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Abstract
In this paper, we describe our efforts at OSACT Shared Task on Offensive Language Detection. The shared task consists of two subtasks:
offensive language detection (Subtask A) and hate speech detection (Subtask B). For offensive language detection, a system combination
of Support Vector Machines (SVMs) and Deep Neural Networks (DNNs) achieved the best results on development set, which ranked
1st in the official results for Subtask A with F1-score of 90.51% on the test set. For hate speech detection, DNNs were less effective and
a system combination of multiple SVMs with different parameters achieved the best results on development set, which ranked 4th in
official results for Subtask B with F1-macro score of 80.63% on the test set.
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1. Introduction

Detecting offensive language or hate speech on social me-
dia has gained a lot of interest recently. Use of offensive
language and hate speech on social media can be an indi-
cation of hate crimes, toxic environment or level of antago-
nism against individuals or particular groups. Detecting of-
fensive language and hate speech can also help in filtering
out inappropriate content for users. Although there is a lot
of research on detecting offensive language and hate speech
(Agrawal and Awekar, 2018; Djuric et al., 2015; David-
son et al., 2017), work on Arabic offensive language detec-
tion is still in its early stages with very few notable works
(Mubarak and Darwish, 2019; Mubarak et al., 2017; Albadi
et al., 2018; Alakrot et al., 2018). Mubarak and Darwish
(2019) report that only 1-2% of the tweets are offensive.
The highly skewed distribution of data makes it extremely
difficult to build useful datasets and effective systems. OS-
ACT4 shared task (Mubarak et al., 2020) presents the prob-
lem of detecting offensive language and hate speech in Ara-
bic tweets to the community. The shared task consists of
2 subtasks: offensive language detection (subtask A), and
hate speech detection (subtask B).
This paper describes the systems submitted for OSACT4
shared task on Offensive Language Detection by the team
ALT. First, we experimented with classical machine learn-
ing classifiers such as Support Vector Machines (SVMs)
that are trained on character and word-level features. Then,
we experimented with Deep Neural Networks (DNNs) and
Bidirectional Encoder Representations from Transformers
(BERT). SVMs were seen to outperform the DNNs and
BERT. Since we expect the different kinds of classifier to
make different kinds of errors, we take the most promis-
ing and diverse individual classifiers and perform voting to
decide the final output. Majority voting on SVMs, DNNs
and BERT yielded better results than individual systems for
subtask A on the development set. The best results on de-
velopment set for subtask B were obtained by combining
the output of different SVMs and considering an instance
to be hate speech if any of the classifiers voted it to be hate

speech.
In section 2, we describe the dataset and the tasks, in section
3, we describe our approach and compare results for sub-
task A, in section 4, we describe our approach and compare
results for subtask B and in section 5, we provide conclu-
sion of our work.

2. Dataset and Task Description
In this section, we describe the dataset provided to the par-
ticipants and the two subtasks.

2.1. Dataset
The dataset for OSACT Shared task consists of 10,000 Ara-
bic tweets that are tagged for offensiveness and hate speech.
The 10,000 tweets are split into training, development and
testing sets as shown in Table 1.

Train Dev Test
7,000 1,000 2,000

Table 1: Training, development and testing data split

The organizers note that the data is highly skewed. Only
19% of the tweets are tagged as offensive and 5% of the
tweets are tagged as hate speech. Table 2 shows examples
from the training set. If a tweet has offensive language (in-
sults or threats) targeting a group of people based on their
origin (nationality, race, or ethnicity), their ideology (reli-
gion, political affiliation, etc.), gender or any other common
characteristics, this is considered as hate speech, so all hate
speech tweets are offensive according to this definition.

2.2. Task Description
The participants were required to produce labels indicat-
ing if a tweet is offensive (subtask A) or hate speech (sub-
task B). Each tweet took one of these labels for subtask
A: ”OFF” (offensive) or ”NOT OFF” (not offensive), and
”HS” (Hate Speech) or ”NOT HS” (not Hate Speech) for
subtask B. The full train and development data were made
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Table 2: Examples from the dataset

available to the participants at the beginning of the shared
task. At a later stage, only the tweets from test split were
made available to the participants via Codalab. The test
labels remained unseen by the participants throughout the
shared task. The participants were evaluated on the test
labels produced by their systems in a blind test phase on
Codalab — without access to the participants’ own scores
or other participants’ scores. As the labels in each subtask
are not balanced, the macro-averaged F1 scores were used
for official ranking.

3. Subtask A: Offensive Language Detection
In this section, we discuss our approach in Subtask A. First,
we describe the preprocessing step. Then, we describe the
different models we experimented on and compare results
of different models. Lastly, we perform an error analysis to
understand the limitations of our models and the dataset.

3.1. Preprocessing Tweets
Preprocessing the tweets is an important step as the data
from social media can be quite noisy as they contain a lot
of emojis, text in mixed languages, excessive use of punc-
tuation etc. It is important to note that some of our models
(described in the next subsection) use pretrained word em-
beddings as feature. In order to reduce noise and be able
to find more words in the embeddings, we perform the fol-
lowing steps for preprocessing the tweets.
Step 1: Remove all words that contain non-Arabic charac-
ters.
Step 2: Remove all diacritics.
Step 3: Remove all punctuation.
Step 4: Replace repeated characters with only one.

In our initial experiments, we noticed that the settings listed
above produces the best results. Therefore, we keep the
same preprocessing settings for all experiments.

3.2. System Descriptions
We experimented on a myriad of classifiers including clas-
sical machine learning classifiers such as Support Vec-
tor Machines (SVMs), Logistic Regression (LR), Multi-
nomial Naive Bayes (MNB), and deep learning classifiers
such as Feed-forward Neural Network (FFNN), Convolu-
tional Neural Network (CNN), Bidirectional Long Short
Term Memory (BiLSTM), and Bidirectional Encoder Rep-
resentations from Transformers (BERT). LR and MNB per-
formed quite poorly, and therefore, excluded from the dis-
cussion that follows. The results on development set for rest
of the classifiers are discussed next and are summarized in
table 3. Note that the values for precision, recall and F1 are
macro averaged and F1-macro is the official metric.

3.2.1. SVMs
As the features for SVMs, we transform the tweets into bag-
of-n-grams vector weighted with logarithmic term frequen-
cies (tf) multiplied with inverse document frequencies (idf).
We created both character and word n-grams this way. We
experimented with different ranges of character and word
n-grams. We also experimented on using Mazajak embed-
dings (Abu Farha and Magdy, 2019) as features to SVM.
Mazajak embeddings were trained on Twitter data, which
matches the domain of data in our task. Therefore, we ex-
pect it to be more useful compared to other embeddings that
are trained on different domain of data (BERT-Multilingual,
for example). From table 3, we can see that the best re-
sults were obtained when character [1, 5] gram and word
[1−3] gram features were combined with pretrained Maza-
jak word embeddings.

3.2.2. FastText
FastText is an efficient deep-learning based system for
learning embeddings and performing text classification
(Joulin et al., 2016). Since the task of offensive language
detection is a text classification problem, we experimented
with FastText, but as we can see from Table 3, FastText was
outperformed by other systems.

3.2.3. FFNN
For the FFNN architecture, we use four hidden layers with
a different number of units (1000, 500, 500, 100) and a
sigmoid activation function in each layer, followed by an
softmax output layer. To train the network, we use a batch
size of 256, with maximum epochs of 50 and early stopping
using a 10% of the training set with similar distribution of
the labels. The models are then optimized using rmsprop
optimization function. The parameter were initialized with
small random numbers, sampled from a uniform distribu-
tion. Since other systems outperform FFNN, we have not
tuned the architecture for different parameters such as num-
ber of hidden units or the learning rates, among others.

3.2.4. CNN-BiLSTM
We use two sets of features for this model. First, we
have pretrained word embedding (Mazajak embeddings)
features for each word. Second, we use CNN as character-
level feature extractor. First layer of the network is used
to project the input string to character embeddings, which
is then passed through a convolutional layer and max-over-
time pooling is applied to obtain fixed length representation
of words. Character-level representations have been shown
to capture morphology of words (Kim et al., 2015). If we
were to use only word level features obtained from pre-
trained word embeddings, we would lose out information
when a word does not appear in the vocabulary of the pre-
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No. Model Features Acc. Prec. Recall F1
1 SVM Word [1-3] Gram 80.1 71.6 82.4 73.7
2 Char [1-5] Gram 91.5 78.9 90.8 83.3
3 Mazajak SG-250 92.2 85.5 90.2 87.6
4 Mazajak SG-100 + char[1-5] + word[1-3] 93 88.3 87.7 88
5 Mazajak SG-250 + char[1-5] + word[1-3] 94.3 89.8 91 90.4
6 FastText 89.5 85.5 75.7 79.4
7 FFNN Char [1-8] + Word [1-4] 91.9 87.1 84 85.1
8 CNN Mazajak SG-250 92.1 86.7 86.2 86.5
9 CNN-BiLSTM Mazajak SG-100 92.9 87.6 88.1 87.8
10 M-BERT 90.1 83 83.7 83.3
11 Ensemble(4+5+7+8) 94.3 89.9 91.1 90.5

Table 3: Comparison of different systems submitted to subtask A

Tweet True Majority Reason
Label Label
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Table 4: Error analysis of subtask A

trained embedding. The character-level features obtained
this way will provide us with information in such cases.
The character level representation of words are then merged
with the word embedding features and passed to the BiL-
STM. Then a softmax layer is used for projecting the prob-
ability distribution of the target classes. Note that the CNN
learns the character-level features jointly with the BiLSTM,
minimizing the cross entropy loss. Stochastic Gradient De-
scent (SGD) optimizer was used during the training.

3.2.5. BERT
Deep contextualized language models such as BERT. (De-
vlin et al., 2019) have been shown to perform really well
in many NLP tasks. We fine-tuned BERT-multilingual (re-
ferred to as M-BERT) for offensive language detection. M-
BERT is pretrained on Wikipedia text from 104 languages
that include Arabic. From Table 3, we can see that M-
BERT is outperformed by CNN-BiLSTM. We speculate
that this is because the domain of data M-BERT is trained
on, Wikipedia text, is quite different from the Twitter data
used in the shared task. Articles on Wikipedia are typically
written in a formal way and follow the structure and rules of
grammar. Text on social media platforms such as Twitter,
on the other hand, can be very informal and chaotic.

3.2.6. Ensemble Method
From table 3, we can see that several system are promising
and perform quite close to each other. Since these systems
are quite diverse (SVMs are quite different from BERT, for
example), they are likely to make different types of errors.
In order to improve our results, we experiment on com-
bining multiple systems. We took the output of two SVM

classifiers (No.4 and No.5), the CNN-BiLSTM (No.9) and
M-BERT (No.10) and performed majority voting to decide
on the label for each input. From table 3, we can see that
this ensemble method is the best system on the develop-
ment data and this is the system we submitted for official
ranking. The official scores for this system on the test set is
shown in table 5.

Official Acc. Prec. Recall F1
Rank
1st 93.85% 90.18% 90.85% 90.51%

Table 5: Official results on subtask A test set

NOT OFF OFF
NOT OFF 789 32
OFF 25 154

Table 6: Confusion matrix on subtask A dev set

3.3. Error analysis
To have a better understanding of where our system is
failing will help us improve our system in future and
understand the limitation of the data. We examine 100
samples from the development data and attempt to identify
where and why our best system (No. 11 from table 3) is
failing. Examining the specific tweets provides us with
some interesting insights. Table 4 lists examples of errors
made by our best performing system. The first entry in
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No. Model Features Acc. Prec. Recall F1
1 SVM Mazajak SG-250 + char[1-5] + word[1-3] 96.2 72 78.2 74.7
2 Char [2-6] Gram 97.1 72.5 88.8 78.2
3 Bagged SVM Mazajak SG-250 + char[1-5] + word[1-3] 96.4 68.9 81.3 73.4
4 CNN-BiLSTM Mazajak SG-100 + CNN Feature Extractor 95.9 76.1 67.5 70.9
5 M-BERT 95.7 72.4 74.9 73
11 Ensemble(1+2+3) 96.6 80 78.7 79.3

Table 7: Comparison of different systems submitted to subtask B

Tweet True Majority Reason
Label Label
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Table 8: Errors analysis of subtask B

the table contains reference to Game of Thrones. This
is offensive only if context of Game of Thrones is taken
into account. We cannot expect the classifier to be correct
on such instances. The second entry provides us with
an example of error that we can tackle in the future. We
see that the hashtag ¼ñ
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for our systems. In the future, we can attempt to parse the
hashtags into its constituent words and see if it improves
the performance. The third entry in the table is quite
interesting. The sentence uses an offensive word, ñ
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which means ”stealing”, but the sentence itself is not
offensive. It’s likely our system picked up the offensive
word but failed to take into account the context in which
the word was used. In future, we can particularly target
resolving issues of ambiguous use of words.

Table 6 shows the confusion matrix of our best system. We
can see that the classifier is much more likely to misclassify
offensive instance as not offensive compared to misclassi-
fying not offensive instances as offensive. This is to be
expected as the data is highly skewed with only 19% of the
instances being offensive.

4. Subtask B: Hate Speech Detection
For subtask B, The preprocessing is the same as section 3.
In this section, we describe the different models we experi-
mented on for subtask B, present the results for the different
models and discuss errors made by the models.

4.1. System Descriptions
Since same tweets are used for both the subtasks, for sub-
task B, we focused only on those systems that were promis-
ing in subtask A. These systems include SVMs, CNN-
BiLSTM and M-BERT. The accuracy, precision, recall and
F1 score are reported in Table 7. The precision, recall and
F1 scores are macro averaged.

4.1.1. SVMs
As the features for SVMs, we use the same features as sub-
task A. In addition, we also experiment with bagged SVM
(5 estimators). The SVMs outperformed CNN-BiLSTM
and M-BERT in this subtask as well.

4.1.2. CNN-BiLSTM
We keep the same structure and settings of the CNN-
BiLSTM used in subtask A.

4.1.3. M-BERT
Once again, we follow the same methodology as subtask A.
The only difference is that the M-BERT is now fine-tuned
on hate speech detection.

4.1.4. Ensemble Method
For subtask B, we opt for a slightly different ensemble
method. The best ensemble on the development set was
obtained by only considering the three SVMs (Nos. 1,2,3
from table 7). We also change the voting mechanism such
that it’s no longer majority voting. We consider an instance
to be hate speech if any of the three SVMs vote it to be hate
speech. This voting scheme was outperforming majority
voting scheme on the development set. The official result
on this ensemble is shown in table 9.

Official Acc. Prec. Recall F1
Rank
4th 96.6% 83.8% 78.1% 80.6%

Table 9: Official results on subtask B test set

NOT HS HS
NOT HS 940 16
HS 18 26

Table 10: Confusion matrix on subtask B dev set
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4.2. Error analysis
We attempt to perform error analysis similar to subtask A
by collecting 100 samples from development set and exam-
ining them. Unfortunately, we could not identify any par-
ticular reasons for the system to fail. We speculate this to be
because of the data for subtask B being extremely skewed
(with only 5% of the data being hate speech). Table 8 con-
tains examples of errors made by the best system (no. 6
from table 7).
Table 10 shows the confusion matrix of our best system on
subtask 2. As expected, because of the extreme imbalance
of the data, we can see that the classifier is prone to misclas-
sifying hate speech instances as non hate speech instances.

5. Conclusion and Future Work
To conclude, we experimented heavily with classical ma-
chine learning and deep learning approaches to detect if a
tweet is offensive or contains hate speech. We achieve state
of the art results for offensive language detection by com-
bination of SVMs, CNN-BiLSTM and Multilingual BERT.
We achieve competitive results on hate speech detection
with a system combination of SVMs. Our error analysis
indicates certain types of errors for offensive language de-
tection that can be addressed in future. In future, we aim
to explore augmentation of hate speech data to build better
systems.
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