the
model. For instance, ALBERT obtains the lowest F-
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(d) Sale documents

Figure 1: F-scores and the number of training examples.

scores in all cases, e.g. 0.7734 on sale documents
because it only has 12M parameters, which are hard
to cover all the semantic aspects of the datasets.

6.2 F-scores and Training Samples

We observed the behavior of transformers regarding
the number of training examples. This is because we
would like to understand when the transformers can
achieve good results. To do that, we randomly seg-
mented data into several parts, ranging from 10%,
20%, 50%, 75%, and 100% and observed the F-
scores at each data segment. Figure 1 visualizes the
observation of BERT, ALBERT, DistillBERT, and
ELECTRA wit different data segments.

As we can observe, the number of training sam-
ples affects the quality of transformer-based IE mod-
els. The general trend shows that adding more train-
ing examples increases F-scores. However, the be-
havior of transformers is different. For example, on
CinData, F-scores significantly raise from 10% to

25% of training data and reach the top at 50% of
training data. After that, the F-scores slightly grow.
This indicates that for CinData, transformers only
need 50% of data to obtain stable performance. For
biddings and sales, the trend is quite different. For
biddings in Figure 1(c), two strong models (BERT
and ELECTRA) share the similar behavior, in which
its F-scores dramatically increase from 10% to 75%.
After that, the F-scores are stable. It is explainable
that adding more data helps to improve the quality of
BERT and ELECTRA-based IE models. In contrast,
DistilBERT and ALBERT have the same trend, in
which these models obtain quite high results at 10%
and steadily raise until 75%. The trend on sale doc-
uments in Figure 1(d) is quite diverse, in which the
behavior of DistilBERT is the same on bidding and
sale documents. BERT and ELECTRA have signif-
icant improvements from 10% to 50% while AL-
BERT reaches the top at 75%. It is interesting to
observe that by using a small number of data, Distil-



BERT seems to be better than others on bidding and
sale documents in Figures 1(c) and 1(d). This sug-
gests two use cases: (i) if we only have some dozens
of data, e.g. 50-100 samples, DistilBERT can be a
good option and (ii) otherwise, BERT and ELEC-
TRA are appropriate the selection.

6.3 Training Time
We observed the training time of transformers with
the same data segmentation of Section 6.2. Figures
2, 3, and 4 plots the observation.

 0

 50

 100

 150

 200

 250

 300

 350

 10  20  30  40  50  60  70  80  90  100

tra
in

in
g 

tim
e

% of training samples

BERT Distill ALBERT ELECTRA

Figure 2: Training time (minutes) on CinData.

 0

 500

 1000

 1500

 2000

 10  20  30  40  50  60  70  80  90  100

tra
in

in
g 

tim
e

% of training samples

BERT Distill ALBERT ELECTRA

Figure 3: Training time (minutes) on bidding documents.

It is interesting to observe that BERT and Distil-
BERT are the fastest even they have the largest mod-
els with a huge of parameters. A possible reason is
that with a large number of parameters, these models
do not need to learn so much from the data of new
domains. As a result, they are quick to be covered
in the training process. In contrast, ALBERT and
ELECTRA take a long time to complete the training
process. For example, ALBERT needs 300 minutes
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Figure 4: Training time (minutes) on sale documents.

for 100% data on CinData. Also, the small num-
ber of parameters seems to be efficient for inference
only. For training, the computation operation is not
so much different among the four transformers. As a
result, ALBERT and ELECTRA took a longer time
than BERT and DistilBERT for training.

7 Conclusion

This paper introduces an investigation of transform-
ers for information extraction with limited data. The
investigation simulates business scenarios that have
small numbers of training data to build IE models.
To do that, we employ four well-known transformers
for taking advantage of the contextual aspect learned
on huge data and fine-tune to our down-stream IE
tasks by using transfer learning. Experimental re-
sults on three domain-specific business datasets con-
firm the efficiency of BERT and ELECTRA, that can
be applied to actual business cases. The observa-
tion of training samples indicates that in some cases,
transformers can achieve good results with 50% of
training data. The training time shows that BERT is
potential while ALBERT and ELECTRA take a long
time when training with all data.

For future direction, we encourage to deeply in-
vestigate sophisticated models for the IE task, e.g.
stacking transformers with refined architecture.
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Appendix A. The Name of Tags

English Tag Type
Year of Procurement datetime (year only)
Prefecture text
Bid Subject text
Facility Name text
Address for Demand text
Start Date of Procurement datetime
End Date of Procurement datetime
Public Announcement Date datetime
Deadline for Questionnaire datetime
Deadline for Applying Qualifi-
cation

datetime

Deadline for Bidding datetime
Opening Application Date datetime
PIC for Inquiry of Questions text
TEL/FAX for Inquiry of Ques-
tions

text

Address for Submitting Applica-
tion

text

Department/PIC for Submitting
Application

text

Address for Submitting Bid text
Department/PIC for Submitting
Bid

text

Place of Opening Bid text

Table 4: Extracted information of CinData.

English Tag Type
Model code mixed
Model name mixed
Start of sales date
End of sales (planed) date
End of sales (fixed) date
End of sales (special) date
End of support date
Revision mixed

Table 5: Extracted information of sale documents.

English Tag Type
Year of procurement datetime (year only)
Prefecture text
Title of bidding text
Name of institution text
Address for demand text
Start date of procurement datetime
End date of procurement datetime
Contract value number
Amount of value number
Class of reserved value number
Amount of reserved value number
Public Announcement Date datetime
Deadline for delivery specifica-
tion

date

Deadline for questionnaire datetime
Deadline for applying qualifica-
tion

datetime

Deadline for bidding datetime
Opening application date datetime
PIC for inquiry of questions text
TEL/FAX foriInquiry of ques-
tions

tel/fax

Address for submitting applica-
tion of qualification

address

Address of submitting of bid-
ding applications

address

Department/PIC for submitting
application

name

Place of Opening Bid text

Table 6: Extracted information of bidding documents.


