
Learning to Describe Editing Activities in Collaborative Environments:
A Case Study on GitHub and Wikipedia

Edison Marrese-Taylor1, Pablo Loyola2, Jorge A. Balazs1 and Yutaka Matsuo1

Graduate School of Engineering, The University of Tokyo, Japan1

{emarrese, jorge, matsuo}@weblab.t.u-tokyo.ac.jp
IBM Research, Tokyo, Japan2

e57095@jp.ibm.com

Abstract

We propose to study the automatic generation
of descriptions from content editing activities
in collaborative environments. We define such
task as identifying the changes associated to
two consecutive versions of a document, and
then producing a message in natural language
that explains it, which should provide a com-
pact description of the change while retain-
ing its key informative elements. Our model
is based on a sequence to sequence architec-
ture that receives as input the representation of
the change, and outputs a message. We pro-
pose a framework to conceptualize the prob-
lem and two instances for GitHub activity and
Wikipedia contributions, two of the most im-
portant collaborative systems on the Web. Our
results indicate that the proposed approach is
able to generate feasible descriptions, which
are on average aligned with the semantic pur-
pose of the editing activities.

1 Introduction

One of the positive outcomes of the current perva-
siveness of the Web has been the boost of collab-
oration across several domains. Examples of this
are platforms such as Wikipedia and GitHub, where
self-organized and voluntary groups of individuals
gather based on the common goal of crafting docu-
ments and programs (Crowston et al., 2007).

The outcome of these collaborative activities is
usually the result of a series of incremental mod-
ifications over time. For example, in the case of
GitHub, incremental modifications are usually func-
tional changes, which allow to incorporate new fea-

tures or fix reported bugs. In the case of wiki-based
platforms, contributors modify the content of a given
article in order to reflect an update on the matter
the article is dealing with. The transparency and
openness of change management provides complete
awareness of the state of the document being crafted,
at any point in time (Dabbish et al., 2012).

As collaboration is carried out in a decentralized
fashion, the coordination between contributors plays
a key role (Von Krogh et al., 2003). While there exist
direct ways of communication, such as bug trackers
and discussion forums, we are interested in studying
the indirect ways in which contributors interact and
coordinate.

One of these elements are the short messages that
the contributors provide at the time of submitting
the change. This short message usually provides a
description of the change and serves as a way of
broadcasting it to the rest of the community, ideally
clarifying the purpose and other technical aspects,
and supporting the reviewing process (Guzman et
al., 2014).

Therefore, our goal is to use this set of change-
message pairs to develop a model able to explain
collaborative activities by automatically generating
a short passage in natural language. In that sense, we
visualize this task as being in-between summariza-
tion and translation given the challenges it presents,
namely, (i) the length asymmetry between changes
and their messages, and (ii) the fact that documents
can be written in modalities different from natural
language (e.g. source code, art). Our intention is
to learn the most salient elements that characterize
the change, and then decode them into a description

in natural language. As we will show, this duality
has implications on the choices of metrics used for
evaluation.

Moreover, rather than describing the content that
was changed, we are generating a description of
the action taken over it, therefore, there is an in-
herent temporal dimension associated to the gener-
ation. Additionally, the action can be seen as the
result of an optimization problem: given the state
of the file, the agent needs to find the most efficient
change that allows him to satisfy the requirement.
In other words, the change performed on the file is a
function dependent on the current functional state of
the file and the given requirement: the change per-
formed was such, only because of the given state of
the file. If such state was different, then the change
would have been different too.

The usage of models based on deep neural net-
works in natural language processing has been suc-
cessful in large part because they learn and use
their own continuous numeric representational sys-
tems for word and sentences. In particular, dis-
tributed representations (Hinton, 1984) applied to
words (Mikolov et al., 2013) have meant major
breakthroughs allowing networks to parse and rep-
resent sentences and phrases using an effective com-
positional vector grammar. Recurrent neural net-
works now provide state-of-the-art performance in
tasks such as machine translation, sentence-level
sentiment analysis, text generation and automatic
image captioning.

Moreover, the introduction of the encoder-
decoder (Cho et al., 2014) or sequence-to-sequence
(Sutskever et al., 2014) architectures presented a
successful framework based on neural networks
that aims to map highly structured input to highly
structured output. Additional improvements on the
encoder-decoder architecture came with the addition
of attentional components (Bahdanau et al., 2015;
Luong et al., 2015), which allowed the decoder to fo-
cus on specific information provided by the encoder
at a time.

Therefore, to tackle the introduced problem we
use a representation learning approach. More con-
cretely,our approach takes inspiration in recurrent
neural models, widely used in sequence-to-sequence
learning (Bahdanau et al., 2015), but we introduce
specific extensions to account for the structural dif-

ferences in our case. While the Web offers several
types of collaborative environments, in this work we
focus on GitHub activity and Wikipedia contribu-
tions, based on their popularity and data availability.
We perform an empirical study based on collected
editing activity, and show that the introduced mod-
els are able to learn representations from the changes
and produce sound descriptions in most cases.

2 Related Work

The analysis of editing activities has been tightly as-
sociated with quality assessment tasks. For example,
in software engineering, version changes are the ba-
sis of regression testing and defect prediction (McIn-
tosh and Kamei, 2017).

In the case of Wikipedia, since one of its core
principles is being open for anyone to maintain it,
Wikipedia cannot fully ensure the reliability of its
articles, and thus sometimes had suffered criticism
for containing low-quality information. It is there-
fore essential to assess the quality of Wikipedia ar-
ticles automatically. In this context, for example,
Su and Liu (2015) approach the problem by using
a psycho-lexical resource. On the other hand, Kiesel
et al. (2017) aim at automatically detecting vandal-
ism utilizing change information as a primary input.
Gandon et al. (2016) also validate the importance of
the editing history of Wikipedia pages as a source of
information, presenting a new extraction technique
which produces a linked data representation for it.

More recently, Yang et al. (2017) proposed an
approach for identifying semantic edit intentions
from revisions in Wikipedia. Also, Sarkar et al.
(2019) and Marrese-Taylor et al. (2019) have fo-
cused on the quality assessment issue and proposed
approaches that directly produce an edit-level qual-
ity label for a given Wikipedia edit. While the for-
mer is concerned only with edit-level quality classi-
fication of edits, the latter also incorporates a gen-
erative part similar to ours but only as an auxiliary
task.

Our work is also related to summarization on
Wikipedia. Recent work includes Chisholm et al.
(2017), where the authors proposed an autoencoder-
based model to generate short biographies, and
Zhang et al. (2017), where authors present a method
to summarize the discussion surrounding a change

in the content, along with a visualization tool to ease
comprehension of its evolution.

When it comes to GitHub, we find several papers
that perform analyses over the platform, including
the work of Batista et al. (2017), who study the cor-
relation among features that measure the strength of
social coding collaboration and Nielek et al. (2016),
who try to predict which developer will join which
project.

In terms of specifically working on code change
descriptions, we see that the paradigm is based on
the distributional similarities that emerge between
natural and programming languages (Hindle et al.,
2012). Indeed, both are ways of communication
based on sets of defined vocabularies, and their com-
position is based on structured and sequential in-
structions. Concretely, Cortes et al. (2014) and
Linares et al. (2015) proposed methods based on
a set of rules that consider the type and impact of
the changes, and Buse and Weimer (2010) combine
summarization with symbolic execution.

Moreover, mapping source code to natural lan-
guage has received special attention in recent years,
mainly in the form of summarization. Examples if
this are the work of Allamanis et al. (2016) who use
a convolutional neural network approach, and Iyer
et al. (2016) who used an recurrent neural network
architecture capable of learning to summarize Stack
Overflow snippets.

In terms of code change description generation,
the use of a representation learning paradigm has
been proposed Jiang et al. (2017; 2017) and by
Loyola et al. (2017; 2018). The authors train an
encoder-decoder architecture on a set of commit-
message pairs extracted from GitHub open source
projects to generate change descriptions. We took
that work as a starting point and proposed an ex-
tended architecture that considers intra-change com-
ments with an ad-hoc attention mechanism, with
the additional feature of generalizing to other data
sources such as Wikipedia changes. More recent
variations of this include augmenting the model with
a pointer network (Liu et al., 2019a), or with abstract
syntax trees (Liu et al., 2019b). In contrast, Liu et al.
(2018) focused on efficiency and proposed a method
that relies on nearest neighbors instead the encoder-
decoder.

Finally, our work is also related to Yin et

al. (2019), who proposed a general framework
for learning edit representations based on a self-
supervised approach similar to an auto-encoding
task.

3 Proposed Approach

Generative tasks, such as summarization and trans-
lation, try to map between source and target se-
quences ignoring time dependencies across exam-
ples. Our main motivation for this work is to explore
a task where we can generate a natural language de-
scription of a transition between states, i.e., adding
temporal dimension into the generation by learning
to represent the difference between consecutive ver-
sions of the changed document.

Web-based collaborative platforms represent a
convenient source of indirectly supervised data, as
each contributed change is usually required to be
submitted along with a short description of its pur-
pose and detail. For this work, we focus on source
code changes on GitHub and Wikipedia contribu-
tions, based on their availability.

From a broad perspective, a change can be seen
as the consequence of a requirement, which can be
external: e.g., the need for a new functionality on
a GitHub project, or the need reflect a recent event
on someone’s biographical article on Wikipedia; or
internal: e.g., a reported bug or a functionality mis-
match on a GitHub project, or the need to revert a
vandalism attack on a Wikipedia article. That re-
quirement is internalized by a contributor that iden-
tifies which portion of the document should be mod-
ified in order to satisfy the requirement. As all pro-
posed changes are expected to be reviewed by a peer,
the contributor appends a short description explain-
ing the purpose. Such dual configuration (changes,
descriptions) represents our main data source for
training.

For both modalities, GitHub and Wikipedia, we
assume the existence of T versions of a given project
or article {v1, . . . , vT }. Given a pair of consecu-
tive versions (vt−1, vt), we define the tuple (Ct, Nt),
where Ct = ∆t

t−1(v) is a representation of the con-
tent changes associated to v in time t, and Nt is a
representation of its corresponding natural language
(NL) description. Let C be the set of content changes
and N be the set of all descriptions in NL. We con-

sider a training corpus with T content snippets and
summary pairs (Ct, Nt), 1 ≤ t ≤ T , Ct ∈ C ,
Nt ∈ N . Then, for a given content snippet Ck ∈ C,
the goal of our model is to produce the most likely
NL description N?. The nature of the content snip-
pet Ck ∈ C depends of the modality considered.

E(1) E(2) E(3)

=num_count 3

A

 Added count

NN

D’(1)

D(2) D(3)D(1)

NN NN

D’(2) D’(3)

value

A(1) A(2) A(3)

E(1) E(2)

counterSet

A A(1) A(2) A(3)

Figure 1: Model architecture with two encoders for the
GitHub modality.

E(1) E(2) E(3)

inBorn 1978

A

 Added his

NN

D’(1)

D(2) D(3)D(1)

NN NN

D’(2) D’(3)

birthday

A(1) A(2) A(3)

Figure 2: Model architecture based on sequence-to-
sequence for the Wikipedia modality.

For both modalities, similarly to Iyer et al. and
Loyola et al. (2016; 2017), we use an attention-
augmented encoder-decoder architecture. On each
case, we assume the existence of an ad-hoc en-
coder that allows us to obtain a representation for
the change we intend to study. The only assumption
about our encoders is that their inputs have to be rep-
resented as a sequence of tokens, ci ∈ Ct. With this,

our encoders rely on embeddings and bidirectional
LSTMs. Let Xt = x1, . . . xn be the embedded input
content sequence Ct, using embedding matrix E.

~hi = LSTM(xi,~hi−1) (1)
~hi = LSTM(xi, ~hi+1) (2)

hi = [~hi; ~hi] (3)

We add special beginning-of-sentence BOS and
end-of-sentence EOS tokens to our output NL se-
quences, and set the decoder to be an LSTM that
reads the representation given by the encoder, gen-
erating NL words one at a time based on its current
hidden state and guided by a global attention model
(Luong et al., 2015). We model the probability of
a description as a product of the conditional next-
word probabilities. We use an embedding matrix D
to encode each NL token ni ∈ Nt into a sequence of
vectors Yt = y1, . . . ym and set

si = LSTM(yi−1, si−1) (4)

p(ni|n1, . . . , ni−1) ∝W tanh(W1si +W2ai) (5)

where ∝ denotes a softmax operation, si represents
the decoder hidden state and ai is the contribution
from the attention model on the input. W , W1 and
W2 are trainable combination matrices. The decoder
repeats the recurrence until a fixed number of words
or a special END token is generated. The attention
contribution ai is defined as ai =

∑k
j=1 αi,j · hj ,

where hj ∈ H is a hidden state associated to the
input and αi,j is:

ti =

k∑
j=1

αi,j · hj (6)

αi,j =
exp (h>i si)∑

hj∈H exp (h>j si)
(7)

In this way, the decoder is trained as a conditioned
language model over the NL vocabulary and on each
generation step we let it have full access to the rep-
resentation of the input as provided by the encoder
using the attentional component.

Wikipedia: We set Ck = x1, ..., xL, as a se-
quence ofL text tokens associated with a change. To
encode this sequence we use a bidirectional LSTM.

GitHub: We build Ck based on both code and
documentation changes, as extracted from ∆t

t−1(v).

We define the change in source code Ck as hav-
ing two components: a sequence of source code to-
kens SCk = x1, ..., xLSC

, and a sequence of doc-
umentation tokens SDk = z1, ..., zLSD

. To obtain
a vector representation for ∆t

t−1(v), as we model
it as two different sequences, we use two bidirec-
tional LSTMs as encoders, one for the source code
sequence and one for the documentation sequence.
We aggregate each representation using mean pool-
ing and concatenate the resulting vectors. The re-
sulting vector is used to initialize the decoder hidden
state.

During training, for both modalities, the decoder
iterates until the end of the sentence is reached. For
generation, we approximate N? by performing a
beam search on the space of all possible summaries
using the model output, with a beam size of 10 and a
maximum summary length of equal to the maximum
length of the input. For inference, we let the decoder
run for this number of steps or until the EOS token
is generated.

4 Empirical Study

4.1 Wikipedia

We collected historical data dumps from Wikipedia,
choosing some of the most edited articles in English
and German, in a way analog to the language choice
in GitHub. For English, we worked with the articles
for United States and World War II, while for Ger-
man we chose Deutschland (Germany) and Zweiter
Weltkrieg (World War II). To our eyes, one of the
critical differences between our studied modalities
is the amount of control users have over the edit-
ing activity, which is practically non-existent in the
case of Wikipedia. To study this, we also collected
the editing history of Donald Trump’s article, which
exhibited a very dynamic and polarizing editing ac-
tivity record.

Wikipedia dumps contain every version of a given
page in wikitext, the official markup-like language,
along with metadata for every edit. To obtain the
content associated to each ∆t

t−1(v), we sorted the
extracted edits chronologically and computed the
diff of each pair of consecutive versions using the
Unix diff tool. Due to the line-based approach of the
Unix diff tool, small changes in wikitext led to big
chunks of differences in the resulting diff file. To al-

leviate this problem, we extracted the unique set of
sentences that was either added or removed, which
gave us a much fine-grained characterization of the
edits. For English sentence splitting we used the au-
tomatic approach by Kiss et al. (2006), and Somajo
(Proisl and Uhrig, 2016), for German.

We found that articles related to controversial top-
ics —such as Donald Trump— exhibited a high pro-
portion of reverting edits, as well as extreme vandal-
ization cases. Since these edits provide no additional
information to our model, we filtered them out.

4.2 GitHub
We rely on the concept of code commit, the standard
contribution procedure implemented in modern sub-
version systems (Gousios et al., 2014), which pro-
vides both the actual change and a short explanatory
paragraph. To model both as a sequence of source
code tokens SCk = x1, ..., xLSC

, and a sequence
of documentation tokens SDk = z1, ..., zLSD

we
use diff files associated to each commit for a given
project in GitHub. These diff files encode per-line
differences between two files or sets of files in a
standard format, allowing us to recover source code
changes at the line level.

We obtain all the diff files for a given project us-
ing the GitHub API. However, given the flat struc-
ture of the diff file, source code in contiguous
lines might not necessarily correspond to originally
neighboring code lines. Moreover, they might come
from different files in the project. To deal with this
issue, we followed Loyola et al. (2017) and only
considered the diff files of those commits that mod-
ify a single file in the project.

To obtain the messages associated to each intro-
duced change, we use the API to download the meta-
data associated to each commit, which allows us to
recover information such as the author and message
of each commit.

For this paper, we chose projects for Python
and Javascript, as they are among the most widely
adopted programming languages. We selected two
of the historically most popular projects for each
language on GitHub as data sources. For Python,
we worked with Theano and youtube-dl, whereas for
Javascript we worked with angular and react. We
parsed the diff files using a lexer (Brandl, 2016) to
tokenize their contents in a per-line fashion.

Modality Dataset Max. Length Our Model MOSES

METEOR BLEU BLEU

GitHub

Theano
100 0.319 27.3 5.9
300 0.220 27.4 5.5

youtube-dl
100 0.132 18.3 17.6
300 0.325 12.7 13.0

angular
100 0.254 21.6 12.7
300 0.412 20.2 9.7

react
100 0.330 27.9 10.5
300 0.263 22.6 7.3

Wikipedia

World War II
100 0.399 14.3 11.8
300 0.244 14.5 5.2

Zweiter Weltkrieg
100 0.330 17.5 16.3
300 0.312 12.1 9.8

United States
100 0.241 12.6 11.3
300 0.325 12.8 9.0

Deutschland
100 0.352 14.2 14.8
300 0.352 13.9 10.4

Donald Trump
100 0.610 14.7 10.5
300 0.581 12.5 7.8

Table 1: Summary of our results on both modalities.

Modality Max. Length Mean Ours Mean MOSES

GitHub 100 23.8 11.7

300 20.7 8.9

Wikipedia 100 14.7 12.9

300 13.2 8.4

Table 2: Summary, in terms of BLEU scores, of the im-
pact of increasing the maximum sequence length across
modalities.

The extracted commit end edit messages were
processed using the Penn Treebank tokenizer (Mar-
cus et al., 1993), which nicely deals with punctu-
ation and other text marks typical of natural lan-
guage. During experimentation, we found that some
excessively repeating patterns on the NL descrip-
tions, such as the phrase merge pull request, were
misguiding for the learning process so we deleted
them from the data, keeping the rest of the content
of each sequence, if any. Sequences that solely con-
tained these sequences were discarded.

To evaluate the quality of our generated descrip-
tions we use METEOR (Lavie and Agarwal, 2007)
and sentence level BLEU-4 (Papineni et al., 2002).
These metrics, popular from automatic machine

translation evaluation, are scores calculated for indi-
vidual translated segments by comparing them with
a set of good quality reference translations. Those
scores are then averaged over the whole corpus to
reach an estimate of the translation’s overall quality.
We compute them on our validation set after every
epoch and save the intermediate model that maxi-
mizes each.

Following previous work on mapping source code
to natural language (Loyola et al., 2017; Iyer et al.,
2016), we used MOSES (Koehn et al., 2007) as a
baseline, which although is designed as a phrase-
based machine translation system, was previously
used by Iyer et al. (2016) to generate text from
source code. Concretely, we treated the tokenized
input (only the source code for the case of GitHub)
as the source language and the NL description as the
target. We trained a 3-gram language model using
KenLM (Heafield et al., 2013) and used mGiza to
obtain alignments. For validation, we use minimum
error rate training (Bertoldi et al., 2009; Och, 2003)
in our validation set. To evaluate model capabilities,
we generated two versions of each dataset for a max-
imum input/output sequence length of 100 and 300
tokens.

Data Reference Generated
G

itH
ub

T
he

an
o better test error UNK better error message

allow to disable the gpu
when UNK and UNK disable the gpu back-end .

add test case . added test message for
UNK

yo
ut

ub
e-

dl [cbc] skip geo-restricted
test case [generic] add test

[extractor/generic] add
support for onionstudios

embeds (closes #
NUMBER)

[extractor/generic]
handle UNK embeds (
closes # NUMBER)

an
gu

la
r

refactor (UNK) : remove
UNK facade (#

NUMBER)

refactor (changelog) :
add UNK (# NUMBER)

fix (core) : export dev
mode api in UNK closes #

NUMBER

fix (UNK) : add UNK
UNK closes # NUMBER

re
ac

t clarify tutorial UNK fixes
NUMBER . clarify tutorial

add shirtstarter to
examples of UNK UNK . update shirtstarter UNK

W
ik

ip
ed

ia

D
.T

ru
m

p /* Foreign policy */ wiki
link

/* Foreign policy */ cite
cleanup

UNK not graduate from
Fordham

He did not graduate from
Fordham University

U
.S

. /* Economy */ Updated
unemployment rate /* Economy */ Its the US

/* Economy */ update CPI /* Economy */ update
inflation data

D
eu

ts
ch

la
nd

Änderungen von Benutzer
: UNK rückgängig
gemacht und letzte

Version von Benutzer :
UNK wiederhergestellt

Änderungen von Benutzer
: UNK rückgängig
gemacht und letzte

Version von Benutzer :
Aka wiederhergestellt

/ * Von der Bonner zur
Berliner Republik (1990

–Gegenwart) * / kor .

/ * Von der Bonner zur
Berliner Republik (1990

–Gegenwart) * /

Table 3: Generated v/s original NL descriptions.

5 Results and Discussion

We summarize our results in terms of both ME-
TEOR and BLEU metrics on Table 1. Although
we think these metrics may not be completely com-
patible with our task, since it is not exactly trans-
lation, results show that they indeed provide a no-
tion of the degree of alignment between the modal-
ities we are mapping. To gain insight into this
we analyzed the cross-run correlation between each
metric and the validation cross-entropy loss. We
found that METEOR is generally more negatively

correlated with the loss. Given that this metric
uses language-specific resources, we think it may
be over-estimating the quality of the generated pas-
sages, as in our case they are not regular English
phrases. Based on these results, we relied on BLEU
to choose the best model each time.

As shown in Table 2, our approach consistently
outperforms the baseline. This is even clearer when
increasing the maximum length from 100 to 300,
which always considerably hinders the baseline’s
performance but has a comparatively smaller effect
on our model. For the particular case of Theano,
where the increment in length size affected BLEU
positively but METEOR negatively for our model,
we found that the sizes of both the source vo-
cabulary and the number of training instances in-
creased more compared to other cases —3% and
28% respectively— which could explain the abnor-
mal behavior.

In the case of youtube-dl, where MOSES per-
formed better than our approach, we found that the
change in maximum length produced a considerable
imbalance between the mean lengths of the source
and target sequences. Further work is needed to de-
vise a more effective learning strategy in such cases.

In terms of the modalities studied, we see that
for GitHub, while the gains of the proposed model
against MOSES for both Javascript and Python
projects are similar for both sequence length set-
tings –average of 13% and 12% for Javascript, and
11% and 10 % for Python– Python presents higher
variance, which is caused by the disparity in perfor-
mance between Theano and youtube-dl. In the case
of Wikipedia, the model performs consistentl well
across articles, always outperforming the baseline.

A more qualitative result is presented in Table
3, where we compare the generated descriptions
against the ground truth messages from the test set.
In general, we see that the model is able to con-
sistently generate semantically sound descriptions,
which are also semantically well correlated to the
reference messages. Our results also suggest the
emergence of rephrasing capabilities, as the mod-
els tend to choose general terms over more specific
ones, while also dropping parts of the messages that
may seem irrelevant.

An important note is that the model suffers from
hallucination, a common problem in sequence-to-

sequence models. Specifically, in the case of
GitHub, we see that for those projects whose NL
messages exhibit a fixed pattern in their structure,
such as in the case of youtube-dl where users add a
header denoting the file that was edited in the com-
mit, the model tends to more frequently hallucinate
the content of the message. In this case, as the con-
tent of the “header” section may be too specific for
the model to leverage on, we believe this restrains
the generation capabilities of the decoder, making it
more prone to memorization and therefore less able
to correctly generalize.

In the case of Wikipedia, we observed that in most
of the cases the model was able to correctly generate
the portion of the edit messages that lies between the
“/*” symbols, which again can be regarded as a mes-
sage “header”. Compared to the case of GitHub, the
nature of the header seems to be different, however.
We manually checked the messages and discovered
that most of the headers correspond to section titles
of the Wikipedia articles. For most of the Wikpe-
dia articles that we worked with, we found that wiki
editors tend to add this information as a “header”
as a way to more directly communicate with other
editors, in a way akin to what we observed in the
case of some GitHub projects. In this case, this be-
havior was more consistent across datasets. As the
“header” will probably be highly correlated to the
nature of the change introduced, we think in this
case the model is indeed able to leverage on this
content to correctly generate the message. However,
despite the model capabilities in terms of “header”
generation, we also observe cases of hallucination
in the parts of the messages that lie outside “head-
ers”. This is specially apparent in some of the exam-
ples for Donald Trump and United States, as Table 3
shows.

6 Conclusions and Future work

In this paper we proposed to study the automatic
generation of descriptions for editing behavior in
online content. Concretely, we introduced models
based on the encoder-decoder architecture that are
able to generate natural language descriptions for
editing activities in Wikipedia and GitHub.

We think our results could represent a concrete
contribution in improving our understanding of the

evolution knowledge bases, in terms of both soft-
ware and scientific documentation, from a linguis-
tic perspective. We envision this as a tool that
could be useful for supporting documentation and
quality-related tasks in collaborative environments,
where human supervision is insufficient or not al-
ways available.

In terms of future work, one of the main lines we
intend to explore is the the design of an ad-hoc met-
ric for automatic evaluation of the generated mes-
sages. Alongside that, we also intend to do an in-
depth human study for a more comprehensive vali-
dation and assessing the usefulness of the descrip-
tions we generate. On the other hand, we also intend
to improve our models by allowing feature learning
from richer inputs, such as abstract syntax trees and
also functional such as execution traces in the case
of GitHub.

Finally, in this work we have resorted to diff files
as a primary source of input information, which
means our representation contains redundant infor-
mation and may therefore be inefficient. Although
our results showed that this representation works
fairly well for the proposed setting, at the same time
providing us a model that is language agnostic, we
would like to explore other alternatives to model the
input. In particular, we are interested in models that
directly take a pair of versions of a given document,
for example the version before and after a certain in-
troduced change, allowing us to generalize our pro-
posal to different time scales.

Acknowledgments

We are grateful for the support provided by the
NVIDIA Corporation, donating two of the GPUs
used for this research.

References
[Allamanis et al.2016] Miltiadis Allamanis, Hao Peng,

and Charles Sutton. 2016. A convolutional atten-
tion network for extreme summarization of source
code. In International Conference on Machine Learn-
ing (ICML).

[Bahdanau et al.2015] Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate.
In Proceedings of the 2015 International Conference
on Learning Representations, San Diego, California.

[Batista et al.2017] Natércia A. Batista, Michele A.
Brandão, Gabriela B. Alves, Ana Paula Couto da Silva,
and Mirella M. Moro. 2017. Collaboration strength
metrics and analyses on github. In Proceedings of the
International Conference on Web Intelligence, WI ’17,
pages 170–178, New York, NY, USA. ACM.

[Bertoldi et al.2009] Nicola Bertoldi, Haddow Barry, and
Jean-Baptiste Fouet. 2009. Improved minimum error
rate training in moses. The Prague Bulletin of Mathe-
matical Linguistics, pages 1–11.

[Brandl2016] Georg Brandl. 2016. Pygments: Python
syntax highlighter. http://pygments.org.

[Buse and Weimer2010] Raymond P.L. Buse and West-
ley R. Weimer. 2010. Automatically documenting
program changes. In Proceedings of the IEEE/ACM
International Conference on Automated Software En-
gineering, ASE ’10, pages 33–42, New York, NY,
USA. ACM.

[Chisholm et al.2017] Andrew Chisholm, Will Radford,
and Ben Hachey. 2017. Learning to generate one-
sentence biographies from wikidata. In Proceedings
of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1,
Long Papers, pages 633–642, Valencia, Spain, April.
Association for Computational Linguistics.

[Cho et al.2014] Kyunghyun Cho, Bart van Merrienboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014. Learning
Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1724–1734,
Doha, Qatar, October. Association for Computational
Linguistics.

[Cortés-Coy et al.2014] Luis Fernando Cortés-Coy,
Mario Linares Vásquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On automatically generating
commit messages via summarization of source code
changes. In SCAM, volume 14, pages 275–284.

[Crowston et al.2007] Kevin Crowston, Qing Li, Kangn-
ing Wei, U Yeliz Eseryel, and James Howison. 2007.
Self-organization of teams for free/libre open source
software development. Information and software tech-
nology, 49(6):564–575.

[Dabbish et al.2012] Laura Dabbish, Colleen Stuart, Ja-
son Tsay, and Jim Herbsleb. 2012. Social coding
in github: transparency and collaboration in an open
software repository. In Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work,
pages 1277–1286. ACM.

[Gandon et al.2016] F. Gandon, R. Boyer, O. Corby, and
A. Monnin. 2016. Wikipedia editing history in dbpe-
dia: Extracting and publishing the encyclopedia edit-
ing activity as linked data. In 2016 IEEE/WIC/ACM

International Conference on Web Intelligence (WI),
pages 479–482, Oct.

[Gousios et al.2014] Georgios Gousios, Martin Pinzger,
and Arie van Deursen. 2014. An exploratory study of
the pull-based software development model. In Pro-
ceedings of the 36th International Conference on Soft-
ware Engineering, pages 345–355. ACM.

[Guzman et al.2014] Emitza Guzman, David Azócar, and
Yang Li. 2014. Sentiment analysis of commit com-
ments in github: An empirical study. In Proceedings
of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pages 352–355, New York,
NY, USA. ACM.

[Heafield et al.2013] Kenneth Heafield, Ivan
Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn.
2013. Scalable modified Kneser-Ney language model
estimation. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics,
pages 690–696, Sofia, Bulgaria, August.

[Hindle et al.2012] Abram Hindle, Earl T Barr, Zhendong
Su, Mark Gabel, and Premkumar Devanbu. 2012.
On the naturalness of software. In 2012 34th Inter-
national Conference on Software Engineering (ICSE),
pages 837–847. IEEE.

[Hinton1984] Geoffrey E Hinton. 1984. Distributed rep-
resentations.

[Iyer et al.2016] Srinivasan Iyer, Ioannis Konstas, Alvin
Cheung, and Luke Zettlemoyer. 2016. Summarizing
source code using a neural attention model. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2073–2083, Berlin, Germany, August.
Association for Computational Linguistics.

[Jiang and McMillan2017] Siyuan Jiang and Collin
McMillan. 2017. Towards Automatic Generation of
Short Summaries of Commits. pages 320–323. IEEE,
May.

[Jiang et al.2017] Siyuan Jiang, Ameer Armaly, and
Collin McMillan. 2017. Automatically generating
commit messages from diffs using neural machine
translation. pages 135–146. IEEE, October.

[Kiesel et al.2017] Johannes Kiesel, Martin Potthast,
Matthias Hagen, and Benno Stein. 2017. Spatio-
temporal analysis of reverted wikipedia edits.

[Kiss and Strunk2006] Tibor Kiss and Jan Strunk. 2006.
Unsupervised multilingual sentence boundary detec-
tion. Comput. Linguist., 32(4):485–525, December.

[Koehn et al.2007] Philipp Koehn, Hieu Hoang, Alexan-
dra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondrej Bo-
jar, Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine

http://pygments.org

translation. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and
Poster Sessions, pages 177–180, Prague, Czech Re-
public, June. Association for Computational Linguis-
tics.

[Lavie and Agarwal2007] Alon Lavie and Abhaya Agar-
wal. 2007. Meteor: An automatic metric for mt evalu-
ation with high levels of correlation with human judg-
ments. In Proceedings of the Second Workshop on Sta-
tistical Machine Translation, StatMT ’07, pages 228–
231, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

[Linares-Vásquez et al.2015] Mario Linares-Vásquez,
Luis Fernando Cortés-Coy, Jairo Aponte, and Denys
Poshyvanyk. 2015. Changescribe: A tool for
automatically generating commit messages. In
Proceedings of the 37th International Conference
on Software Engineering-Volume 2, pages 709–712.
IEEE Press.

[Liu et al.2018] Zhongxin Liu, Xin Xia, Ahmed E. Has-
san, David Lo, Zhenchang Xing, and Xinyu Wang.
2018. Neural-machine-translation-based commit mes-
sage generation: How far are we? In Proceedings of
the 33rd ACM/IEEE International Conference on Au-
tomated Software Engineering, ASE 2018, pages 373–
384, Montpellier, France, September. Association for
Computing Machinery.

[Liu et al.2019a] Qin Liu, Zihe Liu, Hongming Zhu,
Hongfei Fan, Bowen Du, and Yu Qian. 2019a. Gen-
erating Commit Messages from Diffs Using Pointer-
generator Network. In Proceedings of the 16th Inter-
national Conference on Mining Software Repositories,
MSR ’19, pages 299–309, Piscataway, NJ, USA. IEEE
Press.

[Liu et al.2019b] Shangqing Liu, Cuiyun Gao, Sen Chen,
Lun Yiu Nie, and Yang Liu. 2019b. ATOM: Commit
Message Generation Based on Abstract Syntax Tree
and Hybrid Ranking. arXiv:1912.02972 [cs], Decem-
ber.

[Loyola et al.2017] Pablo Loyola, Edison Marrese-
Taylor, and Yutaka Matsuo. 2017. A neural
architecture for generating natural language descrip-
tions from source code changes. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 287–292, Vancouver, Canada, July. Association
for Computational Linguistics.

[Loyola et al.2018] Pablo Loyola, Edison Marrese-
Taylor, Jorge Balazs, Yutaka Matsuo, and Fumiko
Satoh. 2018. Content Aware Source Code Change
Description Generation. In Proceedings of the 11th
International Conference on Natural Language
Generation, pages 119–128, Tilburg University,

The Netherlands. Association for Computational
Linguistics.

[Luong et al.2015] Thang Luong, Hieu Pham, and
Christopher D. Manning. 2015. Effective approaches
to attention-based neural machine translation. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1412–1421, Lisbon, Portugal, September. Association
for Computational Linguistics.

[Marcus et al.1993] Mitchell P Marcus, Mary Ann
Marcinkiewicz, and Beatrice Santorini. 1993. Build-
ing a large annotated corpus of english: The penn
treebank. Computational linguistics, 19(2):313–330.

[Marrese-Taylor et al.2019] Edison Marrese-Taylor,
Pablo Loyola, and Yutaka Matsuo. 2019. An
Edit-centric Approach for Wikipedia Article Quality
Assessment. In Proceedings of the 5th Workshop on
Noisy User-Generated Text (W-NUT 2019), pages
381–386, Hong Kong, China, November. Association
for Computational Linguistics.

[McIntosh and Kamei2017] Shane McIntosh and Yasu-
taka Kamei. 2017. Are fix-inducing changes a moving
target? a longitudinal case study of just-in-time defect
prediction. IEEE Transactions on Software Engineer-
ing.

[Mikolov et al.2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. 2013. Dis-
tributed Representations of Words and Phrases and
their Compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger, ed-
itors, Advances in Neural Information Processing Sys-
tems 26, pages 3111–3119. Curran Associates, Inc.

[Nielek et al.2016] R. Nielek, O. Jarczyk, K. Pawlak,
L. Bukowski, R. Bartusiak, and A. Wierzbicki. 2016.
Choose a job you love: Predicting choices of github
developers. In 2016 IEEE/WIC/ACM International
Conference on Web Intelligence (WI), pages 200–207,
Oct.

[Och2003] Franz Josef Och. 2003. Minimum error rate
training in statistical machine translation. In Proceed-
ings of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 160–167, Sapporo,
Japan, July. Association for Computational Linguis-
tics.

[Papineni et al.2002] Kishore Papineni, Salim Roukos,
Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method
for automatic evaluation of machine translation. In
Proceedings of 40th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA, July. Association
for Computational Linguistics.

[Proisl and Uhrig2016] Thomas Proisl and Peter Uhrig.
2016. Somajo: State-of-the-art tokenization for ger-
man web and social media texts. In Proceedings of the

9th Web as Corpus Workshop (WaC-X) and the Em-
piriST Shared Task, pages 57–62, Berlin, Germany.
Association for Computational Linguistics.

[Sarkar et al.2019] Soumya Sarkar, Bhanu Prakash
Reddy, Sandipan Sikdar, and Animesh Mukherjee.
2019. StRE: Self Attentive Edit Quality Prediction in
Wikipedia. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3962–3972, Florence, Italy, July. Association
for Computational Linguistics.

[Su and Liu2015] Q. Su and P. Liu. 2015. A psycho-
lexical approach to the assessment of information
quality on wikipedia. In 2015 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence and In-
telligent Agent Technology (WI-IAT), volume 3, pages
184–187, Dec.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V Le. 2014. Sequence to sequence learning with
neural networks. In Advances in neural information
processing systems, pages 3104–3112.

[Von Krogh et al.2003] Georg Von Krogh, Sebastian
Spaeth, and Karim R Lakhani. 2003. Community,
joining, and specialization in open source software in-
novation: a case study. Research Policy, 32(7):1217–
1241.

[Yang et al.2017] Diyi Yang, Aaron Halfaker, Robert
Kraut, and Eduard Hovy. 2017. Identifying Semantic
Edit Intentions from Revisions in Wikipedia. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2000–
2010, Copenhagen, Denmark. Association for Com-
putational Linguistics.

[Yin et al.2019] Pengcheng Yin, Graham Neubig, Mil-
tiadis Allamanis, Marc Brockschmidt, and Alexan-
der L. Gaunt. 2019. Learning to Represent Edits.
In Proceedings of the 7th International Conference on
Learning Representations.

[Zhang et al.2017] Amy X. Zhang, Lea Verou, and David
Karger. 2017. Wikum: Bridging discussion fo-
rums and wikis using recursive summarization. pages
2082–2096.

	Introduction
	Related Work
	Proposed Approach
	Empirical Study
	Wikipedia
	GitHub

	Results and Discussion
	Conclusions and Future work

