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Abstract
In this paper, we describe our submission for the OCAST4 2020 shared tasks on offensive language and hate speech detection in the
Arabic language. Our solution builds upon combining a number of deep learning models using pre-trained word vectors. To improve the
word representation and increase word coverage, we compare a number of existing pre-trained word embeddings and finally concatenate
the two empirically best among them. To avoid under- as well as over-fitting, we train each deep model multiple times, and we include
the optimization of the decision threshold into the training process. The predictions of the resulting models are then combined into a
tuned ensemble by stacking a classifier on top of the predictions by these base models. We name our approach “ESOTP” (Ensembled
Stacking classifier over Optimized Thresholded Predictions of multiple deep models). The resulting ESOTP-based system ranked 6th
out of 35 on the shared task of Offensive Language detection (sub-task A) and 5th out of 30 on Hate Speech Detection (sub-task B).
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1. Introduction
Social media platforms have become a widely-used mode
of communication among individuals or groups from di-
verse backgrounds. With the increasing freedom of expres-
sion in user-generated content on these platforms, the men-
ace of offensive and hate speech is also on the rise (San-
tosh and Aravind, 2019), causing adverse effects on users
and society at large (Lee and Kim, 2015). Because of this
menace, the identification of offensive or hateful statements
towards individuals or groups has become a priority nowa-
days and many social media companies have already in-
vested millions for building automated systems to detect
offensive language and hate speech (Gambäck and Sikdar,
2017).
In this paper, we address the task of offensive language and
hate speech detection in the Arabic language by presenting
our contributions to two shared tasks (A and B) in OCAST4
2020. The objective in shared subtask A is to identify of-
fensive language whereas the objective in shared subtask B
is to identify hate speech in the given tweets. We devel-
oped a common methodology for both tasks, and executed
the classification pipeline twice, once for each of both sub-
tasks.
As a first attempt, we applied classical text classification
techniques including Naı̈ve Bayes, Logistic Regression,
Support Vector Machines, and Random Forests based on
the traditional encoding of the tweets as TF.IDF vectors.
Subsequently, more advanced deep learning techniques us-
ing pre-trained word embeddings were applied and com-
pared to the classical techniques. Both approaches were
compared empirically, showing superior performance for
the deep models.
The superiority of the deep models motivated further ex-
ploration in the direction of deep learning. We compared a
number of pre-trained word-level embeddings available for
Arabic language processing, and in the end, concatenated
the two empirically best performing pre-trained word-level
embeddings.
Using this combined embedding, several network architec-

tures and ways of pre-processing were tried out, and the
resulting models were combined in a tuned ensemble as
follows. The different deep networks were trained and opti-
mized several times, saving their predictions for both tasks.
Finally, a classifier was stacked on top of these predictions
to combine them in one ensemble. The resulting classifier
was further fine-tuned, therefore, we name our approach
“ESOTP” which stands for Ensembled Stacking classifier
over Optimized Thresholded Predictions of multiple deep
models.

2. Related Work
Hate speech detection has been studied extensively in re-
cent years, especially for highly-resourced languages like
English. (Yin et al., 2009) were among the first ones
to apply supervised machine learning approaches in hate
speech detection. They applied Support Vector Machines
to detect harassment in posts from famous social platforms
like MySpace. Similarly, (Warner and Hirschberg, 2012)
trained a Support Vector Machine classifier on word n-
grams and used it to detect hate speech. In recent years,
(Waseem and Hovy, 2016) showed that character n-grams
are better than word n-grams as predictive features for hate
speech detection. Their best performing model was a Gra-
dient Boosted Decision Trees classifier trained on word em-
beddings learned using LSTMs.
There exists, however, very little literature on the prob-
lem of Hate Speech detection in Arabic. Some of the few
works are discussed next. (Magdy et al., 2015) collected a
large number of Arabic tweets and trained a Support Vec-
tor Machine classifier to predict if a user supports or op-
poses ISIS. (Mubarak et al., 2017) proposed a methodol-
ogy for the detection of profane tweets by using an auto-
matically created and expanded list of obscene and offen-
sive words. (Haidar et al., 2017) proposed a multilingual
system that detects cyberbullying attacks in both English
and Arabic texts. They scrapped the data from Facebook
and Twitter. The data collected from Facebook was kept
for validating the system. Their proposed system was a



72

multilingual cyberbullying detection system and two ma-
chine learning models Naive Bayes and Support Vector
Machine were used in it. In another related work, (Al-
badi et al., 2018) prepared the first publicly available Ara-
bic dataset that was especially annotated for religious hate
speech detection. They also developed multiple classifiers
using lexicon-based, n-gram-based, and deep learning ap-
proaches. They found a simple Recurrent Neural Network
(RNN) architecture with Gated Recurrent Units (GRU) and
pre-trained word embeddings to be the best performing
model for the detection of religious hate speech in Arabic.
(Mohaouchane et al., 2019) compared multiple deep mod-
els including CNN, BLSTM with Attention, BLSTM and
Combined CNN-LSTM for detecting offensive language in
Arabic. They showed that CNN-LSTM achieved best re-
call scores whereas CNN achieved highest f1 scores in 5-
fold cross validation. Recently, (Chowdhury et al., 2019)
proposed ARHNET to detect religious hate speech in Ara-
bic by using word embeddings and social network graphs
with deep learning models and improved the classification
scores than (Albadi et al., 2018). The overview of OSACT4
Arabic Offensive Language Detection Shared Task is dis-
cussed by (Mubarak et al., 2020).

3. Methodology
Starting from pre-processing, we now discuss the over-
all methodology (classification pipeline) followed for both
subtasks in OCAST4 2020.

3.1. Pre-processing
One pre-processing step was already done over the origi-
nal tweets by the competition’s organizers, i.e., mentions
of a specific user were replaced with @USER, URLs were
replaced with URL, and empty lines with <LF>. We
removed all these replaced tokens along with emoticons,
emojis, punctuation marks (both Arabic and English), En-
glish characters, digits (both Arabic and English) and Ara-
bic diacritics. We then normalized a few Arabic characters
like Hamza, Ya, Ha, and Qaf, and finally removed a re-
peating character in the string if it is repeated more than 3
times consecutively. An additional pre-processing step is
taken for out-of-word-embeddings-vocabulary (OOWEV)
words with the models that use pre-trained word embed-
dings, which is to split an OOWEV word into 2 tokens
(i.e., the first character and the rest of the word) if the first
character is Wa, Fa, or Sa. The intuition behind this addi-
tional step is that Wa, Fa, or Sa appearing at the beginning
of an Arabic word function like a grammatical particle as
Wa gives added meaning of (“and” or “vow” or “oath”), Fa
gives added meaning of (result to a previous statement) and
Sa gives added meaning of (in very near future). This way
a few more words are covered from the pre-trained word
embeddings.

3.2. Pre-trained Word Vectors
A number of pre-trained word vectors are available for Ara-
bic language processing like FastText (Grave et al., 2018),
Word2Vec1 (Continuous Skip gram trained over Arabic

1http://vectors.nlpl.eu/repository/20/31.
zip

CoNLL17 corpus), AraVec (Soliman et al., 2017), N-Gram
and Uni-Gram models, and recent BERT2 multilingual vec-
tors. We empirically evaluated these available word em-
beddings based on the given evaluation metric and concate-
nated the two best among them which were FastText (300
dimensional vectors) and Word2Vec (100 dimensional vec-
tors) resulting in a 400 dimensional vector representation
for words in the corpus.
The resulting concatenation of word embeddings yields 4
types of words: type 1) words which exist in both embed-
dings; type 2) words which exist in the first embedding but
do not exist in the second; type 3) words which exist in
the second embedding but do not exist in the first; type 4)
words which neither exist in the first nor in the second em-
bedding.
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Figure 1: Assigning vectors to the respective types of words
yielded from the concatenation of FastText and Word2Vec
word embeddings.

The strategy adopted for assigning vectors to all four types
of words is shown in Figure 1 and is explained as:
Let E1 be vector components from the FastText embedding,
E2 be vector components from the Word2Vec embedding,
μ1 be the mean of all vectors in FastText, μ2 be the mean
of vectors in Word2Vec, σ1 be the standard deviation of the
vectors in FastText, σ2 be the standard deviation of the vec-
tors in Word2Vec, then the vectors assigned to the types of
words are: type 1) get E1 and E2; type 2) get E1 and initial-
ize last 100 components with Gaussian distribution using
μ2 & σ2; type 3) get E2 and initialize first 300 components
with Gaussian distribution using μ1 & σ1; type 4) initial-
ize first 300 components with Gaussian distribution using
μ1, σ1 and last 100 components with Gaussian distribution
using μ2, σ2.

3.3. Models Used
We used four different types of neural architectures for
both tasks of offensive language and hate speech detec-
tion, namely: 1) Convolutional Neural Networks (CNN);
2) Nets based on Bidirectional Long Short-Term Memory
(BLSTM); 3) Nets based on Bidirectional Gated Recurrent
Units (BGRU); and 4) Nets based on Bidirectional LSTMs
with CNN (BLSTM+CNN). We briefly explain these archi-
tectures.

2https://github.com/google-research/bert/
blob/master/multilingual.md

http://vectors.nlpl.eu/repository/20/31.zip
http://vectors.nlpl.eu/repository/20/31.zip
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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Figure 2: Classification pipeline followed to detect offensive language and hate speech in Arabic language

3.3.1. CNN
This architecture is based on the one presented by (Kim,
2014). The input layer in this architecture is an embed-
ding layer, attached to a 1D spatial dropout layer that is
then reshaped to a 2D matrix of M × V , where M is max-
imum length of tweets in the corpus and V is the size of
embedding vectors. After reshaping the input, 5 convo-
lutional layers are attached in parallel having 128 kernels
in each layer with kernel dimensions ranging from 1 × V ,
to 5 × V . All these parallel layers are then attached to a
global max-pooling layer and concatenated to make a single
feature vector, connected then to a dropout layer, followed
by fully connected layers of 100, 50 and 1 units respec-
tively. The activation function in the last layer is a sigmoid
whereas for the rest of the network we use the exponential
linear unit (ELU) function.

3.3.2. BLSTM
This architecture is taken from (Saeed et al., 2018). The
input to this architecture is an embedding layer followed by
a 1D spatial dropout layer, which is then attached to two
parallel blocks of Bidirectional Long-Short Term Memory
(BLSTM) where the first block has 128 units and the second
block 64 units. Global max-pooling and global average-
pooling layers are attached to both parallel blocks and are
concatenated to make one feature vector, which is then at-
tached to fully connected layers of 100, 50, and 1 units
respectively. The activation function in the last layer is a
sigmoid whereas the BLSTM layers use the tanh activation
function and for the rest of the network we use the expo-
nential linear unit (ELU) function.

3.3.3. BGRU
This architecture is also taken from (Saeed et al., 2018) and
is similar to the BLSTM architecture. The only difference
between this architecture and BLSTM is that we use GRU
instead of LSTM. The rest of the architecture is same as
that of BLSTM.

3.3.4. BLSTM+CNN
This architecture has an input embedding layer connected
to a 1D spatial dropout layer. The output from the 1D spa-
tial dropout layer is given as input to a bidirectional LSTM
layer with 128 units and then a 1D convolutional layer is at-
tached with 64 kernels of size 4, connected on its turn with
a global max-pooling layer, followed by a dropout layer,

and again 3 fully connected layers having 100, 50 and 1
units respectively.

3.4. Ensembled Stacking Classifier
The overall classification pipeline is shown in Figure 2.
We train all four models: CNN, BLSTM, BGRU, and
BLSTM+CNN, for 250, 200, 70 and 30 times respectively.
The decision threshold is optimized for F1 as part of the
training phase. We hence get 550 predictions for each sam-
ple in the validation set. Using these 550 predictions as
a new training set, we built a stacking classifier that is an
ensemble of a Naı̈ve Bayes classifier, a Logistic Regres-
sion model, a Support Vector Machine, a Nearest Neigh-
bours classifier and a Random Forest. We fine-tune this
new Ensembled Stacking Classifier as well. We named our
approach “ESOTP”, which stands for Ensembled Stacking
classifier over Optimized Thresholded Predictions of multi-
ple deep models.

4. Experimentation & Results
We used Keras deep learning framework with Tensorflow
backend to build our deep classification pipeline. The eval-
uation metric used to test the classification system is macro
averaged f1 score. We report cross-validation scores as our
results in this paper, as there was a limit of 10 submissions
at maximum per team during the OCAST4 testing phase.

4.1. Hyper-parameter Tuning
We tune hyper-parameters of the deep models used in this
study by mixing grid search with manual tuning. The
hyper-parameters include batch size, optimizers, learning
rate, the number of kernels in CNN, the number of units
in recurrent layers, and the dropout rates. The hyper-
parameters in ensembled stacking classifier include penalty,
solver and regularization parameter for Logistic Regres-
sion; penalty, kernel function, regularization parameter and
gamma for Support Vector Machine; values of K in Nearest
Neighbours; and number of estimators, splitting criterion
and max. depth of trees in Random Forest.

4.2. Pre-trained Word Vectors
We compared pre-trained word embeddings with CNN ar-
chitecture over 20 runs only due to time limitations. The
average of 20 runs for both subtasks is shown in Table
1, which shows that Word2Vec and FastText achieved the
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Word Embeddings OFF HS
Bert Multilingual 83.10 ± 0.75 73.45 ± 1.09
AraVec-300-SG 77.94 ± 0.28 72.64 ± 1.57
AraVec-300-CBOW 77.62 ± 0.70 72.77 ± 1.39
AraVec-100-SG 77.51 ± 0.39 72.95 ± 1.52
AraVec-100-CBOW 77.97 ± 0.53 72.56 ± 1.33
Word2Vec 87.03 ± 0.33 75.98 ± 1.21
FastText 87.13 ± 0.23 76.68 ± 1.04

Table 1: Comparison of pre-trained word embeddings av-
eraged over 20 runs for macro f1 score.

highest f1 scores on our cross-validation when used as pre-
trained word vectors, and therefore we selected both these
embeddings to concatenate them for the representation of
words from both embeddings.

4.3. Main Results
The main results are shown in Table 2. Naı̈ve Bayes (NB),
Logistic Regression (LR), Random Forest (RF) and Sup-
port Vector Machines (SVM) give lower F1 scores as com-
pared to deep models in our cross-validation. Besides the
deep models described in section 3.3., we trained two addi-
tional deep models: 1) BLSTM with Attention; 2) BLSTM
with some statistical features like number of punctuation
marks, number of characters, number of words, number of
rare words, number of out-of-vocabulary words, etc. The
cross-validation scores showed deterioration instead of im-
provement, therefore, we ignored them from being into our
ensembled stacking classification.
The scores in Table 2 shown for CNN are averaged over
250 runs, for BLSTM over 200 runs, for BGRU over 70
runs and for BLSTM+CNN over 30 runs. The scores of
“ESTOP” are marked with asterisk (*) sign because we split
the validation set further (into train and validation) to fine-
tune the ensembled stacking classifier.

Models OFF HS
NB+TF.IDF 64.73 48.87
LR+TF.IDF 84.55 ± 0.22 71.12 ± 0.38
RF+TF.IDF 80.92 ± 0.46 72.41 ± 1.25
SVM+TF.IDF 84.86 ± 0.29 72.88 ± 0.11
CNN 88.67 ± 0.47 75.68 ± 1.04
BLSTM 89.02 ± 0.43 76.83 ± 1.40
BGRU 88.75 ± 0.38 76.63 ± 1.36
BLSTM+CNN 87.84 ± 0.42 75.82 ± 1.42
ESTOP 95.51* 77.79*

Table 2: Macro averaged F1 cross-validation scores for
both subtasks

We submitted predictions from CNN, BLSTM, BGRU,
BLSTM+CNN and ESTOP for the actual test set one-
by-one. The test scores indicated that CNN, BLSTM
and BGRU were over-fitting whereas BLSTM+CNN was
under-fitting. Overall, ESTOP approximated better gen-
eralized predictions for the actual test set as it achieved

87.37% f1 for subtask A (ranked 6/35) and 79.85% for sub-
task B (ranked 5/30).

5. Conclusion
We present our submission to the shared tasks of offensive
language and hate speech detection in OCAST4 2020. To
develop a good classification pipeline for both tasks, we se-
lect the empirically best word representations using avail-
able pre-trained word embeddings with some language-
specific pre-processing, and afterwards compare a number
of deep learning approaches. Our final submission is based
on fine-tuning a stacking classifier where we use an ensem-
ble of multiple models as the stacking classifier, built over
different deep models trained for several times. Our clas-
sification pipeline (ESTOP) results in better generalization
as compared to individual deep models.
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