
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, pages 86–90
with a Shared Task on Offensive Language Detection.

Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020
c© European Language Resources Association (ELRA), licensed under CC-BY-NC

86

Multitask Learning for Arabic Offensive Language and Hate-Speech Detection

Ibrahim Abu-Farha1 and Walid Magdy1,2
1 School of Informatics, The University of Edinburgh

Edinburgh, United Kingdom
2 The Alan Turing Institute
London, United Kingdom

i.abufarha@ed.ac.uk, wmagdy@inf.ed.ac.uk

Abstract
Offensive language and hate-speech are phenomena that spread with the rising popularity of social media. Detecting such content
is crucial for understanding and predicting conflicts, understanding polarisation among communities and providing means and tools
to filter or block inappropriate content. This paper describes the SMASH team submission to OSACT4’s shared task on hate-speech
and offensive language detection, where we explore different approaches to perform these tasks. The experiments cover a variety of
approaches that include deep learning, transfer learning and multitask learning. We also explore the utilisation of sentiment information
to perform the previous task. Our best model is a multitask learning architecture, based on CNN-BiLSTM, that was trained to detect
hate-speech and offensive language and predict sentiment.

Keywords: Arabic, hate-speech, offensive language

1 Introduction
Social media platforms provide a versatile medium for peo-
ple to communicate with each other, share ideas and ex-
press opinions. These user-driven platforms have a chal-
lenge when it comes to controlling the content being fed
into them. People have different intentions, while some
might use these platforms for their intended purposes, oth-
ers might be sharing inappropriate content such as porno-
graphic images or racist speech towards others. Detecting
such content is very important for these platforms. For
example, it is necessary to add filtration features to hide
adult-only content in order to protect children (Mubarak et
al., 2017). Also, such detection systems are important to
provide real time monitoring of the content being fed to
these platforms, which could be promoting hate crimes or
racism against various groups of people. An early detection
of this phenomena could help in preventing the escalation
from speech to actions (Waseem and Hovy, 2016). Plat-
forms such as Twitter, Facebook and YouTube are putting
effort into fighting the spread of hate-speech, racism and
xenophobia on their platforms. Thus, having robust detec-
tion systems is extremely important (Waseem and Hovy,
2016). According to Cambridge Dictionary1 hate-speech is
defined as “public speech that expresses hate or encourages
violence towards a person or group based on something
such as race, religion, sex or sexual orientation”. There has
been a large amount of studies on how to automatically de-
tect hate-speech, offensive language and obscene content.
The approaches vary from using word-lists, syntactic and
semantic features to deep learning models.
This paper is a description of our submission (SMASH
team) to the shared task of offensive language and hate-
speech detection (Mubarak et al., 2020). This task is a part
of the Open-Source Arabic Corpora and Corpora Process-
ing Tools (OSACT4) workshop. In this paper, we explore
various approaches to detect hate-speech and offensive lan-

1https://dictionary.cambridge.org/dictionary/english/

guage, which include deep learning, transfer learning and
multitask learning. Our best model is a multitask learning
architecture that was trained to detect both hate-speech and
offensive language.

2 Related Work
There has been some work on tasks related to hate-speech
and offensive language detection, especially in English.
Most of the work view the problem as a classification task
where the goal is to assign a specific label to a given input.
Early work on such task includes (Yin et al., 2009), where
the authors used multiple features such as n-grams and sen-
timent to train a classifier for harassment detection. In their
work, they used a manually labelled dataset of discussion
threads. Razavi et al. (2010) proposed a multilevel clas-
sifier to detect offensive messages, in which they utilised
a set of manually collected words and phrases. Nobata et
al. (2016) proposed a machine learning based approach for
abusive language detection. They utilised multiple features
such as n-grams, linguistic features, syntactic features and
word embeddings. They also created a new dataset using
comments from Yahoo Finance and News. Davidson et al.
(2017) built a corpus of tweets that contain hate-speech.
In their work, they utilised a lexicon of hate-speech key-
words in order to collect relevant tweets. The collected
data was labelled into three classes: hate-speech, offensive
language and neither. They built a classifier to detect hate-
speech, their analysis showed that raciest and homophobic
are likely to be classified as hate-speech. In (Malmasi and
Zampieri, 2017), the authors trained an SVM classifier for
hate-speech detection, the classifier relies on n-gram based
features. In 2019, OffensEval (Zampieri et al., 2019) was
introduced to be part of SemEval. This competition has
multiple sub-tasks such as offensive language detection, of-
fence categorisation and offence target identification.
Regarding Arabic, there were few attempts to approach the
problems of offensive language and hate-speech detection.
These include the work of Mubarak et al. (2017), where the



87

authors proposed a method to automatically expand word
lists for obscene and offensive content. In their work, they
created an initial list of seed words, which was used to col-
lect a set of tweets. From the collected tweets, they ex-
tracted the patterns that are used to express offensiveness.
They followed that with manual assessment and used other
resources to create the final word-list. In another work
(Mubarak and Darwish, 2019), the authors used the word-
list as a seed to create a training set, which they used to
experiment with and create an offensive language detector.
Alakrot et al. (2018) proposed a method to detect abusive
language, they used SVM with n-gram features for the clas-
sification where they achieved an F1-score of 0.82. They
collected their own dataset from YouTube comments. Al-
badi et al. (2018) created a dataset of religious hate-speech
discussions on Twitter, they used this data to train an RNN
based classifier for automatic detection of hate-speech, they
achieved 0.84 Area under the ROC curve. The authors also
used their dataset to create multiple hate-speech lexicons.
Haidar et al. (2017) experimented with cyberbullying de-
tection, where they utilised a dataset that they collected
from Facebook and Twitter. They used n-gram features and
experimented with multiple classifiers such as Naive Bayes
and SVM.

3 Dataset Description
The dataset is the same one provided in SemEval 2020 Ara-
bic offensive language task. It consists of 10,000 tweets
labelled for offensive language and hate-speech. The an-
notation assumes that a tweet is offensive if it contains an
insult, attack or inappropriate language. While a tweet is
assumed to contain hate-speech if it was directed towards a
group or an entity. Table 1 shows the statistics of the train-
ing and development sets. The test set, which contains 2000
tweets, was not released for evaluation purposes.

Label Training Set Development
Set

Hate-Speech 361 44
Non hate-speech 6,639 956
Offensive 1,410 179
Non-offensive 5,590 821

Table 1: Dataset statistics.

4 Proposed Models
In this section, we provide details of the different steps and
models we used in the experiments.

4.1 Data Preprocessing
This step is important in order to clean data from unneces-
sary content and transform it into a coherent form, which
can be processed and analysed easily. Since we are us-
ing Mazajak’s word embeddings (Abu Farha and Magdy,
2019), we used the same steps used by the authors as fol-
lows:

• Letter normalisation: unifying the letters that appear
in different forms. We replace { � , � , � } with {�}, {­}
with {£} and {«} with {©} (Darwish et al., 2014).

• Elongation removal: removing the repeated let-
ters which might appear specially in social media
data (Darwish et al., 2012).

• Cleaning: removing unknown characters, diacritics,
punctuation, URLs, etc.

4.2 Text Representation
In this step, we transform textual data into a representation
that can be used for the task we are aiming to accomplish.
There are different ways to represent textual information,
in our implementation we use word embeddings. Word em-
beddings are a dense vector representation of the words, we
utilised the word embeddings provided by (Abu Farha and
Magdy, 2019). These are skip-gram word2vec embeddings,
which were built using a corpus of 250M tweets.

4.3 Models
This section provides details of the different approaches
and models tested for the different tasks.

BiLSTM
Long short-term memory (LSTM)(Hochreiter and Schmid-
huber, 1997) networks are quite powerful at capturing re-
lations over sequences. However, they capture the depen-
dencies in one direction, and sometimes they might lose im-
portant information, here where bidirectional LSTMs (BiL-
STM) are useful. BiLSTMs are two LSTMs where each
one goes over the input in a different direction. This con-
figuration allows the network to have a representation of
the whole sequence at any point. The output of the LSTM
is passed to a dense layer with softmax activation which
emits the final output.

CNN-BiLSTM
This architecture consists of a convolutional neural network
(CNN) followed by a BiLSTM network. Such architecture
is commonly used in the literature for text classification
tasks. The benefits of such architecture is that the CNN has
the capability to capture patterns and correlations within
the input. The CNN would work as a feature extractor and
these features are fed into a BiLSTM network which cap-
tures dependencies within these features.
This architecture consists of a 1D convolutional layer fol-
lowed by a max-pooling layer, then the BiLSTM part. Fi-
nally, we have a dense layers followed by the output layer.

Transfer Learning
Transfer learning has been a turning point in the field
of computer vision which led to huge improvements and
breakthroughs. In the last couple of years, the research
in natural language processing (NLP) has caught up with
the introduction of pre-trained language models such as
Elmo(Peters et al., 2018) and ULMFit(Howard and Ruder,
2018). The introduction of Bidirectional Encoder Repre-
sentation from Transformers (BERT) (Devlin et al., 2019)
led to a revolution in the NLP world. BERT-based models
achieved state-of-the-art results in many tasks. In the pro-
posed architecture, we utilise a pre-trained language model
and fine tune it for a specific task, i.e. transfer learning. In
our experiments we use the multilingual BERT which was



88

trained on 104 languages. It utilises a vocabulary of 110K
WordPeice tokens. BERT’s architecture consists of 12 lay-
ers with 768 hidden units in each of them, and 12 attention
heads.
In the experiments we fine tune BERT to be used for clas-
sification. This is done by adding a fully connected layer
and a softmax layer after the the pre-trained model. Then
the model is trained for a small number of epochs to adjust
the weights for the specific task.

Multitask Learning
In multitask learning (MTL), the objective is to utilise the
process of learning multiple tasks in order to improve the
performance on each of them (Caruana, 1997). These tasks
are usually related and have some common aspects between
them. Thus, having the model to learn these tasks would
give it the ability to utilise some cues from one task to im-
prove the other. MTL has been used to improve many NLP
tasks such as syntactic chunking and POS-tagging (Søgaard
and Goldberg, 2016), even BERT (Devlin et al., 2019) was
built using multitask learning settings.
In this architecture, we utilise that the data is labelled for
both tasks, hate-speech and offensive language. Based on
the given definitions of the tasks and the annotated data,
we can assume that if a sentence contains hate-speech, it is
offensive. Thus, we try to utilise this correlation and train
the model for both tasks at once (the model is called MTL).

Embeddings

CNN

Max Pooling

BiLSTM

Dense

Output(offensive) Output(hate
speech) Output (sentiment)

Figure 1: CNN-BiLSTM architecture in multitask learning
configuration.

To extend this idea, we decided to incorporate more infor-
mation through adding sentiment information. The reason
for this is that offensive language or hate-speech are usually
sentimental and express a negative emotion towards the tar-
get. In order get the sentiment labels, we used Mazajak
sentiment analyser (Abu Farha and Magdy, 2019). With

the sentiment labels added as an objective, the new model
(MTL-S) learns to predict three labels, sentiment, hate-
speech, and offensive language.
An issue that might occur is that when we use the senti-
ment from another system, we might be propagating some
of error and uncertainty to the new model. In order to
reduce such uncertainty in the sentiment labels, we had
two variants of the experiment. In the first one, we used
the labels returned from Mazajak as they are. In the sec-
ond, we masked the sentiment to be negative if the sen-
tence was originally labelled as hate-speech or offensive
language. The notion behind this experiment is that a
hate-speech or offensive content are always bearing neg-
ative sentiment, but those might be expressed in an indirect
way which could result in an incorrect sentiment label, this
model is called (MTL-S-N). In this architecture, we utilised
the CNN-BiLSTM architecture, the only difference is that
we have a forking before the output layer to accommodate
for the different outputs as shown in Figure 1.

5 Performance and Evaluation
5.1 Experimental Setup
In the implementation, we used Python as the programming
language for all the experiments. For the deep learning
experiments, Keras (Chollet and others, 2015) was used
on top of Tensorflow (Abadi et al., 2015) back-end. For
all the experiments, ReLU activation and Adam optimiser
with learning rate of 0.0001 were used. Table 2 shows
the hyper-parameters for each Architecture. Regarding the
experiments with BERT, we utilised HuggingFace’s Trans-
formers library (Wolf et al., 2019). We used the provided
BertForSequenceClassification implementation along with
BertAdam optimiser. We trained the models for 4 epochs
with learning rate of 1e−5. The maximum sequence length
was set to the maximum length seen in the training set.

Hyper-parameter BiLSTM CNN-BiLSTM
#LSTM cells 128 128
recurrent dropout 0.2 0.2
dropout 0.2 0.2
#filters - 300
filter size - 3
pooling size - 2
#hidden units - 128

Table 2: Hyper-parameters used for each architecture.

5.2 Results and evaluation
We experimented with the different models mentioned pre-
viously. To have an initial measure of the performance,
we used two different baselines. One where we always as-
sign the majority label (baseline-1), this was done for both
tasks. The second baseline (baseline-2) was Multinomial
Naive Bayes (MNB) trained on unigram and bigram TF-
IDF representation of the input. The evaluation metric for
both tasks is macro-average F1-score. Table 3 shows the
results on the development set. From the table, it is notice-
able that the multitask learning models (MTL and MTL-S-
N) achieved the best results on the development set. This



89

shows that the extra information learned through learning
multiple objectives was effective to improve the perfor-
mance. It is noticeable that the BERT based model achieved
relatively lower results compared to the other models. This
is due to the fact that BERT has a limited vocabulary and
was trained on the Arabic Wikipedia, which is in modern
standard Arabic (MSA). Thus, BERT was not able to ef-
fectively handle the dialectal content within the dataset. In
general, the models are better in detecting offensive lan-
guage than hate-speech. This is due to the small number of
training examples of hate-speech data.

Model OFF HS
baseline-1 0.450 0.490
baseline-2 0.490 0.390
BiLSTM 0.896 0.671
BERT 0.857 0.719
CNN-BiLSTM 0.901 0.702
MTL 0.899 0.737
MTL-S 0.899 0.712
MTL-S-N 0.904 0.730

Table 3: Macro F1 scores achieved on the development set
for hate-speech (HS) and offensive language (OFF) detec-
tion tasks.

5.3 Submission Results
These tasks are part of a shared competition organised in
OSACT4 (Mubarak et al., 2020), where we participated as
SMASH team. For each task, we submitted the best per-
forming model as our primary submission, the results are
shown in Table 4. For the hate-speech task we submitted
the MTL model which achieved a macro F1-score of 0.76
on the test set (ranked 6th out of 13). For the offensive
language task, we submitted the MTL-S-N model which
achieved and F1-score of 0.877 on test set (ranked 5th out
of 14).

Model OFF HS
MTL - 0.76
MTL-S-N 0.877 -

Table 4: Macro F1 scores achieved by the best models on
the test set for hate-speech (HS) and offensive language
(OFF) detection tasks.

6 Conclusion and Future Work
In this work, we presented our system to perform hate-
speech and offensive language detection. The experiments
show that using a multitask learning setting was extremely
useful due to the high correlation between the two tasks.
We also explored the effect of adding sentiment informa-
tion, which proved to be useful. This is explained by the
fact that hate-speech and offensive content always bear neg-
ative sentiment. Thus, sentiment information is correlated
with hate-speech and offensive language. In the future, we
hope to improve the results through the utilisation of other

resources such as lexicons and experimenting with more
multitask learning settings.

Acknowledgements
This work was supported by the D&S Programme
of The Alan Turing Institute under the EPSRC grant
EP/N510129/1.

7 References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Wat-
tenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heteroge-
neous systems. Software available from tensorflow.org.

Abu Farha, I. and Magdy, W. (2019). Mazajak: An online
Arabic sentiment analyser. In Proceedings of the Fourth
Arabic Natural Language Processing Workshop, pages
192–198, Florence, Italy, August. Association for Com-
putational Linguistics.

Alakrot, A., Murray, L., and Nikolov, N. S. (2018). To-
wards accurate detection of offensive language in online
communication in arabic. Procedia computer science,
142:315–320.

Albadi, N., Kurdi, M., and Mishra, S. (2018). Are they our
brothers? analysis and detection of religious hate speech
in the arabic twittersphere. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), pages 69–76. IEEE.

Caruana, R. (1997). Multitask learning. Machine learn-
ing, 28(1):41–75.

Chollet, F. et al. (2015). Keras. https://keras.io.
Darwish, K., Magdy, W., and Mourad, A. (2012). Lan-

guage processing for arabic microblog retrieval. In Pro-
ceedings of the 21st ACM international conference on
Information and knowledge management, pages 2427–
2430. ACM.

Darwish, K., Magdy, W., et al. (2014). Arabic informa-
tion retrieval. Foundations and Trends R© in Information
Retrieval, 7(4):239–342.

Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated hate speech detection and the prob-
lem of offensive language. In Eleventh international
aaai conference on web and social media.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186, Minneapolis, Minnesota, June.
Association for Computational Linguistics.

Haidar, B., Chamoun, M., and Serhrouchni, A. (2017). A
multilingual system for cyberbullying detection: Arabic

https://keras.io


90

content detection using machine learning. Advances in
Science, Technology and Engineering Systems Journal,
2(6):275–284.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.

Howard, J. and Ruder, S. (2018). Universal language
model fine-tuning for text classification. In Proceedings
of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
328–339, Melbourne, Australia, July. Association for
Computational Linguistics.

Malmasi, S. and Zampieri, M. (2017). Detecting hate
speech in social media. In Proceedings of the Interna-
tional Conference Recent Advances in Natural Language
Processing, RANLP 2017, pages 467–472, Varna, Bul-
garia, September. INCOMA Ltd.

Mubarak, H. and Darwish, K. (2019). Arabic offensive
language classification on twitter. In International Con-
ference on Social Informatics, pages 269–276. Springer.

Mubarak, H., Darwish, K., and Magdy, W. (2017). Abu-
sive language detection on Arabic social media. In Pro-
ceedings of the First Workshop on Abusive Language On-
line, pages 52–56, Vancouver, BC, Canada, August. As-
sociation for Computational Linguistics.

Mubarak, H., Darwish, K., Magdy, W., Elsayed, T., and Al-
Khalifa, H. (2020). Overview of osact4 arabic offensive
language detection shared task. 4.

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and
Chang, Y. (2016). Abusive language detection in on-
line user content. In Proceedings of the 25th Interna-
tional Conference on World Wide Web, WWW ’16, page
145–153, Republic and Canton of Geneva, CHE. Interna-
tional World Wide Web Conferences Steering Commit-
tee.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep contextu-
alized word representations. In Proceedings of the 2018
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana, June. Association for
Computational Linguistics.

Razavi, A. H., Inkpen, D., Uritsky, S., and Matwin, S.
(2010). Offensive language detection using multi-level
classification. In Canadian Conference on Artificial In-
telligence, pages 16–27. Springer.

Søgaard, A. and Goldberg, Y. (2016). Deep multi-task
learning with low level tasks supervised at lower layers.
In Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short
Papers), pages 231–235, Berlin, Germany, August. As-
sociation for Computational Linguistics.

Waseem, Z. and Hovy, D. (2016). Hateful symbols or hate-
ful people? predictive features for hate speech detection
on twitter. In Proceedings of the NAACL Student Re-
search Workshop, pages 88–93, San Diego, California,
June. Association for Computational Linguistics.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-

icz, M., and Brew, J. (2019). Huggingface’s transform-
ers: State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Yin, D., Xue, Z., Hong, L., Davison, B. D., Kontostathis,
A., and Edwards, L. (2009). Detection of harassment
on web 2.0. Proceedings of the Content Analysis in the
WEB, 2:1–7.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra,
N., and Kumar, R. (2019). SemEval-2019 task 6: Iden-
tifying and categorizing offensive language in social me-
dia (OffensEval). In Proceedings of the 13th Interna-
tional Workshop on Semantic Evaluation, pages 75–86,
Minneapolis, Minnesota, USA, June. Association for
Computational Linguistics.


	Introduction
	 Related Work
	Dataset Description
	Proposed Models
	Data Preprocessing
	Text Representation
	Models

	Performance and Evaluation
	Experimental Setup
	Results and evaluation
	Submission Results

	Conclusion and Future Work
	References

