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Abstract

Word embeddings are used in various fields of
natural language processing. The use of word
embeddings and concept or word sense em-
beddings demonstrated effectiveness in many
tasks, such as machine translation and text
summarization. However, it is difficult to ob-
tain a sufficiently large concept-tagged cor-
pus, as the annotation of concept-tags is time-
consuming. Therefore, in this paper, we pro-
pose a method for generating concept em-
beddings of Word List by Semantic Princi-
ples, a Japanese thesaurus, using both a cor-
pus tagged by an all-words word sense dis-
ambiguation (WSD) system and a manually
tagged corpus. We generated concept em-
beddings via fine-tuning using both an auto-
matically tagged corpus and a small manually
tagged corpus. In this paper, we propose a
novel method of evaluating concept embed-
dings using the tree structure of Word List
by Semantic Principles. Experiments revealed
the effectiveness of fine-tuning. The best per-
formance was achieved when the concept em-
beddings were initially trained with a corpus
tagged by an all-words WSD system and re-
trained with a manually tagged corpus.

1 Introduction

In this paper, we propose a technique for generat-
ing concept embeddings using fine-tuning and two
types of corpora. In recent years, word embeddings,
which are distributed representations of words with
low-dimensional vectors, and concept ' (or word

! Concept refers to a meaning unit of Word List by Semantic
Principles.

sense) embeddings demonstrated their effectiveness
in a number of tasks, such as machine translation
and text summarization.

Word embeddings are usually generated using
text corpora. It is possible to generate concept em-
beddings by the same method used to generate word
embeddings if the word sequence (i.e., text cor-
pus) is replaced with a concept sequence constructed
from a concept-tagged corpus. However, it is dif-
ficult to obtain a sufficiently large concept-tagged
corpus because the annotation of concept tags is
time-consuming. There have been several studies
that assigned word senses using the all-words word
sense disambiguation (WSD) method (Edmonds and
Cotton, 2001), (Snyder and Palmer, 2004), (Nav-
igli et al., 2007), (Iacobacci et al., 2016), (Raganato
et al., 2017a), (Raganato et al., 2017b), (Suzuki et
al., 2018), (Shinnou et al., 2018). As a result, it is
possible to create a concept-tagged corpus using the
methods proposed in these studies. However, the re-
sults of all-words WSD systems are not always cor-
rect; therefore, an automatically tagged corpus cre-
ated via all-words WSD may not be suitable for gen-
erating concept embeddings.

In this paper, we generate concept embeddings
of Word List by Semantic Principles (WLSP) (Na-
tional Institute for Japanese Language and Linguis-
tics, 1964), a Japanese thesaurus, from manually and
automatically tagged corpora. First, concept embed-
dings are generated from a concept-tagged corpus
tagged by an all-words WSD system and are fine-
tuned using a small, highly accurate corpus in which
the concept tags are manually annotated. For com-
parison, we also generate the following concept em-



beddings: (1) concept embeddings generated from
only a small, highly accurate corpus in which the
concept tags are manually annotated, (2) concept
embeddings generated from only a concept-tagged
corpus tagged by an all-words WSD system, and (3)
concept embeddings initially trained with a small,
highly accurate corpus in which the concept tags are
manually annotated and fine-tuned using a concept-
tagged corpus tagged by an all-words WSD sys-
tem. The obtained concept embeddings are evalu-
ated by rankings measured by the distances between
the concept embeddings based on the tree structure
of WLSP, which is a proposed evaluation method in
this paper.

2 Related Work

In recent years, word embeddings have been widely
used in various fields of natural language processing.
In addition, there have been a number of studies on
the generation of concept (or word sense) embed-
dings.

For example, a study by Ouchi et al. (2016), to
construct distributed representations of word senses,
the authors utilized the distributed representations
of synonyms of each word sense. In addition, Ya-
maki et al. (2017) proposed a method for construct-
ing sense embeddings using training data with sense
tags and the multi-sense skip-gram (MSSG) model,
which considers the frequency of each word sense.
However, these studies did not use a sense-tagged
corpus, but rather, a regular text corpus and word
embeddings.

Word embeddings are usually generated using a
text corpus that is a word sequence. Concept or word
sense embeddings can be generated using the same
tools as for a sense-tagged corpus, that is, a word
sense sequence or concept sequence instead of a text
corpus. However, it is generally difficult to obtain a
sufficiently large sense-tagged corpus, as only sev-
eral are available and most are small.

If there are insufficient tagged corpora, automatic
generation of tagged corpora may be helpful. A
concept-tagged corpus can be automatically created
with the all-words WSD system. There are several
studies on all-words WSD systems. For example,
in studies by Raganato et al. (2017a) and Shinnou
et al. (2018), all-words WSD is considered a label-

ing problem in which every word is assigned a con-
cept tag. Using an automatic tagger, it is possible to
create a concept-tagged corpus. However, an auto-
matic tagger does not always produce correct results.
For example, there may be cases in which concept
tags are not assigned to new words. In these cases,
the concept-tagged corpus would not be suitable for
generating concept embeddings.

Therefore, in this study, we generate concept em-
beddings of WLSP using two types of corpora: a
large corpus in which the concept tags are assigned
using the all-words WSD method and a manually
tagged corpus.

3 Generation of Concept Embeddings

We generated four types of vectors using two cor-
pora tagged with concepts from WLSP.

3.1 WLSP

WLSP is a Japanese thesaurus in which a word is
classified and ordered according to its meaning. A
WLSP record is composed of the record ID num-
ber, lemma number, record type, class, division,
section, article, concept number, paragraph num-
ber, small paragraph number, word number, lemma
with explanatory note, lemma without explanatory
note, reading and reverse reading. The concept num-
ber consists of a category, medium item, and clas-
sification item. In WLSP, some words are polyse-
mous; for example,“¥- fit (child or children)” is a
polyseme, and two concepts are registered in WLSP:
1.2050 and 1.2130 (Table 1).

The tree structure of WLSP is illustrated in Figure
1.

3.2 Corpora

In this study, we used two concept-tagged corpora
based on the Balanced Corpus of Contemporary
Written Japanese (BCCWJ) (Maekawa et al., 2014).
The first corpus is a large corpus in which concept
tags were automatically assigned using the all-words
WSD method. We used an all-words WSD tagger
proposed by (Shinnou et al., 2018). Hereinafter,
this corpus is referred to as the all-words WSD cor-
pus. The second corpus is a small corpus in which
concept tags were manually assigned. We used the
annotation data of WLSP by the National Institute
of Japanese Language and Linguistics (Kato et al.,



Concept number Class Division | Section Article
1.2050 Nominal words | Agent | Human Young or old
1.2130 Nominal words | Agent | Family | Child or descendant

Table 1: Concept tags and their corresponding class, division, section, and article of “F-fit (child or children)” from

Word List by Semantic Principles

Class Division

Section

Article

Figure 1: Tree structure of Word List by Semantic Principles

2018). This corpus is in its infancy. Hereinafter, this
corpus is referred to as the manual corpus. There are
two types of BCCWI: the core and non-core data.
For the core data, the word tokenization is manu-
ally conducted, but for the non-core data, word to-
kenizer, MeCab with Unidic dictionary is used for
the word tokenization. The core data includes ap-
proximately 1,300,000 words and the non-core data
includes approximately 25,800,000,000 words. The
core data is included in the non-core data. We used
the non-core data including the core data for the all-
words WSD corpus, with the concept tag annotation
via the all-words WSD system. The manual corpus
is the part of the core data with manual annotation
of the concept tags, which includes approximately
340,000 words.

Examples of the text corpus and a generated con-
cept sequence are presented in Table 2. In the table,
an original Japanese text, its English translation and
concept sequence are shown. The concepts of “7%

< and “7¢\ Y are both 3.1200 because they are the

same words after lemmatization. Table 3 presents
the number of words, vocabulary, and concepts in
each corpus.

3.3 Vectors

In this study, word2vec® (Mikolov et al., 2013a;
Mikolov et al., 2013b; Mikolov et al., 2013c) was
used to generate concept embeddings. Then, fine-
tuning was performed. Fine-tuning is a method
in which generated distributed representations are

https://code.google.com/archive/p/
word2vec/

given as initial values and retrained with a new cor-
pus. The following four types of concept embed-
dings were created:

e All-words WSD vector: concept embeddings
were trained with the all-words WSD corpus.

e All-words WSD-fine vector: concept embed-
dings were trained with the all-words WSD
corpus and retrained with a manual corpus.

e Manual vector: concept embeddings were
trained with a manual corpus.

e Manual-fine vector: concept embeddings were
trained with a manual corpus and retrained with
the all-words WSD corpus.

When fine-tuning the embeddings, vectors of the
new words in the new corpus were generated if the
number of occurrences of the new words exceeded
the threshold value.

4 Evaluation of Concept Embeddings

We evaluated the concept embeddings using WLSP.
Because WLSP has a tree structure, we assume that
concepts that belong to the same node are similar to
each other. Figure 2 presents an example of leaves
of WLSP. In this figure, we assume that the concept
of wolf is closer to that of hyena than that of cat or
dog. Based on this assumption, evaluation of the
generated concept embeddings was performed.



Text )T LTIV

English translation It is not a thing but a heart, isn’t it?

Concept sequence | 1.4000 C 3.1200

1.3000 C 14 3.1200 & H»

Table 2: Example of concept-tagged corpus

Concept Embeddings Words

Vocabulary | Concepts

All-words WSD corpus | 23,968,826

75,028 851

Manual corpus | 347,094

3,164 916

Table 3: Number of words, vocabulary, and concepts in each corpus

Leaf 1 Leaf 2 Leaf 3
Wolf Cat Dog

Hyena

Figure 2: Example of leaves of Word List by Semantic
Principles

4.1 Evaluation Procedure

The evaluation procedures were as follows.

1. For each concept c of the concept embed-
dings e, identify a corresponding leaf node n
in WLSP.

For example, if c is the concept of wolf, the cor-
responding node n includes concepts such as
hyena. In Figure 2, n is Leaf 1. In this method,
we assume that every concept has at least two
words so that the distance between them can be
calculated.

2. Obtain a sibling leaf node set N of n. 6

A sibling leaf node set N includes a node that
contains a concept such as cat and another node
that contains a concept such as dog. In Figure
2, N includes Leaves 2 and 3.

3. Calculate d., the average distance between e
and the concept embeddings of all concepts in
n except for c. 7.

For this step, we calculated d., the average dis-
tance between the concept embeddings of wolf
and the concept embeddings of hyena and other
concepts in n (Leaf 1). We used the arithmetic
mean to average the distance.

Calculate the average distances d...d|y| be-
tween e and the concept embeddings of all con-
cepts in each leaf node in V.

We calculated the average distance between
concept embeddings of wolf and the concept
embeddings of all concepts from the node con-
taining cat, and obtained d;. Likewise, we cal-
culated the average distance between the con-
cept embeddings of wolf and the concept em-
beddings of all concepts from the node contain-
ing dog, and obtained ds. Following this step,
we obtained the averaged distances dj...d) .

. Obtain the ranking of n compared with all

nodes in IV based on the average distance from
€;.

We compared d .. .d| N and d., and obtained the
ranking of d.. For example, if d. was the sec-
ond shortest in dl...d|N| and d., n was in sec-
ond place.

. Obtain the closest distance d;,s. and the clos-

est leaf node to e based on the average distance.

We obtained the closet leaf node to e. For ex-
ample, if the closest leaf node to the concept
wolf was the node that contained the concept
dog, do would be the shortest, which signifies
that dgjpse = do.

Obtain d. — djpse-



We calculated d. — d_j,se, Which is the differ-
ence between the average distances from the
concept in first place. In other words, we cal-
culated the difference between the average dis-
tance between wolf and concepts such as hyena,
which is the node that wolf belongs to in WLSP,
and the average distance between wolf and con-
cepts such as dog, which was in first place. If
all rankings of n were first place, the difference
would be zero.

In this manner, we evaluated the concept embed-
dings that were generated using ranking and d, —

dclose-

4.2 Experimental Settings

For the parameters used in the calculation of
word2vec, we used 200 dimensions, 5 window sizes,
1,000 batch sizes, and 5 iterations. We used CBOW
as the algorithm. The training parameters used for
fine-tuning were identical to the ones used when
the original concept embeddings were generated in
advance. Cosine similarity was used to compare
the distances between the generated concept embed-
dings.

4.3 Results

Table 4 presents the average ranking of the cor-
rect nodes, which are the nodes that each concept
whose embeddings were generated by this method
belonged to. Table 4 also displays the average dif-
ference between the closest leaf node and the correct
nodes, and the average number of leaf nodes. This
table indicates that the poorest ranking of each con-
cept embeddings was 6.868 for the manual vector.
Because the average number of leaf nodes was 42,
the average ranking of a random selected node was
approximately 21. This suggests that, even when
concept embeddings were generated using the worst
method, the ranking of the nodes produced better re-
sults than when the random baseline was used.

5 Discussion

Table 4 indicates that the average ranking and differ-
ence of the all-words WSD-fine vector were smaller
than those of the all-words WSD vector. In addition,
the average ranking and difference of manual-fine
vector were smaller than those of the manual vector.

Smaller values of the average ranking and difference
indicate better performance; therefore, these results
demonstrate that fine-tuning improved the vectors.
Table 4 also indicates that the results of the all-words
WSD vector were superior to those of the manual
vector, while the all-words WSD-fine vector was su-
perior to the manual-fine vector. The poorest results
were associated with the manual vector. These re-
sults suggest that the all-words WSD corpus is ef-
fective for generating concept embeddings without
fine-tuning or for initial training of fine-tuning. We
believe that a large corpus is necessary for generat-
ing improved word embeddings. We used the same
parameters of word2vec for all vectors, which were
tuned so that the results of the manual vector, the
method with the poorest performance, could achieve
the best performance. The other three vectors (i.e.,
all-words WSD vector, all-words WSD-fine vector,
manual-fine vector) could be improved if the param-
eters were tuned for each method. This is because
the results of vectors often improve when the param-
eters are tuned depending on the size and character-
istics of the corpora. Table 5 presents the evalua-
tion results of the all-words WSD vector and manual
vector generated with 10 iterations. Other parame-
ters are identical to those used in the experiments
presented in Table 4. The results in Table 5 are infe-
rior to those in Table 4; therefore, extensive experi-
ments are necessary to tune the parameters suitable
for each corpus.

The number of words in the all-words WSD cor-
pus was approximately 69 times larger than the num-
ber of words in the manual corpus (see Table 3). In
addition, according to Shinnou et al. (2018), the ac-
curacy of the WSD system was approximately 80%
for all words and approximately 70% for all ambigu-
ous words in the test corpus (the annotation data of
WLSP). In our experiments, the test corpus would be
identical to the manual corpus and sub-corpus of the
all-words WSD corpus if concept tags were removed
and manually tagged. Therefore, we assume that the
accuracy of the all-words WSD corpus would be ap-
proximately 70% or 80%. The results of the con-
cept embeddings trained with the all-words WSD
corpus were superior to the results of the concept
embeddings trained with the manual corpus regard-
less of whether fine-tuning was used. This demon-
strates that the all-words WSD corpus was superior



Concept Embeddings | Avg. Ranking | Avg. Difference from First Place | Number of Leaf Nodes
All-words WSD vector 2.945 0.059 42
All-words WSD-fine vector 2.644 0.046 42
Manual vector 6.868 0.102 42
Manual-fine vector 3.143 0.049 42
Table 4: Evaluation by ranking measured by distance
Concept Embeddings | Avg. Ranking | Avg. Difference from First Place | Number of Leaf Nodes
All-words WSD vector 3.217 0.043 42
Manual vector 7.52 0.105 42

Table 5: Evaluation by ranking using distance with 10 iterations

to the manual corpus in generating concept embed-
dings. In other words, our experiments revealed
that the corpus that was concept-tagged with 70% or
80% accuracy and whose size was approximately 69
times larger, was more suitable for generating con-
cept. However, it cannot be claimed that when gen-
erating concept embeddings, the corpus size is more
important than the accuracy of the concept tags of
the corpus. Therefore, we conducted additional ex-
periments to investigate the effect of the size of the
all-words WSD corpus. Table 6 presents the average
ranking of correct nodes, average difference from
the concept in first place, and the number of leaf
nodes according to the size of the all-words WSD
corpus. We tested 10% to 100% of the size of the
entire corpus in increments of 10%. This figure in-
dicates that the average ranking monotonically im-
proved from 10% to 60%, worsened at 70%, 80%
and 90%, and achieved the best value when the en-
tire corpus was used.

Finally, according to Table 4, we can observe the
effect of order of the data used for training and re-
training of word-embeddings. All-words WSD-fine
vector and manual-fine vector use both the manual
corpus and the all-words WSD corpus. The differ-
ence of two method is order of the data. It indicates
that not only the size of the data but also the order of
the data used for training and fine-tuning is impor-
tant to improve the quality of word embeddings.

However, additional experiments are necessary to
investigate the relationship between accuracy and
corpus size.

For future work, other algorithm for word2vec,

skip-gram can be tried instead of CBOW algorithm.
Also, other word embeddings such as GloVe or fast-
Text could be other options.

6 Conclusion

In this study, we generated concept embeddings us-
ing a concept-tagged corpus that was tagged by an
all-words WSD system, and using fine-tuning. In
addition, we evaluated the concept embeddings us-
ing rankings measured by the distances between
the concept embeddings based on the tree structure
of WLSP. We compared four concept embeddings:
1) concept embeddings that were trained with a
concept-tagged corpus tagged by an all-words WSD
system, 2) concept embeddings that were trained
with a small and manually tagged corpus, 3) concept
embeddings of 1) that were fine-tuned with a small
and manually tagged corpus, and 4) concept embed-
dings of 2) that were fine-tuned with a cocept-tagged
corpus tagged by an all-words WSD system. Ex-
periments revealed that fine-tuning was effective in
generating better concept embeddings when we uti-
lized a small, manually tagged corpus and a corpus
that was concept-tagged by an all-words WSD sys-
tem. The all-words WSD-fine vector, which repre-
sented the concept embeddings initially trained with
a large corpus automatically tagged by an all-words
WSD system and fine-tuned with a small, manually
tagged corpus, was superior when the concept em-
beddings were evaluated using the tree structure of
WLSP.




Percentage of corpus used | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%
All-words WSD vector | 5.458 | 4.531 | 4.156 | 4.055 | 3.843 | 3.707 | 3.848 | 3.705 | 3.770 | 3.455
All-words WSD-fine vector | 4.689 | 4.004 | 3.750 | 3.663 | 3.449 | 3.474 | 3.470 | 3.447 | 3.613 | 3.087
manual-fine vector | 5.184 | 4.694 | 4.331 | 4.205 | 3.896 | 3.888 | 4.054 | 3.917 | 4.017 | 3.619

Table 6: Evaluation by ranking using distance according to the size of the all-words word sense disambiguation (WSD)

corpus
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