
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 52–60
Virtual Conference, November 19, 2020. c©2020 Association for Computational Linguistics

52

Going Beyond T-SNE: Exposing whatlies in Text Embeddings

Vincent D. Warmerdam
Rasa

Schönhauser Allee 175
10119 Berlin

v.warmerdam@rasa.com

Thomas Kober
Rasa

Schönhauser Allee 175
10119 Berlin

t.kober@rasa.com

Rachael Tatman
Rasa

Schönhauser Allee 175
10119 Berlin

r.tatman@rasa.com

Abstract

We introduce whatlies, an open source
toolkit for visually inspecting word and sen-
tence embeddings. The project offers a unified
and extensible API with current support for a
range of popular embedding backends includ-
ing spaCy, tfhub, huggingface transformers,
gensim, fastText and BytePair embeddings.
The package combines a domain specific lan-
guage for vector arithmetic with visualisation
tools that make exploring word embeddings
more intuitive and concise. It offers support
for many popular dimensionality reduction
techniques as well as many interactive visual-
isations that can either be statically exported
or shared via Jupyter notebooks. The project
documentation is available from https://

rasahq.github.io/whatlies/.

1 Introduction

The use of pre-trained word embeddings (Mikolov
et al., 2013a; Pennington et al., 2014) or language
model based sentence encoders (Peters et al., 2018;
Devlin et al., 2019) has become a ubiquitous part
of NLP pipelines and end-user applications in both
industry and academia. At the same time, a grow-
ing body of work has established that pre-trained
embeddings codify the underlying biases of the
text corpora they were trained on (Bolukbasi et al.,
2016; Garg et al., 2018; Brunet et al., 2019). Hence,
practitioners need tools to help select which set of
embeddings to use for a particular project, detect
potential need for debiasing and evaluate the debi-
ased embeddings. Simplified visualisations of the
latent semantic space provide an accessible way to
achieve this.

Therefore we created whatlies, a toolkit of-
fering a programmatic interface that supports vec-
tor arithmetic on a set of embeddings and visual-
ising the space after any operations have been car-
ried out. For example, Figure 1 shows an example

Figure 1: Projections of wking, wqueen, wman, wqueen − wking
and wman projected away from wqueen − wking. Both the
vector arithmetic and the visualisation were done using the
whatlies. The support for arithmetic expressions is integral
in whatlies because it leads to more meaningful visualisa-
tions and concise code.

of how representations for queen, king, man, and
woman can be projected along the axes vqueen−king
and vman|queen−king in order to derive a visualisation
of the space along the projections.

Perhaps the most widely known tool for visu-
alising embeddings is the tensorflow projector1

which offers 3D visualisations of any input em-
beddings. The visualisations are useful for under-
standing the emergence of clusters and the neigh-
bourhood of certain words and the overall space.
However, the projector is limited to dimensionality
reduction as the sole preprocessing method. More
recently, Molino et al. (2019) have introduced par-
allax which allows explicit selection of the axes
on which to project a representation. This creates
an additional level of flexibility as these axes can
also be derived from arithmetic operations on the
embeddings.

The major difference between the tensorflow pro-

1https://projector.tensorflow.org/

https://rasahq.github.io/whatlies/
https://rasahq.github.io/whatlies/
https://projector.tensorflow.org/

53

jector, parallax and whatlies is that the first two
provide a non-extensible browser-based interface,
whereas whatlies provides a programmatic one.
Therefore whatlies can be more easily extended
to any specific practical need and cover individ-
ual use-cases. The goal of whatlies is to of-
fer a set of tools that can be used from a Jupyter
notebook with a range of visualisation capabili-
ties that goes beyond the commonly used static
T-SNE (van der Maaten and Hinton, 2008) plots.
whatlies can be installed via pip, the code
is available from https://github.com/RasaHQ/

whatlies2 and the documentation is hosted at
https://rasahq.github.io/whatlies/.

2 What lies in whatlies — Usage and
Examples

Embedding backends. The current version
of whatlies supports word-level as well as
sentence-level embeddings in any human language
that is supported by the following libraries:

• BytePair embeddings (Sennrich et al., 2016)
via the BPemb project (Heinzerling and
Strube, 2018)

• fastText (Bojanowski et al., 2017)

• gensim (Řehůřek and Sojka, 2010)

• huggingface (Wolf et al., 2019)

• sense2vec (Trask et al., 2015); via spaCy

• spaCy3

• tfhub4

Embeddings are loaded via a unified API:

from whatlies.language import \
SpacyLanguage, FasttextLanguage, \
TFHubLanguage, HFTransformersLangauge

spaCy
lang_sp = SpacyLanguage('en_core_web_md')
emb_king = lang_sp["king"]
emb_queen = lang_sp["queen"]

fastText
ft = 'cc.en.300.bin'
lang_ft = FasttextLanguage(ft)
emb_ft = lang_ft['pizza']

TF-Hub
tf_hub = 'https://tfhub.dev/google/'

2Community PRs are greatly appreciated ,.
3https://spacy.io/
4https://www.tensorflow.org/hub

model = tf_hub + 'nnlm-en-dim50/2'
lang_tf = TFHubLanguage(model)
emb_tf = lang_tf['whatlies is awesome']

Huggingface
bert = 'bert-base-cased'
lang_hf = HFTransformersLanguage(bert)
emb_hf = lang['whatlies rocks']

Retrieved embeddings are python objects that
contain a vector and an associated named. It comes
with extra utility methods attached that allow for
easy arithmetic and visualisation.

The library is capable of retreiving embeddings
for sentences too. In order to retrieve a sentence
representation for word-level embeddings such as
fastText, whatlies returns the summed repre-
sentation of the individual word vectors. For pre-
trained encoders such as BERT (Devlin et al., 2019)
or ConveRT (Henderson et al., 2019), whatlies
uses its internal [CLS] token for representing a
sentence.

Similarity Retrieval. The library also supports
retrieving similar items on the basis of a number of
commonly used distance/similarity metrics such as
cosine or Euclidean distance:

from whatlies.language import \
SpacyLanguage

lang = SpacyLanguage('en_core_web_md')

lang.score_similar("man", n=5,
metric='cosine')

[(Emb[man], 0.0),
(Emb[woman], 0.2598254680633545),
(Emb[guy], 0.29321062564849854),
(Emb[boy], 0.2954298257827759),
(Emb[he], 0.3168887495994568)]
NB: Results are cosine _distances_

Vector Arithmetic. Support of arithmetic ex-
pressions on embeddings is integral in any
whatlies functions. For example the code for
creating Figure 1 from the Introduction highlights
that it does not make a difference whether the plot-
ting functionality is invoked on an embedding itself
or on a representation derived from an arithmetic
operation:

import matplotlib.pylab as plt
from whatlies import Embedding

man = Embedding("man", [0.5, 0.1])
woman = Embedding("woman", [0.5, 0.6])
king = Embedding("king", [0.7, 0.33])
queen = Embedding("queen", [0.7, 0.9])
man.plot(kind="arrow", color="blue")
woman.plot(kind="arrow", color="red")
king.plot(kind="arrow", color="blue")
queen.plot(kind="arrow", color="red")

https://github.com/RasaHQ/whatlies
https://github.com/RasaHQ/whatlies
https://rasahq.github.io/whatlies/
https://spacy.io/
https://www.tensorflow.org/hub

54

diff = (queen - king)
orth = (man | (queen - king))

diff.plot(color="pink",
show_ops=True)

orth.plot(color="pink",
show_ops=True)

See Figure 1 for the result :)

This feature allows users to construct custom
queries and use it e.g. in combination with the sim-
ilarity retrieval functionality. For example, we can
validate the widely circulated analogy of Mikolov
et al. (2013b) on spaCy’s medium English model
in only 4 lines of code (including imports):

wqueen ≈ wking − wman + wwoman

from whatlies.language import \
SpacyLanguage

lang = SpacyLanguage('en_core_web_md')

> e = lang["king"] - lang["man"] + \
lang["woman"]
> lang.score_similar(e, n=5,

metric='cosine')
[(Emb[king], 0.19757413864135742),
(Emb[queen], 0.2119154930114746),
(Emb[prince], 0.35989218950271606),
(Emb[princes], 0.37914562225341797),
(Emb[kings], 0.37914562225341797)]

Excluding the query word king5, the analogy
returns the anticipated result: queen.

The library also allows the user to add/subtract
embeddings but also project unto (via the > oper-
ator) or away from them (via the | operator). This
means that the user is very flexible when it comes
to retrieving embeddings.

Multilingual Support. whatlies supports
any human language that is available from its cur-
rent list of supported embedding backends. This
allows us to check the royal analogy from above in
languages other than English. The code snippet be-
low shows the results for Spanish and Dutch, using
pre-trained fastText embeddings6.

from whatlies.language import \
FasttextLanguage
es = FasttextLanguage("cc.es.300.bin")
nl = FasttextLanguage("cc.nl.300.bin")

emb_es = es["rey"] - es["hombre"] + \
es["mujer"]
emb_nl = nl["koning"] - nl["man"] + \
nl["vrouw"]

5As appears to be standard practice in word analogy evalu-
ation (Levy and Goldberg, 2014).

6The embeddings are available from https://
fasttext.cc/docs/en/crawl-vectors.html.

es.score_similar(emb_es, n=5,
metric='cosine')

[(Emb[rey], 0.04499000310897827),
(Emb[monarca], 0.24673408269882202),
(Emb[Rey], 0.2799408435821533),
(Emb[reina], 0.2993239760398865),
(Emb[prı́ncipe], 0.3025314211845398)]

nl.score_similar(emb_nl, n=5,
metric='cosine')

[(Emb[koning], 0.48337286710739136),
(Emb[koningen], 0.5858825445175171),
(Emb[koningin], 0.6115483045578003),
(Emb[Koning], 0.6155656576156616),
(Emb[kroonprins], 0.658723771572113)]

While for Spanish, the correct answer reina is
only at rank 3 (excluding rey from the list), the
second ranked monarca (female form of monarch)
is getting close. For Dutch, the correct answer
koningin is at rank 2, surpassed only by koningen
(plural of king). Another interesting observation
is that the cosine distances — even of the query
words — vary wildly in the embeddings for the two
languages.

Sets of Embeddings. In the previous examples
we have typically only retrieved single embeddings.
However, whatlies also supports the notion of
an “Embedding Set”, that can hold any number of
embeddings:

from whatlies.language import \
SpacyLanguage

lang = SpacyLanguage("en_core_web_lg")

words = ["prince", "princess", "nurse",
"doctor", "man", "woman",
"sentences also embed"]

NB: 'sentences also embed' will be
represented as the mean of the
3 individual words. This behavior
#. is driven by spaCy currently.

emb = lang[words]

It is often more useful to analyse a set of em-
beddings at once, rather than many individual ones.
Therefore, any arithmetic operations that can be
applied to single embeddings, can also be applied
to all of the embeddings in a given set.

The emb variable in the previous code example
represents an EmbeddingSet. These are col-
lections of embeddings which can be simpler to
analyse than many individual variables. Users can,
for example, apply vector arithmetic to the entire
EmbeddingSet.

new_emb = emb | (emb['man'] - emb['woman'])

https://fasttext.cc/docs/en/crawl-vectors.html.
https://fasttext.cc/docs/en/crawl-vectors.html.

55

Visualisation Tools. Any visualisations in
whatlies are most useful when performed
on EmbeddingSets. They offer a variety of
methods for plotting, such as the distance map in
Figure 2:
words = ['man', 'woman', 'king', 'queen',

'red', 'green', 'yellow']
emb = lang[words]
emb.plot_distance(metric='cosine')

Figure 2: Pairwise distances for a set of words using cosine
distance.

whatlies also offers interactive visualisations
using “Altair” as a plotting backend7:
emb.plot_interactive(x_axis="man",

y_axis="yellow",
show_axis_point=True)

The above code snippet projects every vector
in the EmbeddingSet onto the vectors on the
specified axes. This creates the values we can use
for 2D visualisations. For example, given that man
is on the x-axis the value for ‘yellow‘ on that axis
will be:

v(yellow→ man) =
wyellow · wman

wman · wman

which results in Figure 3.
These plots are built on top of Altair (VanderPlas

et al., 2018) and are fully interactive. It is possi-
ble to click and drag in order to navigate through
the embedding space and zoom in and out. These
plots can be hosted on a website but they can also
be exported to png/svg for publication. It is fur-
thermore possible to apply any vector arithmetic
operations for these plots, resulting in Figure 4:
e = emb["man"] - emb["woman"]
emb.plot_interactive(x_axis=e,

y_axis="yellow",
show_axis_point=True)

7Examples of the interactive visualisations can be seen
on the project’s github page: https://github.com/
RasaHQ/whatlies

Figure 3: Plotting example terms along the axes man vs.
yellow. Note how the title/axes automatically update.

Figure 4: Plotting example terms along the transformed man
- woman axis and the yellow axis.

Transformations. whatlies also supports
several techniques for dimensionality reduction of
EmbeddingSets prior to plotting. This is demon-
strated in Figure 5 below.

from whatlies.transformers import Pca
from whatlies.transformers import Umap

p1 = (emb
.transform(Pca(2))
.plot_interactive())

p2 = (emb
.transform(Umap(2))
.plot_interactive())

p1 | p2

Transformations in whatlies are slightly dif-
ferent than for example scikit-learn transforma-
tions because in addition to dimensionality reduc-
tion, the transformation can also add embeddings
that represent each principal component to the

https://github.com/RasaHQ/whatlies
https://github.com/RasaHQ/whatlies

56

Figure 5: Demonstration of PCA and UMAP transforma-
tions.

EmbeddingSet object. As a result, they can be
referred to as axes for creating visualisations as
seen in Figure 5.

Scikit-Learn Integration. To facilitate quick ex-
ploration of different word embeddings we have
also made our library compatible with scikit-
learn (Pedregosa et al., 2011). The Rasa library
uses numpy (Harris et al., 2020) to represent the
numerical vectors associated to the input text. This
means that it is possible to use the whatlies
embedding backends as feature extractors in scikit-
learn pipelines, as the code snippet below shows8:

from whatlies.language import \
BytePairLanguage
from sklearn.pipeline import Pipeline

pipe = Pipeline([
("embed", BytePairLanguage("en")),
("model", LogisticRegression())

])

X = [
"i really like this post",
"thanks for that comment",
"i enjoy this friendly forum",
"this is a bad post",
"i dislike this article",
"this is not well written"

]

y = np.array([1, 1, 1, 0, 0, 0])

pipe.fit(X, y).predict(X)

This feature enables fast exploration of many
different word embedding algorithms.9

3 A Tale of two Use-cases

Visualising Bias. One use-case of whatlies
is to gain insight into bias-related issues in an em-

8Note that this is an illustrative example and we do not
recommend to train and test on the same data.

9At the moment, however, it is not yet possible to use
the whatlies embeddings in conjunction with scikit-learn’s
grid search functionality.

bedding space. Because the library readily sup-
ports vector arithmetic it is possible to create an
EmbeddingSet holding pairs of representations:
lang = SpacyLanguage("en_core_web_lg")

emb_of_pairs = EmbeddingSet(
(lang["nurse"] - lang["doctor"]),
(lang["nurse"] - lang["surgeon"]),
(lang["woman"] - lang["man"]),

)

Subsequently, the new EmbeddingSet can be
visualised as a distance map as in Figure 6, reveal-
ing a number of spurious correlations that suggest
a gender bias in the embedding space.
emb_of_pairs.plot_distance(metric="cosine")

Visualising issues in the embedding space like
this creates an effective way to communicate po-
tential risks of using embeddings in production to
non-technical stakeholders.

Figure 6: Distance map for visualising bias. If there was no
bias then we would expect ‘she-he‘ to have a distance near 1.0
compared to ‘nurse-physician‘. The figure shows this is not
the case.

It is possible to apply the debiasing technique
introduced by Bolukbasi et al. (2016) in order to
approximately remove the direction corresponding
to gender. The code snippet below achieves this by,
again, using the arithmetic notation.
lang = SpacyLanguage("en_core_web_lg")

emb = lang[words]
axis = EmbeddingSet(

(lang['man'] - lang['woman']),
(lang['king'] - lang['queen']),
(lang['father'] - lang['mother'])

).average()
emb_debias = emb | axis

Figure 7 shows the result of applying the de-
biasing technique, highlighting that some of the
spurious correlations have indeed been removed.

57

Figure 7: Distance map for visualising the embedding space
after the debiasing technique of Bolukbasi et al. (2016) has
been applied.

It is important to note though, that the above
technique does not reliably remove all relevant bias
in the embeddings and that bias is still measur-
ably existing in the embedding space as Gonen and
Goldberg (2019) have shown. This can be verified
with whatlies, by plotting the neighbours of the
biased and debiased space:

emb.score_similar("maid", n=7)

[(Emb[maid], 0.0),
(Emb[maids], 0.18290925025939941),
(Emb[housekeeper], 0.2200336456298828),
(Emb[maidservant], 0.3770867586135864),
(Emb[butler], 0.3822709918022156),
(Emb[mistress], 0.3967094421386719),
(Emb[servant], 0.40112364292144775)]

emb_debias.score_similar("maid", n=7)

[(Emb[maid], 0.0),
(Emb[maids], 0.18163418769836426),
(Emb[housekeeper], 0.21881639957427979),
(Emb[butler], 0.3642127513885498),
(Emb[maidservant], 0.3768376111984253),
(Emb[servant], 0.382546067237854),
(Emb[mistress], 0.3955296277999878)]

As the output shows, the neighbourhoods of
maid in the biased and debiased space are almost
equivalent, with e.g. mistress still appearing rela-
tively high-up the nearest neighbours list.

Comparing Embedding Backends. Another
use-case for whatlies is for comparing different
embeddings. For example, we wanted to analyse
two different encoders for their ability to capture
the intent of user utterances in a task-based dia-
logue system. We compared spaCy and the Uni-
versal Sentence Encoder for their ability to embed
sentences from the same intent class close together

in space. Figure 8 shows that the utterances en-
coded with the Universal Sentence Encoder form
more coherent clusters.

Figure 8: Side-by-side comparison of spaCy and Universal
Sentence Encoder for embedding example sentences from
3 different intent classes. Universal Sentence Encoder em-
beds the sentences into relatively tight and coherent clusters,
whereas class boundaries are more difficult to see with spaCy.

Figure 9 highlights the same trend with a dis-
tance map, where for spaCy there is barely any
similarity between the utterances, the coherent clus-
ters from Figure 8 are well reflected in the distance
map for the Universal Sentence Encoder.

The superiority of Universal Sentence Encoder
in comparison to spaCy for this example is ex-
pected, though, as it is aimed at sentences, but it is
certainly useful to have a tool — whatlies — at
one’s disposal with which it is possible to quickly
validate this.

4 Roadmap

whatlies is in active development. While we
cannot predict the contents of future community
PRs, this is our current roadmap for future devel-
opment:

• We want to make it easier for people to re-
search bias in word embeddings. We will con-
tinue to investigate if there are visualisation
techniques that can help spot issues and we
aim to make any robust debiasing techniques
available in whatlies.

• We would like to curate labelled sets of word
lists for attempting to quantify the amount of
bias in a given embedding space. Properly la-
belled word lists can be useful for algorithmic
bias research but it might also help understand
clusters. We plan to make any evaluation re-
sources available via this package.

• One limit of using Altair as a visualisation
library is that we cannot offer interactive visu-
alisations with many thousands of data points.

58

Figure 9: Side-by-side comparison of spaCy and Universal Sentence Encoder for embedding example sentences from 3 different
intent classes. The distance map highlights the “clustery” behaviour of Universal Sentence Encoder, where class membership
is nicely reflected in the intra-class distances. For spaCy on the other hand, there is less difference between intra-class vs.
inter-class distances.

We might explore other visualisation tools for
this library as well.

• Since we’re supporting dynamic backends like
BERT at the sentence level, we are aiming to
also support these encoders at the word level,
which requires us to specify an API for re-
trieving contextualised word representations
within whatlies. We are currently explor-
ing various ways for exposing this feature and
are working with a notation that uses square
brackets that can select an embedding from
the context of the sentence that it resides in:

mod_name = "en_trf_robertabase_lg"
lang = SpacyLanguage(mod_name)
emb1 = lang['[bank] of the river']
emb2 = lang['money on the [bank]']
assert emb1.vector != emb2.vector

At the moment we only support spaCy back-
ends with this notation but we plan to explore
this further with other embedding backends.10

• A related issue is that not every vocabulary
based back-end uses the same method of pool-
ing word-embeddings to represent a sentence.
Some take the sum, while others take the mean
and others introduce yet another standard. Our
goal for vocabulary based back-ends is to al-

10Ideally we also introduce the necessary notation for re-
trieving the contextualised embedding from a particular layer,
e.g. lang['bank'][2] for obtaining the representation of
bank from the second layer of the given language model.

low the user to control this manually for con-
sistency.

5 Conclusion

We have introduced whatlies, a python library
for inspecting word and sentence embeddings that
is very flexible due to offering a programmable
interface. We currently support a variety of em-
bedding models, including fastText, spaCy, BERT,
or the Universal Sentence Encoder. This paper
has showcased its current use as well as plans
for future development. The project is hosted at
https://github.com/RasaHQ/whatlies and we
are happy to receive community contributions that
extend and improve the package.

Acknowledgements

Despite being only a few months old the project has
started getting traction on github and has attracted
the help of outside contributions. In particular we’d
like to thank Masoud Kazemi for many contribu-
tions to the project.

We would furthermore like to thank Adam Lopez
for many rounds of discussion that considerably
improved the paper.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

https://github.com/RasaHQ/whatlies
http://aclweb.org/anthology/Q17-1010
http://aclweb.org/anthology/Q17-1010

59

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Pro-
ceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS’16,
pages 4356–4364, USA. Curran Associates Inc.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan,
A. Anderson, and R. Zemel. 2019. Understanding
the origins of bias in word embeddings. In ICML.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify
100 years of gender and ethnic stereotypes. Pro-
ceedings of the National Academy of Sciences,
115(16):E3635–E3644.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
pig: Debiasing methods cover up systematic gender
biases in word embeddings but do not remove them.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 609–614,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Charles R. Harris, K. Jarrod Millman, Stéfan J
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández del
Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. 2020. Array programming with
NumPy. Nature, 585:357–362.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free pre-trained subword em-
beddings in 275 languages. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Matthew Henderson, Iñigo Casanueva, Nikola
Mrkvsi’c, Pei hao Su, Tsung-Hsien, and Ivan Vulic.
2019. Convert: Efficient and accurate conversa-
tional representations from transformers. ArXiv,
abs/1911.03688.

Omer Levy and Yoav Goldberg. 2014. Linguistic
regularities in sparse and explicit word representa-
tions. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
pages 171–180, Ann Arbor, Michigan. Association
for Computational Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013a. Distributed repre-
sentations of words and phrases and their composi-
tionality. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751, Atlanta,
Georgia. Association for Computational Linguistics.

Piero Molino, Yang Wang, and Jiawei Zhang. 2019.
Parallax: Visualizing and understanding the seman-
tics of embedding spaces via algebraic formulae.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 165–180, Florence, Italy. As-
sociation for Computational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1532–1543, Doha, Qatar. Association for
Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.

http://dl.acm.org/citation.cfm?id=3157382.3157584
http://dl.acm.org/citation.cfm?id=3157382.3157584
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.18653/v1/N19-1061
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.aclweb.org/anthology/L18-1473
https://www.aclweb.org/anthology/L18-1473
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.18653/v1/P19-3028
https://doi.org/10.18653/v1/P19-3028
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

60

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Andrew Trask, Phil Michalak, and John Liu. 2015.
sense2vec - a fast and accurate method for word
sense disambiguation in neural word embeddings.
ArXiv, abs/1511.06388.

Jacob VanderPlas, Brian E. Granger, Jeffrey Heer,
Dominik Moritz, Kanit Wongsuphasawat, Arvind
Satyanarayan, Eitan Lees, Ilia Timofeev, Ben Welsh,
and Scott Sievert. 2018. Altair: Interactive statis-
tical visualizations for python. Journal of Open
Source Software, 3(32):1057.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.21105/joss.01057
https://doi.org/10.21105/joss.01057

