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Abstract

Traditional statistical approaches to spelling
correction usually consist of two consecutive
processes – error detection and correction –
and they are generally computationally inten-
sive. Current state-of-the-art neural spelling
correction models usually attempt to correct
spelling errors directly over an entire sentence,
which, as a consequence, lacks control of the
process, e.g. they are prone to overcorrection.
In recent years, recurrent neural networks
(RNNs), in particular long short-term mem-
ory (LSTM) hidden units, have proven in-
creasingly popular and powerful models for
many natural language processing (NLP) prob-
lems. Accordingly, we made use of a bidi-
rectional LSTM language model (LM) for our
context-sensitive spelling detection and cor-
rection model which is shown to have much
control over the correction process. While the
use of LMs for spelling checking and correc-
tion is not new to this line of NLP research,
our proposed approach makes better use of the
rich neighbouring context, not only from be-
fore the word to be corrected, but also after
it, via a dual-input deep LSTM network. Al-
though in theory our proposed approach can
be applied to any language, we carried out our
experiments on Arabic, which we believe adds
additional value given the fact that there are
limited linguistic resources readily available in
Arabic in comparison to many languages. Our
experimental results demonstrate that the pro-
posed methods are effective in both improving
the quality of correction suggestions and min-
imising overcorrection.

1 Introduction

Misspelling detection or/and correction modules
are seen as critical components of many real-world
NLP applications. This has also been regarded as
an important research area of NLP for years. The
spelling errors are broadly classified into two cat-
egories: non-word errors (NWE), and real-word
errors (RWE). If the misspelled string is a valid

word of a language, it is called an RWE, other-
wise it is an NWE (Choudhury et al., 2007). In
this context, Peterson (1986) found that the RWE
rate ranges from 2% for a small lexicon to 10%
for a 50,000-word lexicon and almost 16% for a
350,000-word lexicon. In this work, we investigate
both error types (i.e. RWE and NWE) with our
context-aware spelling error detection and correc-
tion models. We demonstrate that our approach
is capable of detecting and correcting both NWEs
and RWEs in a text. As an illustration, we present
two sentences that contain misspelled words below,
with a justification of why context-sensitive error
detection and correction could be an ideal solution
for this problem.

English:

• Wrong: Students met their Principle Supervisor
at the University.

• Correct: Students met their Principal Supervi-
sor at the University.

Arabic:

• Wrong: Aë
	

Y
	

j
�
J
	
K

	
à



@ I. m.

�'

 ú




�
æË @ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë

• Correct: Aë
	
Y

	
j

�
J
	
K

	
à



@ I. m.

�'

 ú




�
æË @ úÎ

�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë

In the first English sentence, we can see that the
word Principle is a correct word that we can find
in a dictionary; however, its use in this context is
incorrect and the right word in this context is to be
Principal. Hence, we can call this an RWE, and
we can clearly see that this requires help from the
neighbouring lexical contexts for error detection
and correction. Similarly, in the Arabic example,
we can see that the adjective ú



Î
�
JÖÏ @ (almthly) was in-

correctly used instead of úÎ
�
JÖÏ @ (almthla) to describe

�
�K
Q¢Ë@ (altariq). Like the error in the English exam-
ple, this error requires the same treatment.
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Traditional rule-based and statistical approaches
to spelling correction rely on error detection first
before offering correction suggestions. This min-
imises the chances of making unrequired correc-
tions at least for common words. However, creating
a good spelling checker using such traditional ap-
proaches involves building a large lexical database
and thousands of human-generated rules for NWEs,
or large phrase tables for RWEs (Verberne, 2002).
This, in effect, requires a lot of linguistic resources
and tools as well as massive computing resources.

Many neural approaches (Weiss, 2016) to
spelling checking normally correct errors directly
over an entire input sentence. Presenting an en-
tire sentence to the network or decoder for correc-
tion involves the risk of modifying words that are
correct in the context and should not be changed.
For instance, the experiments carried out by Weiss
(2016) demonstrate how neural spelling checking
models can make overcorrection mistakes with ex-
amples. They categorise such errors as follows
(Q: input; A: ground truth; S: system output):

1- Correcting words that are not really misspellings:

• Q. In addition to personal-injury and

• A. In addition to personal-injury and

• S. In addition to personal injury and

2- Changing the original meaning:

• Q. had learned of Ca secret plan y Iran

• A. had learned of a secret plan by Iran

• S. had learned of a secret plan I ran

3- Even introducing new misspellings:

• Q. post-Thanksgiving performances, but

• A. post-Thanksgiving performances, but

• S. post-thanks gving performances, but

As can be seen from these examples, the neu-
ral model corrects some words that should not be
corrected. We conjecture that this happened be-
cause the model tries to make correction directly
on the entire sentence while bypassing the error
detection process. In this context, Hertel (2019)
found that neural many-to-many encoder-decoder
models for spelling correction perform worse than
neural many-to-one LM-based approaches. What
if we rather ask the neural network to first “detect”
the error and then “correct” it, with the help of
language modelling while still taking the context
into consideration? This is the research question
we explore in this paper.

In this work, we propose a context-sensitive neu-
ral model, Arabisc,1 which adds more control to
the spelling correction process using language mod-
elling, i.e. a many-to-one LSTM network, and it
consists of two processes: (i) identifying spelling
errors, and (ii) offering correction suggestions. The
idea is that we have to only correct the mistakes
not the whole sentence. In other words, we com-
bine the best of two worlds (statistical2 and neural)
i.e. we detect potential spelling mistakes and then
offer diverse correction suggestions for the user to
choose from in one go.3 Although we tested our
method on standard Arabic (Fosha), it can theoreti-
cally be applied to any other language.

The rest of this paper is organised as follows.
Section 2 elaborates on our methodology including
the architecture of our proposed model. Section
3 describes the experimental results and findings
with some discussions, while Section 4 concludes
and suggests some avenues for future work.

2 Methodology

The backbone of our approach involves building
and using language modelling, i.e. a many-to-one
LM for text generation. The task is to check a
given input sentence word by word, predict the next
word, and to find out whether the current word cw
of the input sentence is in the list of high-scoring
candidates B generated by the LM given the context
of cw (previous and following words of cw). If
cw is not in the list, correction suggestions are
offered based on the edit distance (Levenshtein,
1966) between cw and the candidates in B. In our
work, we compare two different models, namely:
(i) a single-input model that uses only the preceding
words of cw as context, and (ii) a dual-input model
that uses the preceding and following words of cw
as context. We describe our models in detail in the
following section.

2.1 Experimental Setups

2.1.1 Training Data
In order to build an LM to be used in the spelling
correction task, it is important to make sure that

1Arabisc is a common misspelling of the word Arabesque,
which refers to a form of artistic decoration. Surprisingly,
Arabisc (or Arabisċ) is a real word from old English and
it means Arabic or an Arab. Wikipedia: https://en.
wiktionary.org/wiki/Arabisc

2Neural networks are statistical models. In this paper, we
use “statistical” to refer to those models that do not have neural
components.

3In our implementation, suggestions are generated as a
JSON object, which can be used to display correction options
to users, i.e. via a GUI.

https://en.wiktionary.org/wiki/Arabisc
https://en.wiktionary.org/wiki/Arabisc
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sentences in our training set are linguistically cor-
rect and do not have many spelling mistakes. We
selected the News Commentary Corpus v114 from
OPUS (Tiedemann, 2012) as it is a reasonably
clean corpus. We applied the standard filtering
and pre-processing steps to the corpus. We are left
with 213,036 Arabic sentences after cleaning and
pre-processing. We also added a portion of the
MultiUN5 corpus from OPUS to the News Com-
mentary corpus. Our final training data contains
554,622 Arabic sentences. The MultiUN corpus is
of a better linguistic quality and the News Commen-
tary corpus is more generic in nature. Therefore,
we believe that adding the MultiUN corpus to the
News Commentary corpus enriches our training
data vocabulary. In order to pre-process the train-
ing sentences, we applied the following steps:

• Split those lines that consist of multiple seg-
ments based on newline, period followed by a
space or a newline, Arabic question mark “?”,
and exclamation mark;

• Remove duplicate segments;

• Remove Arabic diacritics, mainly Tashkil
(marks used as phonetic guides);

• Remove punctuation marks and numbers.
Some spelling checkers would keep punctu-
ation marks and even correct them; but for
the purpose of our experiments, we chose to
remove them;

• Remove Latin characters;

• Append a start token <s> at the beginning;

• In order to avoid repetitions after applying
the next step, truncate the sentences up to the
maximum sequence length; and

• For our single-input encoder (cf. Section
2.2.1), generate n-gram sequences, using all
preceding tokens as the context except the
current token (cw) which is used as the label.
Tables 1 and 2 illustrate the n-gram genera-
tion process. As for our dual-input encoder
(cf. Section 2.2.2), in addition to the preced-
ing tokens, include the remaining tokens after
the label (cw) as the context, in reverse order,
as the second contextual input. The n-gram
generation process of the latter setup is illus-
trated in Tables 3 and 4.

4http://opus.nlpl.eu/News-Commentary.
php

5http://opus.nlpl.eu/MultiUN.php

Input Sentence
<s> students met their principle supervisor at the university
Initial Sequence Current Word
<s> students
<s> students met
<s> students met their
<s> students met their principle
<s> students met their principle supervisor
<s> students met their principle supervisor at
<s> students met their principle supervisor at the
<s> students met their principle supervisor at the university

Table 1: Single-input n-gram splitting of an English sentence.

Input Sentence
<s> Aë

	
Y

	
j

�
J
	
K

	
à



@ I. m.

�'

 ú




�
æË @ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë

Initial Sequence Current Word
<s> è

	
Yë

<s> è
	

Yë ù


ë

<s> ù


ë è

	
Yë

�
�K
Q¢Ë@

<s> �
�K
Q¢Ë@ ù



ë è

	
Yë ú



Î
�
JÖÏ @

<s> ú


Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë ú




�
æË@

<s> ú



�
æË@ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë I. m.

�'



<s> I. m.
�'

 ú




�
æË @ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë

	
à



@

<s> 	
à



@ I. m.

�'

 ú




�
æË @ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë Aë

	
Y

	
j

�
J
	
K

Table 2: Single-input n-gram splitting of an Arabic sentence.

2.1.2 Evaluation Test Set

In order to evaluate Arabisc, our spelling correction
model, we randomly extracted 20 Arabic unseen
sentences from the UN corpus.6 From now on, we
refer to this set of sentences as the evaluation test
set. We introduced two types of errors in our evalu-
ation test set: (i) the first set contains RWEs based
on the confusion lists provided by Al-Jefri and
Mahmoud (2013), and (ii) the second set contains
NWEs based on deletion, insertion, substitution
and transposition of adjacent alphabets in a word,
being the causes of most spelling errors (Damerau,
1964). In our experiments, we used a development
set which has helped us explore potential issues in
relation to Arabic spelling checking and correction
and fine-tune hyper-parameters.

Each sentence of the test set was pre-processed
the way we prepared the training corpus (cf. Sec-
tion 2.1.1). We split each test set sentence into
a list of initial n-gram sequences and use the last
word as the current word (cw) that we want to com-
pare with the high-scoring next-word candidates B
generated by the LM. Tables 1 and 2 demonstrate
the n-gram generation process for the single-input
decoder. As for the multiple input decoder, we pro-
vide the model with two sets of input tokens, i.e.
tokens before and after the current word (cw) to
be checked, and the feature generation process is
shown in Tables 3 and 4.

6http://opus.nlpl.eu/UN.php

http://opus.nlpl.eu/News-Commentary.php
http://opus.nlpl.eu/News-Commentary.php
http://opus.nlpl.eu/MultiUN.php
http://opus.nlpl.eu/UN.php
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2.2 Arabisc

2.2.1 Single-Input Encoder
Our many-to-one spelling correction model is an
RNN (Rumelhart et al., 1986; Werbos, 1990) with
LSTM units (Hochreiter and Schmidhuber, 1997).
The total number of layers in the network is 4. We
use an embedding layer with an input dimension
256 and then add two hidden layers, one bidirec-
tional LSTM with 512 units followed by an LSTM
with 128 units. The output layer is a Dense layer
with the softmax activation function, and the num-
ber of units in this layer is equal to the vocabulary
size. The model is trained with the Adam optimizer
(Kingma and Ba, 2015), with the learning-rate set
to 0.001. The sparse categorical cross-entropy is
used as the loss function. As mentioned earlier,
we limit the maximum sequence length to 15 to-
kens.7 The vocabulary size is set to 100,000 of
the most frequently occurring tokens in the cor-
pus. The encoder takes an input in the form of
n-gram sequences generated by the training exam-
ple creation module described in Section 2.1.1. For
building our network, we used Keras Sequential
API of TensorFlow 2.8 The model was trained on
2 GeForce RTX 2080 TI GPUs for 8 epochs. Early
stopping was used on the validation accuracy. In
this setup, we found that the training loss was 4.88
and training accuracy was 0.26.

2.2.2 Dual-Input Encoder
We start this section by revisiting the example sen-
tence “Students met their Principal Supervisor at
the University,” and the list of conditional contexts
(i.e. n-grams) shown in Table 3. We can see from
the table that the word “Principal” is affected by
words before it (e.g. “Students”) and words after
it (e.g. “Supervisor” and “University”). There-
fore, using a dual-input encoder that takes both
the preceding and following contexts into account
can be more appropriate as far as the spelling er-
ror detection and correction are concerned. Note
that our dual-input encoder is similar in terms of
its architecture to the single-input encoder. The
only difference is that the conditional context of
the word (cw) to be predicted comprises two inputs:
the tokens ([w1, w2...wn−1]) that come before the
current word cw, and the tokens ([wn+1, wn+2...])
that come after the current word cw in reverse or-
der. To exemplify, for the aforementioned sentence,
we will have:

7We restricted the length to 15 as processing longer sen-
tences is found to be computationally expensive.

8https://github.com/tensorflow/
tensorflow

Left-Branch Input: <s>→ students→ met→ their

Current Word: → principal←
Right-Branch Input: supervisor←← at←← the←← university

As we can see above, both the preceding and
following parts of the input sequence are used as
the conditional context by the neural network for
the prediction of the token in between. We apply
the same step to all tokens to be predicted. We
conducted experiments by both keeping and revers-
ing the order of tokens in the right-branch input,
and found that the model with reversing the tokens
that follow the current word cw beforehand works
best in terms of the validation and test set accu-
racy. Note that Section 2.1.1 describes the details
of pre-processing the input data.

In this setup, we used Keras Functional API of
TensorFlow 2, that allows multiple inputs. The
identical four layers described in Section 2.2.1 are
used for each of the two inputs. Finally, the two out-
put layers are merged together using a Concatenate
layer to generate the final (single) output using a
Dense layer. Figure 1 illustrates the right and left
branches of our dual-input neural network. Like
the single-input encoder, the dual-input model was
trained on 2 GeForce RTX 2080 TI GPUs for 11
epochs. Early stopping was used on the validation
accuracy. In this setup, we found that the training
loss was 3.15 and training accuracy was 0.46.

2.2.3 Bidirectional LSTM versus Dual-Input
Encoder

In Section 2.2.1, we pointed out that the Single-
Input Encoder uses a Bidirectional LSTM layer.
If we express this in a different way, the bidirec-
tional effect is applied only up to the word that is
currently being generated, i.e. the “Left-Branch
Input” in the aforementioned example. As for the
Dual-Input Encoder described in Section 2.2.2, in
addition to the “Left-Branch Input”, it uses the
“Right-Branch Input” which plays a pivotal role
in observing the wider context and improving the
quality of spelling corrections. This subtlety differ-
entiates fundamental single-input language mod-
elling from the encoder-decoder architecture, as the
former takes only words before the current word
to be generated while the latter deals with the sen-
tence as a whole. As pointed out earlier, using
many-to-one text generation with LMs for spelling
correction tasks brings about better quality over
using many-to-many encoder-decoder architectures
(Hertel, 2019). Hence, we chose to use language
modelling to have more control over the correction
process, word by word, while we propose to use the
Dual-Input Encoder to solve this limitation. While

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
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Input Sentence
<s> students met their principle supervisor at the university
1st Input Sequence Current Word 2nd Input Sequence (in reverse order)
<s> students university the at supervisor principle their met
<s> students met university the at supervisor principle their
<s> students met their university the at supervisor principle
<s> students met their principle university the at supervisor
<s> students met their principle supervisor university the at
<s> students met their principle supervisor at university the
<s> students met their principle supervisor at the university
<s> students met their principle supervisor at the university

Table 3: Dual-input n-gram splitting of an English sentence.

Input Sentence
<s> Aë

	
Y

	
j

�
J
	
K

	
à



@ I. m.

�'

 ú




�
æË @ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë

Initial Sequence Current Word 2nd Input Sequence (in reverse order)
<s> è

	
Yë ù



ë

�
�K
Q¢Ë@ ú



Î
�
JÖÏ @ ú




�
æË @ I. m.

�'



	
à



@ Aë

	
Y

	
j

�
J
	
K

<s> è
	
Yë ù



ë

�
�K
Q¢Ë@ ú



Î
�
JÖÏ @ ú




�
æË @ I. m.

�'



	
à



@ Aë

	
Y

	
j

�
J
	
K

<s> ù



ë è
	

Yë
�

�K
Q¢Ë@ ú


Î
�
JÖÏ @ ú




�
æË @ I. m.

�'



	
à



@ Aë

	
Y

	
j

�
J
	
K

<s> �
�K
Q¢Ë@ ù



ë è

	
Yë ú



Î
�
JÖÏ @ ú




�
æË @ I. m.

�'



	
à



@ Aë

	
Y

	
j

�
J
	
K

<s> ú


Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë ú




�
æË@ I. m.

�'



	
à



@ Aë

	
Y

	
j

�
J
	
K

<s> ú



�
æË@ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë I. m.

�'



	
à



@ Aë

	
Y

	
j

�
J
	
K

<s> I. m.
�'


 ú



�
æË @ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë

	
à



@ Aë

	
Y

	
j

�
J
	
K

<s> 	
à



@ I. m.

�'

 ú




�
æË @ ú



Î
�
JÖÏ @

�
�K
Q¢Ë@ ù



ë è

	
Yë Aë

	
Y

	
j

�
J
	
K

Table 4: Dual-input n-gram splitting of an Arabic input sentence.

Figure 1: Dual-Input Encoder
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our solution is simple, we believe its novelty lies
in adding more context to the regular many-to-one
language modelling process, which is also reflected
in our results (cf. Section 3).

2.3 Inference

In the decoding process, the many-to-one LSTM
network takes each item from the list of n-gram se-
quences generated from the input sentence (cf. Sec-
tion 2.1.2) as input and predicts the next (or current)
word cw. For our dual-input model, this means that
we use two inputs, words before the current word
LeftW and words after it RightW. LMs are nor-
mally utilised for text generation to predict the next
token or next few tokens in a sequence given the
preceding tokens as context (Santhanam, 2020).
Similarly, our neural network greedily decodes to
search for the most likely sequences. However, in
our case, instead of keeping only the 1-best can-
didate, we keep the n-best candidates B and then
calculate the edit distance ed between each candi-
date b and the current word cw. We observed that n
for the n-best list is a sensitive hyper-parameter, i.e.
when we increase the size of this hyper-parameter,
we obtain a better vocabulary coverage and more
suggestions at the expense of many less probable
candidates. In this case, the decoder may choose an
incorrect word as a possible suggestion. Therefore,
the value of n of the n-best list (B) is a kind of
trade-off. There are three possible cases:

1. ed = 0: this indicates that the current word cw
is found in the n-best candidate list B and it
is likely that cw is a correct word;

2. ed > 0 and ed <= 2: this indicates that there
are other suggestions for the current position
in B. If the current word cw is not found at
all in B or found but after several suggestions
(e.g. 10), there are chances that for the cur-
rent context one of these suggestions is better
than cw. We also take the length of the cur-
rent word cw into consideration. If the length
of cw <= 3, we stick to ed = 1, and if the
length of cw > 3, we allow ed <= 2. Since
we have a large pool of suggestions, our cur-
rent decoder uses greedy search in order to
find the item in B and calculate the edit dis-
tance measure. We empirically found that this
setup worked best in our case. However, in or-
der to obtain a list of better suggestions, beam
search or bidirectional beam search (Sun et al.,
2017) can be applied, which has been kept for
our future work;

3. if neither the current word cw nor any similar
candidates are found in the n-best candidate
list B, no output is offered.

2.3.1 Out-of-Vocabulary Tokens
There is a known limitation of neural networks, i.e.
they typically operate with a fixed vocabulary. As
for a more complex task such as neural machine
translation (Vaswani et al., 2017), sub-word seg-
mentation techniques such as Byte Pair Encoding
(Sennrich et al., 2016) or using a unigram language
model (Kudo, 2018) are usually utilised in order
to solve this problem. Since we calculate the edit
distance measure on tokens, it is difficult to apply
sub-word segmentation or similar techniques to this
problem. As far as the spelling checking is con-
cerned, the presence of out-of-vocabulary tokens in
the input sentence may cause overcorrection at de-
coding because they will not come as suggestions
in the n-best list (B). In order to solve this problem,
we adopted two strategies:

• handling out-of-vocabulary tokens on-the-fly:
lemmatising long words (consisting of more
than 7 characters) and comparing different
lemmas to probable suggestions at the decod-
ing time; and

• fixing the previous misspelled word before
predicting cw.

We present the pseudocode of the decoding pro-
cess in Algorithm 1.

Algorithm 1: Spelling Checker Algorithm
// For each current word

1 for cw=1 ... CW do
// Predict the most likely

sequences based on the left and
right sequences

2 B = Predict([LeftW , RightW ])
3 S = [] // List of suggestions.

// For each candidate in the n-best
candidates B generated by the
LM for the current word cw

4 for b=1 ... B do
// Calculate Edit Distance ed

between cw and b
5 if EditDistance(cw, b) = 0 then
6 break // Word is correct

7 else if Length(cw) <= 3 AND
EditDistance(cw, b) = 1 then

8 Add b to S

9 else if Length(cw) > 3 AND
EditDistance(cw, b) <= 2 then

10 Add b to S

11 else
12 continue

13 Return S
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3 Results and Discussions

This section presents the results obtained along
with our findings and some discussion.

3.1 Real Word Errors (RWE)
To the best of our knowledge, there is no freely
available tool that supports context-sensitive spell
checking for Arabic as far as RWEs are concerned.
Hence, we could not compare our proposed models
with other existing spelling correction models. We
obtained results to evaluate our both single-input
and dual-input models on the evaluation test set,
and they are reported in Table 5. Note that existing
many-to-one spelling correction models that use
LMs to detect misspelled words are in fact based
on a single-input architecture, i.e. tokens before the
word to be corrected used as a conditional context
for correction. As mentioned earlier, our dual-input
encoder takes both the preceding and following to-
kens in reverse order as the conditional context
for spelling checking and correction. We see from
Table 5 that both our models correctly detect the
same number of RWEs. However, we can clearly
see from the table that the dual-input model out-
performs the single-input model in terms of the
quality of suggestions and minimisation of over-
correction. We also see from Table 5 that the two
strategies explained in Section 2.3.1 (i.e. compar-
ing lemmatised variants of tokens and correcting
previous words before predicting the next word)
were effective in handling out-of-vocabulary words
and helped minimise overcorrection.

We believe that the success of our context-
sensitive approach, especially our dual-input en-
coding model, lies in its ability to detect RWEs
regardless of the location of the word in the sen-
tence because it takes both sides of the sentence
into account for correction.

3.2 Non-Word Errors (NWE)
This section presents our results for NWEs. In this
case, in addition to our single-input and dual-input
models, we considered two popular Arabic spelling
checkers: LanguageTool9 and Sakhr Tadqeek.10

We report the results obtained in Table 6. We
see from the table that our dual-input model out-
performs all other models in terms of quality of
suggestions and minimisation of overcorrection.
We also see that our models outperform Language-
Tool and Sakhr Tadqeek even in terms of detecting
wrong words. Additionally, we observed that while

9https://languagetoolplus.com/
10https://tadqeek.alsharekh.org/

LanguageTool and Sakhr Tadqeek consider some
barely-used outdated words as correct, our model
detects them as potential spelling mistakes and sug-
gests good corrections.

3.3 Prediction Examples

As mentioned in Section 2.3.1, we lemmatised
those words which contain more than seven charac-
ters in order to minimise the data sparsity problem.
For example, with this approach, we avoided the
detection of �

éJ
ËAª
	
®Ë @ (alfaaleya) as a mistake by com-

paring it to other words of the same lemma such
as �

éJ
ËAª
	
®Ë @ð (walfaaleya) and �

éJ
ËAª
	
®K. (befaaleya). Simi-

larly, the word �
éJ


	
Q̄å�ÖÏ @ (almasrefeya) was compared

to ú



	
¯Qå�ÖÏ @ (almasrefey). We show the results ob-

tained by applying this lemmatisation strategy to
our dual-input model in Tables 5 and 6 (cf. row
“Dual-Input+Lemma”).

One of the possible ways to improve correction
suggestions and avoid overcorrection is to correct
the previous word (if it is a misspelled item) before
predicting the next word. We observed that the
collaboration of the two strategies (i.e. lemmatisa-
tion and correcting the preceding misspelled word)
leads us to the best spelling detection and correc-
tion model; the evaluation scores of the best model
on the test set are shown in the last row of Table
5. Note that we refer to the system that applies
the first approach (correcting the previous word) as
“Dual-Input+Prev” and the collaborative method
as “Dual-Input+Lemma+Prev”.

The last two rows of Table 5 represent the results
obtained using LanguageTool and Sakhr Tadqeek.
Although both tools were able to detect most
NWEs, they failed to detect éÊ�@ñÓ (muwaseleh) as

a mistake for �
éÊ�@ñÓ (muwaselet).11 This example

clearly shows how such spell-checking tools may
consider barely-used outdated words as real words,
which are in fact spelling mistakes in the context.
When it comes to correction suggestions, both Lan-
guageTool and Sakhr Tadqeek failed to offer exact
suggestions or similar alternatives for some NWEs.
For example, both tools could not correct the word
�

IËYªÓ (mueddelt) as �
HBYªÓ (mueddelat); instead,

they offered words like �
éËYªÓ (mueddelet) or �

H@YªÓ

(mueddat), and LanguageTool offered a similar al-
ternative ÈYªÓ (mueddel) which is the singular form
of the original word.

11The error comes from the letter è which should be �
è.

https://languagetoolplus.com/
https://tadqeek.alsharekh.org/
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Model Detected Exact Suggestion Similar Suggestion Over-Correction
Single-Input 20 17 0 9
Dual-Input 20 20 N/A 5
Dual-Input+Lemma 20 20 N/A 3
Dual-Input+Prev 20 20 N/A 3
Dual-Input+Lemma+Prev 20 20 N/A 1

Table 5: Results for RWEs. The first column “Detected” represents the percentage of wrong words marked as wrong. The
second column refers to the percentage of those words that are exactly found in the suggestions. The third column shows the
percentage of those words whose suggestions do not include the original word but acceptable alternatives. The last column is
for words marked as incorrect as they are not among the n-best tokens. Rows 3 and 4 represent the use of lemmatisation and
previous word correction individually while row 5 shows the results of applying both methods to the dual-input model.

Model Detected Exact Suggestion Similar Suggestion Over-Correction
Single-Input 20 19 0 9
Dual-Input 20 18 1 3
Dual-Input+Lemma 20 18 1 1
Dual-Input+Prev 20 19 0 0
LanguageTool 19 11 1 3
Sakhr Tadqeek 18 14 0 0

Table 6: Results for NWEs. The first column “Detected” represents the percentage of wrong words marked as wrong. The
second column refers to the percentage of those words that got the exact original word among the suggestions. The third column
shows the percentage of those words whose suggestions did not include the original word but the acceptable alternatives. The last
column is for words marked as incorrect as they are not among the n-best tokens. Rows 3 and 4 represent the use of lemmatisation
and previous word correction, respectively. The last two rows show results from LanguageTool and Sakhr Tadqeek.

4 Conclusion

In this paper, we presented a deep many-to-one neu-
ral network-based context-sensitive spelling check-
ing and correction model. In short, we modelled
words that come both before and after the word to
be corrected as the conditional context in language
model predictions. The experimental results sug-
gest that our approach has achieved considerable
success in terms of both offering better correction
suggestions and minimising overcorrection. Our
project, Arabisc, code, spelling correction models
and data sets are now available as an open-source
project via an open repository.12

In the future, we plan to increase the training
data size to see how our models will perform on a
large-scale data set and more languages other than
Arabic. The state-of-the-art bidirectional encoder
representation from transformers (BERT) architec-
ture (Devlin et al., 2018) makes use of Transformer
(Vaswani et al., 2017), an attention mechanism that
learns contextual relations between words in a text
and can offer powerful masked language modelling.
As an alternative to our LSTM LMs, we plan to
investigate using BERT masked language models
in Arabisc. We evaluated our models on a test set
that contains a small number of examples. In the
future, we plan to increase the size of test set exam-

12https://github.com/ymoslem/Arabisc

ples. Currently, our models operate at word level
for spell-checking and correction. This could be
an issue while encountering the out-of-vocabulary
items. In the future, we aim to investigate apply-
ing byte-pair encoding (Sennrich et al., 2016) or
similar word-segmentation technique in our model.
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