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Abstract
In this paper we introduce the problem of ex-
tracting events from dialogue. Previous work
on event extraction focused on newswire, how-
ever we are interested in extracting events
from spoken dialogue. To ground this study,
we annotated dialogue transcripts from four-
teen episodes of the podcast This American
Life. This corpus contains 1,038 utterances,
made up of 16,962 tokens, of which 3,664 rep-
resent events. The agreement for this corpus
has a Cohen’s κ of 0.83. We have open sourced
this corpus for the NLP community. With this
corpus in hand, we trained support vector ma-
chines (SVM) to correctly classify these phe-
nomena with 0.68 F1, when using episode-
fold cross-validation. This is nearly 100%
higher F1 than the baseline classifier. The
SVM models achieved performance of over
0.75 F1 on some testing folds. We report the
results for SVM classifiers trained with four
different types of features (verb classes, part of
speech tags, named entities, and semantic role
labels), and different machine learning pro-
tocols (under-sampling and trigram context).
This work is grounded in narratology and com-
putational models of narrative. It is useful for
extracting events, plot, and story content from
spoken dialogue.

1 Motivation

People communicate using stories. A simple def-
inition of story is a series of events arranged over
time. A typical story has at least one plot and at
least one character. When people speak to one an-
other, we tell stories and reference events using
unique discourse. The purpose of this research is
to gain better understanding of the events people
reference when they speak, effectively enabling
further knowledge of how people tell stories and
communicate.

There has been no work, to our knowledge,
about event extraction from transcripts of spoken

language. The most popular corpora annotated
for events all come from the domain of newswire
(Pustejovsky et al., 2003b; Minard et al., 2016).
Our work begins to fill that gap. We have open
sourced the gold-standard annotated corpus of
events from dialogue.1 For brevity, we will hearby
refer to this corpus as the Personal Events in Di-
alogue Corpus (PEDC). We detailed the feature
extraction pipelines, and the support vector ma-
chine (SVM) learning protocols for the automatic
extraction of events from dialogue. Using this in-
formation, as well as the corpus we have released,
anyone interested in extracting events from dia-
logue can proceed where we have left off.

One may ask: why is it important to annotate
a corpus of dialogue for events? It is necessary
because dialogue is distinct from other types of
discourse. We claim that spoken dialogue, as a type
of discourse, is especially different than newswire.
We justify this claim by evaluating the distribution
of narrative point of view (POV) and diegesis in
the PEDC and a common newswire corpus. POV
distinguishes whether a narrator tells a story in
a personal or impersonal manner, and diegesis is
whether the narrator is involved in the events of the
story they tell. We use POV and diegesis to make
our comparisions because they give information
about the narrator, and their relationship to the story
they tell.

We back our claim (that dialogue is different than
newswire) by comparing the distributions of narra-
tive point of view (POV) and diegesis of the nar-
rators in PEDC with the Reuters-21578 newswire
corpus.2 Eisenberg and Finlayson (2016) found
that narrators in newswire texts from the Reuters-
21,578 corpus use the first-person POV less than
1% of the time, and are homodiegetic less than 1%

1http://www.artie.com/data/personaleventsindialogue/
2http://archive.ics.uci.edu/ml/datasets/Reuters-

21578+Text+Categorization+Collection
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of the time. However, in the 14 episodes (1,028
utterances) of This American Life, we found that
56% narrators were first-person, and 32% narrators
were homodiegetic.

We found these distributions in PEDC by using
the automatic POV and diegesis extractors from
Eisenberg and Finlayson (2016), which were open
sourced.3 Comparing the distributions of POV and
diegesis for the PEDC to that of newswire demon-
strates how different spoken dialogue is. This
shows why building an annotated corpus specif-
ically for event extraction of dialogue was neces-
sary.

It is substantial that so many of the utterances
in the PEDC are first-person narrators and ho-
modiegetic. This means that people are speaking
about their lives. They are retelling stories. They
are speaking in more personal ways than narrators
do in newswire. This is where the Personal in the
Personal Events in Dialogue Corpus comes from.
Additionally, using the modifier personal aligns
this work with Gordon and Swanson (2009) who
extracted personal stories from blog posts. We want
our work to help researchers studying computation
models of narrative.

1.1 What are personal events?
We define event as: an action or state of being de-
picted in text span. Actions are things that happen,
most typically processes that can be observed vi-
sually. A state of being portrays the details of a
situation, like the emotional and physical states of
a character. For our work, we are only concerned
with the state of being for animate objects. We use
the concept of animacy from Jahan et al. (2018),
which is defined as:

Animacy is the characteristic of being
able to independently carry out actions
(e.g., movement, communication, etc.).
For example, a person or a bird is an-
imate because they move or communi-
cate under their own power. On the other
hand, a chair or a book is inanimate be-
cause they do not perform any kind of
independent action.

We only annotated states of being for animate
objects (i.e. beings) because we are interested in
extracting the information most closely coupled
with people or characters. We were less concerned

3https://dspace.mit.edu/handle/1721.1/105279

with extracting details about inanimate objects, like
the states of being in this example,“The mountain
was covered with trees,” and more concerned with
extracting states of being describing people, like
in this example, “I was so excited when the dough
rose,” where excited is a state of being describing
the speaker.

In the prior section we showed the PEDC con-
tains a significant amount of personal events by run-
ning the POV and diegesis extractors from Eisen-
berg and Finlayson (2016). We found that the
PEDC contains 56% first-person narrators, and
32% homodiegetic narrators. Our corpus has a
significant amount of narrators telling personal sto-
ries.

1.2 Outline

First, in §2 we discuss the annotation study we
conducted on fourteen episodes of This American
Life. Next, in §3 we discuss the design of the event
extractor. In §3.2 we discuss the different sets of
features extracted from utterances. In §3.2 we talk
about the protocols followed for training of support
vector machine (SVM) models to extract events
from utterances. In §4 we discuss the types of
experiments we ran, and present a table containing
the results of 57 experiments. The goal of these
experiments is to determine the best set of features
and learning protocols for training a SVM to extract
events from dialogue. In §5 we discuss the results.
In §6 we sumarize our contributions.

2 Personal events in dialogue annotation
study

When beginning to think about extracting events
from dialogue, we realized there is no corpus of
transcribed dialogue annotated for events. There
are many corpora of other text types with event
annotations. TimeBank contains newswire text
(Pustejovsky et al., 2003b). MEANTIME is made
up of Wikinews articles (Minard et al., 2016).

Additionally there are many event annotation
schema; one of the more prominent ones is
TimeML (Pustejovsky et al., 2003a). We decided to
develop our own annotation scheme due to the com-
plexity of TimeML; it’s an extremly fine-grained
annotation scheme, with specific tags for different
types of events, temporal expressions and links. We
decided it would be too difficult to use TimeML
while maintaining a high inter-annotator agreement
and finishing the annotation study in a short amount
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Episode
Number

Episode
Name

Utterances
Event
tokens

Nonevent
tokens

Cohen’s
Kappa

608 The Revolution Starts at Noon 50 130 630 0.8900
610 Grand Gesture 151 494 2032 0.7982
617 Fermi’s Paradox 82 271 1204 0.8258
620 To Be Real 75 156 756 0.8258
621 Who You Gonna Call 49 104 435 0.8486
625 Essay B 54 130 417 0.8446
627 Suitable for Children 28 80 322 0.8362
629 Expect Delays 44 125 391 0.8320
639 In Dog We Trust 43 183 651 0.8777
647 LaDonna 51 143 477 0.8600
650 Change You Can Maybe Believe In 87 420 1629 0.8193
651 If You Build It Will They Come 64 264 880 0.8344
655 The Not So Great Unknown 89 400 1164 0.8256
691 Gardens of Branching Paths 171 764 2310 0.8302

Totals 1,038 3,664 13,298

Average Kappa 0.8320

Table 1: Statistics for event annotations in dialogue corpus

of time (three months), and within a modest budget.
Given that our goal was to understand spoken

conversational dialogue, we decided to create a
corpus from transcribed audio. This matches the
nature of the data we intend to use for our event
exctractor: audio recordings of dialogue that have
been transcribed as a text file.

We weighed a number of different sources for
the text transcripts, but we ultimately decided to use
transcripts from the podcast This American Life4.
We chose this podcast because: 1) The transcripts
are freely available online. 2) A significant portion
of these podcasts are made up of conversations, as
opposed to narration. Additionally, This American
Life formats their transcripts so that the conversa-
tions are indented as block quotations. This made it
easy to separate conversations from typical podcast
narration. 3) The subject matter of This American
Life are typically stories from people’s lives. We
wanted our corpus to be made up of unscripted con-
versations; contemporary everyday conversations,
so that the extractors we train from this data are
better suited to understanding people talking about
their lives.

2.1 Annotation study procedures
The two authors of this paper were the annotators
for this study. The first author wrote the annotation

4https://www.thisamericanlife.org/

guide5. We trained by reading the first version of
the guide, discussing short-comings, and then com-
piling a new version of the guide. Next, we both
annotated episode 6856. Since we were training,
we were allowed to discuss questions regarding
annotation decisions. After we both finished, we
ran the annotations through a program that found
all the utterances with disagreements, and we dis-
cussed the mistakes.

After adjudicating the training episode, the first
author updated the annotation guide to address in-
conistencies we found during adjudication. Next,
we began the actual annotation study. While anno-
tating each episode, we could not discuss specifics
about the utterances. We independently annotated
each episode.

Once both annotators finished their annotations
for an episode, we used a program we made that
compared the annotations for each utterance. If
there was any disagreement between the two anno-
tators, both sets of markings from the annotators
were added to an adjudication list. Then, we went
through each utterance with disagreements, and
discussed how the markings should be corrected
for the gold-standard. We adjudicated each episode
before annotating the next so that we, as annota-
tors, could learn from each other’s mistakes. Once

5http://www.artie.com/data/personaleventsindialogue/
6https://www.thisamericanlife.org/685/transcript
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the correction lists were created, they were used
along with the original markings to create the gold-
standard.

2.2 Annotation syntax

Before we discuss the annotation syntax, please
take a look at an annotated utterance from episode
6507:

Alan: Due to safety
{concerns}, safety
{purposes}. But I mean,
I can {type out} a little
bit of, like, whatever
you {want} to {tell} them,
{tell} the shelter, and I
can {make sure} they {get}
the {message} if that’ll
{work} for you.

The annotations were marked in text files. Each
text file contains an episode transcript formated so
that each utterance was on its own line. The spans
of text that an annotator considered events were
surrounded with brackets. Usually events were
single words, but occasiaonally events were multi-
word expressions, like the phrase type out above.
For more information about what we considered an
event, and which state-of-beings were considered
events, please refer to our annotation guide8.

2.3 Inter-annotator agreement

We used the Cohen’s Kappa metric (κ) to compute
the inter-annotator agreement Landis and Koch
(1977). According to Viera et al. (2005) κ values
above 0.81 are considered almost perfect agree-
ment. The average κ for our annotations is 0.83
so our inter-annotator agreement is almost perfect.
This average κ is a weighted average, where the κ
for each episode is multiplied by the number of ut-
terances in the episode. Once the sum of weighted
averages is obtained, we divide by the total number
of utterances in the corpus.

The κ for event extraction measures inter-
annotator agreement for a binary classification task
for each token across each utterance. If both an-
notators marked a token as an event, this counted
as a true positive, and if both annotators marked
a token as a non-event, this is counted as a true
negative. All other cases are disagreements; these

7https://www.thisamericanlife.org/650/transcript
8http://www.artie.com/data/personaleventsindialogue/

were adjudicated by both authors. A token can be
annotated as an event, or a non-event.

3 Developing the extractor

Our extractor was implemented in Java. This is
due to the availability of high-quality open-sourced
NLP libraries. There are two aspects of the extrac-
tor’s design that we will cover: 1) feature engineer-
ing and 2) protocols for training SVM models.

3.1 Feature engineering
First, we will discuss the different types of features
that we extracted from each utterance in the corpus.

3.1.1 Part of speech tags
We used the part of speech (POS) tagger
(Toutanova and Manning, 2000; Toutanova et al.,
2003) from Stanford CoreNLP (Manning et al.,
2014) to extract part of speech tags for each
word in each utterance of our corpus. We used
the english-bidirectional-distsim
model. This model was chosen since it has the
most accurate performance, even though it has
a slower run-time. For the purpose of these
experiments run-time wasn’t a limiting factor.

Each POS tag was assigned a unqiue integer
value between 1 and 36. If a token has no POS tag,
then it is assigned the value of -1. The following
is the procedure for mapping POS tags into feature
vectors: First, use Stanford CoreNLP to find the
POS tags for each token in an utterance. Second,
produce a vector of length 37 for each token, and
fill each element with a -1. Third, for the vector
representing each token, change the value of the
element with the index cooresponding to the partic-
ular POS of the current token to 1. If the token has
no POS tag, then the vector is unchanged.

3.1.2 Named entity tags
We used the Named Enitity Recognizer (NER)
(Finkel et al., 2005) from Stanford CoreNLP
(Manning et al., 2014) to extract named entity
types from utterances. We included named en-
tity tag as a feature type for event extraction be-
cause we hypothesized that some named entity
types should never be considered as events, like
PERSON, ORGANIZATION, and MONEY. How-
ever, the DATE and DURATION classes were often
classified as events.

The NER tag feature was encoded into a vector
of length nine. The first eight elements of this vec-
tor each represents one of the eight NER classes
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in Stanford’s NER. The vector’s final element rep-
resents whether the current token is not a named
entity. This is the procedure for extracting NER
tag features from an utterance: First use Stanford
CoreNLP to find the NER tags for each token in
an utterance. Second, produce a vector of length
nine for each token, and fill each element with a
-1. Third, for the vector representing each token in
an utterance, change the value of the element with
the index corresponding to a particular NER tag of
the current token to 1. If there is no NER tag for a
given token, then set the final element of the vector
to 1.

3.1.3 Verb classes

We use a similar pipeline as Eisenberg and Fin-
layson (2017) for verb class extraction. This
pipeline determines which VerbNet (Schuler, 2005)
verb classes each token in an utterance is repre-
sented by. A verb class is a set of verbs with the
same semantics. For example, the verbs slurp,
chomp, and crunch all belong to the verb class
chew. We hypothesize that knowledge of what verb
classes are instantiated by specific words is essen-
tial to extracting events from dialogue.

The features for verb classes are encoded into
a vector of length 279. The first 278 elements
represent which of the 278 verb classes is invoked
by the current token. The final element represents
if no verb classes are instantiated by the token.
For the first 278 elements we use the following
bipolar encoding: 1 if the verb class is instantiated
in the token, or -1 if not. Note that any token can
instantiate more than one verb class. The final
element in the vector is assigned a 1 if no verb
classes are represented by the current token, or -1
if verb classes are used (which means at least one
of the first 278 elements has the value of 1).

Here is a quick overview of the pipeline for verb
class extraction: first, we use It Makes Sense to
perform word sense disambiguation on an utterance
(Zhong and Ng, 2010). This produces WordNet
sense keys (Fellbaum, 1998) for each token in an
utterance. Next we use JVerbnet9 to map WordNet
sense keys to VerbNet classes. This produces a list
of VerbNet classes for each token. Finally, each list
is mapped to a bipolar feature vector of length 279,
as explained in the paragraph above.

9http://projects.csail.mit.edu/jverbnet/

3.1.4 Semantic role labels
We use the Path LSTM Semantic Role Labeler
(SRL) to extract a set of features from utterances
(Roth and Lapata, 2016). We extract two features
for each token in an utterance: 1) is the token a
predicate? and 2) is the token an argument of a
predicate? These features fill a vector of length
two, and once again we use bipolar encoding as all
the previous features discussed in this section.

There are many more features in Path LSTM,
however we didn’t have the time to find an in-
telligent way to use them. One of those features
is the ability to parse into semantic frames from
FrameNet (Baker and Sato, 2003). Path LSTM
can parse into the over 1,200 semantic frames in
FrameNet. We hypothesize that knowing which
tokens represent different frame elements for each
frame would be a useful feature extracting events
from dialogue. This feature would provide even
more fine-grained information than the verb class
features.

Here is the way we extracted SRL features from
utterances: first, for each utterance use Path LSTM
to extract an SRL parse. Second, produce a feature
vector of length two for each token in the utterance,
and initialize both elements to -1. Third, get the list
of predicates from the SRL parse. For each token,
if it is a predicate, set the first element of the feature
vector to 1. Otherwise, do nothing. Fourth, for each
predicate, get the argument map. For each token, if
it is a member of any argument map, set the second
element of the feature vector to 1. Otherwise, do
nothing.

3.2 Learning protocols

Second, we discuss the details about how the SVM
models were trained.

3.2.1 Cross-validation
We used 14-fold cross-validation, or colloquially
speaking episode-fold cross-validation. There are
14 episodes in our corpus. For each fold of cross-
validation, one episode is reserved for testing, and
the remaining 13 folds are used for training. This
procedure is performed 14 times, so that each of
the 14 episodes has the chance to be used as testing
data.

3.2.2 Under-sampling
We incorporated under-sampling into our SVM
based experiments. Undersampling is a technique
for boosting performance of models when training
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Features ML Protocols Events Nonevents

POS NER
Verb
Classes

SRL
Under-
sampling

Trigrams F1 Precision Recall F1 Precision Recall

X 0.5763 0.7364 0.4791 0.9095 0.8705 0.9529
X X 0.6185 0.4777 0.8848 0.8347 0.9595 0.7390
X X 0.5786 0.7435 0.4791 0.9104 0.8706 0.9545
X X X 0.6262 0.4890 0.8783 0.8420 0.9579 0.7516

X NaN 0 NaN 0.8805 0.7871 1.0
X X 0.5800 0.7366 0.4840 0.9098 0.8715 0.9523
X X X 0.6205 0.4837 0.8768 0.8381 0.9572 0.7463
X X X 0.5823 0.7435 0.4841 0.9107 0.8717 0.9539
X X X X 0.6252 0.4870 0.8818 0.8406 0.9588 0.7489

X 0.5609 0.9281 0.4039 0.9206 0.8594 0.9918
X X 0.5637 0.9225 0.4079 0.9207 0.8601 0.9910
X X 0.5608 0.9044 0.4087 0.9195 0.8599 0.9886
X X X 0.5658 0.6457 0.5074 0.8979 0.8729 0.9249

X X 0.6698 0.8593 0.5530 0.9298 0.8886 0.9756
X X X 0.6763 0.5555 0.8712 0.8792 0.9586 0.8123
X X X 0.6755 0.8475 0.5654 0.9299 0.8911 0.9727
X X X X 0.6794 0.5593 0.8736 0.8805 0.9594 0.8141

X X 0.5648 0.4088 0.4088 0.9209 0.8604 0.9912
X X X 0.5675 0.9188 0.4126 0.9209 0.8611 0.9903
X X X 0.5676 0.9188 0.4126 0.9210 0.8611 0.9903
X X X X 0.5666 0.6411 0.5116 0.8972 0.8738 0.9226

X X X 0.6732 0.8580 0.5579 0.9301 0.8896 0.9750
X X X X 0.6736 0.5513 0.8731 0.8768 0.9589 0.8082
X X X X 0.6769 0.8460 0.5679 0.9300 0.8917 0.9722
X X X X X 0.6750 0.5510 0.8792 0.8764 0.9606 0.8062

X 0.4687 0.6751 0.3613 0.8959 0.8458 0.9530
X X 0.5287 0.4764 0.6000 0.8509 0.8826 0.8220
X X 0.4687 0.6751 0.3613 0.8959 0.8458 0.9530
X X X 0.5287 0.4764 0.6000 0.8509 0.8826 0.8220

X X 0.5763 0.7364 0.4791 0.9095 0.8705 0.9529
X X X 0.6239 0.4892 0.8726 0.8416 0.9559 0.7526
X X X 0.6564 0.7667 0.5826 0.9207 0.8923 0.9519
X X X X 0.6257 0.4868 0.8833 0.8408 0.9595 0.7487

X X 0.4717 0.6786 0.3636 0.8965 0.8463 0.9535
X X X 0.5359 0.4872 0.6017 0.8552 0.8839 0.8289
X X X 0.4714 0.6784 0.3633 0.8965 0.8463 0.9535
X X X X 0.5358 0.4872 0.6015 0.8552 0.8839 0.8290

X X X 0.5800 0.7366 0.4840 0.9098 0.8715 0.9523
X X X X 0.6150 0.4752 0.8824 0.8319 0.9587 0.7358
X X X X 0.6631 0.7739 0.5897 0.9221 0.8942 0.9529
X X X X X 0.6254 0.4862 0.8847 0.8402 0.9598 0.7475

X X 0.5609 0.9281 0.4039 0.9206 0.8594 0.9918
X X X 0.5769 0.5037 0.6812 0.8588 0.9036 0.8187
X X X 0.5608 0.9044 0.4087 0.9195 0.8599 0.9886
X X X X 0.5753 0.4937 0.6977 0.8528 0.9068 0.8058

X X X 0.6698 0.8593 0.5530 0.9298 0.8886 0.9756
X X X X 0.6759 0.5566 0.8679 0.8795 0.9575 0.8138
X X X X 0.6760 0.8477 0.5660 0.9300 0.8912 0.9727
X X X X X 0.6769 0.5535 0.8780 0.8780 0.9605 0.8089

X X X 0.5648 0.9244 0.4088 0.9209 0.8604 0.9912
X X X X 0.5841 0.5132 0.6845 0.8628 0.9051 0.8248
X X X X 0.5648 0.9011 0.4137 0.9198 0.8610 0.9879
X X X X X 0.5824 0.4900 0.7243 0.8499 0.9131 0.7955

X X X X 0.6732 0.8580 0.5579 0.9301 0.8896 0.9750
X X X X X 0.6732 0.5502 0.8748 0.8765 0.9595 0.8072
X X X X X 0.6769 0.8460 0.5679 0.9300 0.8917 0.9722
X X X X X X 0.6729 0.5491 0.8764 0.8758 0.9601 0.8006

Table 2: Classification results across different feature sets and machine learning protocols

on unbalanced datasets (Japkowicz et al., 2000).
Our event corpus has about four nonevents for ev-
ery one event. To mitigate this, during training
a SVM model on an episode we add the feature
vectors for every event to the training set. Next,
we count the number of feature vectors for events
in the training set. Then, we randomly select non-
event feature vectors, and add the same number of
vectors to the training set as there are event vectors.
Hence, for every event feature vector in the training
set, there is only one nonevent feature vector. In
our experiments (§4) we saw that undersampling
raised the F1 for most feature sets. Our implemen-
tation of under-sampling allows us to toggle it on

and off for different experiments. Hence, under-
sampling could be parameterized, along with the
types of features used, and other variations on the
SVM learning discussed below.

Since there is an element of randomness in our
implementation of undersampling, we ran each un-
dersampling experiment 100 times. We report the
result for the experiment that had the highest F1
relative to the event class. This is a somewhat crude
approach. In the future, we would like to employ
an entropy based approach, where we select which
majority class feature vectors to use based on the
entropy of the set of vectors.
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3.2.3 Simulating context through trigrams
We simulate context by appending feature vectors
for neighboring words to the current word’s feature
vector. Specificially, for each token, get the fea-
ture vector for the preceding token and the feature
vector for the proceeding token, and append these
two vectors to the original vector. If there is no
preceding token make a feature vector where each
element is -1. The length of this negative vector is
that of the original feature vector. Similarly, follow
the same procedure if there is no proceeding token.
Using trigram context vectors slightly raised the
F1 for many SVM models, but it did not have a
significant effect. This leads us to hypothesize that
there is probably a better way to encode context for
this task.

Our implementation of trigram context is modu-
lar, along with the other learning protocols: context
can be toggled for any experiment. Furthermore,
experiments that make use of trigram context, can
also take advantage of under-sampling. Each set
of features can have four seperate experiments: 1)
training with no augmentations, 2) training with
under-sampling, 3) training with trigram context
vectors, and 4) training with both under-sampling
and trigram context vectors.

3.2.4 SVM hyperparameters
All our SVM models used a linear kernel. We chose
a linear kernel because of bipolar encoding of the
feature values, and it produced the best F1 during
early experiments. The hyperparameters for all the
SVMs were as follows: γ = 0.5, ν = 0.5, C = 20,
and ε = 0.01.

4 Results

We report our results in Table 2. The table is orga-
nized in four vertical columns, from left to right:

1) Features: this section contains the features
used for an experiment. The possible types of fea-
tures are POS, NER, Verb Classes, and SRL. The
combination of features used for an experiment are
indicated by X’s in the column of the correspond-
ing features. There are four possible experiments
(for each of the four possible machine learning pro-
tocols chosen) run for a given feature type. In rare
cases (like for experiments with only NER features)
only the basic experiment results are reported be-
cause the SVM classifier could not adequately learn
and classify everything as a nonevent.

2) ML Protocols: this section contains the ma-

chine learning (ML) protocols used for an experi-
ment. The possible protocols are: undersampling
and trigrams. The combination of ML protocols
used for an experiment are indicated by X’s in the
column of the coresponding protocols. For each
combination of features, four experiments are run.
Each of the four experiments, for a feature set,
represent a unique combination of the two ML pro-
tocols.

3) Events: in this section we report the results
(F1, precision, and recall) for all tokens that were
marked as events in the gold-standard.

4) Nonevents: similarly, in this section we re-
port the results for all tokens that were marked as
nonevents in the gold-standard.

Table 2 contains all combinations of features
and ML protocols. We report all the results to
show the fluctuations of performance for different
combinations of features and protocols.

We will compare the results in Table 2 to a mi-
nority class baseline. For our experiments, the mi-
nority class is the event class. We are interested in
maximizing the F1 of the event class as opposed to
the nonevent class, because we want to accurately
extract events. Events are more rare than nonevents,
hence this is the phenomena we are exploring. Our
baseline, relative to the event class is: F1 = 0.3553,
precision = 0.2160, and recall = 1.

5 Discussion

Our best performing event extractor uses POS and
verb class features, and the ML protocols used were
undersampling and trigrams, however, the perfor-
mance is not significantly better than the extrac-
tors that only use either one of the two protocols.
Our best peforming event extractor with no extra
ML protocols was the extractor with POS, NER,
and verb class features. The performance of the
extractor that had all four features had the same
performance as the former, so we can say that the
addition of SRL features adds no extra information
to the classification process.

It is interesting to see the affect of undersam-
pling on performance. It boosted the event F1 for
most feature sets. Not only did it boost the F1, but
it flipped the values of precision and recall with
respect to the original experiment. Without under-
sampling, the precision is always higher than the
recall. Once undersampling is toggled, the recall
becomes larger than the precision. Also, the un-
dersampled recall is typically higher than the non-
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undersampled precision. This flippage is important
to note for situations when the event extractor is
actually used in real-world systems.

If the situation requires a minimal number of
false positives, than precision should be maximized,
therefore no undersampling should be used when
training the model. However, if minimal false neg-
atives is a bigger priority, then recall should be
maximized, hence undersampling should be used
in training. Whether undersampling is used, or not,
depends on the actual context the event extractor is
being deployed.

In general, undersampling helped boost perfor-
mance of event classification in most experiments.
Trigrams gave an even smaller boost to event classi-
fication in most experiments. Experiments that had
both undersampling and trigrams had the largest
boost when compared to the experiment with no
extra ML protocols.

There were two feature sets that trigram context
had a significant affect, both POS + SRL and POS
+ VERB + SRL. These are the only experiments
where the trigram context protocol led to the great-
est performance for the feature set, and by a signif-
icant margin. Overall, trigrams had a much smaller
affect on overall performance. We hypothesize that
there are better ways to implement this form of
context. Either a classifier that’s better suited for
sequential data should be used, or a different form
of encoding the context feature should be explored.
Another note about a negative result: the impact
of the SRL features was much less influential than
we hypothesized. Going forward, we think that the
actual semantic frames instantiated should be used
as features, as well as different frame elements, and
not just occurence of predicates and arguments.

6 Contributions

In this paper we presented two sets of contributions:
First, we have open sourced the first corpus of di-
alogue annotated for events.10 This corpus can be
used by researchers interested in the automatic un-
derstanding of dialogue, specifically dialogue that
is rich with the personal stories of people. Second,
we share the design and evaluate the performance
of 57 unique event classifiers for dialogue. These
results can be used by researchers to decide which
features and machine learning protocols should be
implemented for their own event extractors. Our
best performing extractor has a 0.68 F1, which is

10http://www.artie.com/data/personaleventsindialogue/

over 100% higher than baseline. We hope that this
work can be used by the community to better un-
derstand how people reference events from stories
in dialogue.
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