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Abstract

The WordNet database of English (Fellbaum,
1998) is a key source of semantic informa-
tion for research and development of natu-
ral language processing applications. As the
sophistication of these applications increases
with the use of large datasets, deep learn-
ing, and graph-based methods, so should the
use of WordNet. To this end, we introduce
WAFFLE: WordNet Applied to FreeForm Lin-
guistic Exploration which makes WordNet
available in an open source graph data struc-
ture. The WAFFLE graph relies on platform-
agnostic formats for robust interrogation and
flexibility. Where existing implementations of
WordNet offer dictionary-like lookup, single-
degree neighborhood operations, and path-
based similarity-scoring, the WAFFLE graph
makes all nodes (semantic relation sets) and re-
lationships queryable at scale, enabling local
and global analysis of all relationships with-
out the need for custom code. We demonstrate
WAFFLE’s ease of use, visualization capabil-
ities, and scalable efficiency with common
queries, operations, and interactions. WAF-
FLE is available at github.com/TRSS-NLP/
WAFFLE.

1 Introduction

WordNet (Miller, 1995; Fellbaum, 1998) is a
database of English words with associated lexical
properties and semantic relations. For example,
WordNet includes seven semantically distinct
senses for the noun “establishment”:

[establishment.n.01/constitution.n.02] - the act
of forming or establishing something
[establishment.n.02/institution.n.01] - an organi-
zation founded and united for a specific purpose
[establishment.n.03/administration.n.02] - the
persons who make up a body for the purpose of
administering something

[establishment.n.04] - a public or private struc-
ture including buildings and equipment for busi-
ness or residence

[establishment.n.05] - any large corporation

[establishment.n.06] - (ecology) the process by
which a plant or animal becomes established in a
new habitat

[establishment.n.07] - the cognitive process of es-
tablishing a valid proof

Each of these senses are organized by individ-
ual synsets (synonym sets) and labeled for refer-
ence with a word.part-of-speech.number structure.
Sysnsets include definitions, examples, lemmas,
synonyms (e.g. establishment.n.01 is equivalent
to constitution.n.02) and are organized into larger
hierarchical relationships (Figure 1), which can fa-
cilitate the computation of paths between synsets
to quantitatively approximate word similarity. For
example, there are 2 hops (steps up or down the hi-
erarchy) between establishment.n.02 and .05 com-
pared to 9 hops between .02 and .06 (organized in-
stitutions being more like corporations rather than
plants or animals establishing a new habitat).

Figure 1 is based on noun hypernym and hy-
ponym relations, but WordNet includes additional
parts of speech (verb, adjective, adverb) and asso-
ciated relations - e.g. entailment between verbs,
antonyms between adjectives, and derivationally
related forms for all parts-of-speech. WordNet has
been used for building dictionary and thesaurus ap-
plications as well as a range of natural language
processing tasks such as: word sense disambigua-
tion tasks (Patwardhan et al., 2003; Navigli, 2009;
Loureiro and Jorge, 2019), document retrieval
(Rada et al., 1989; Srihari et al., 2000), informa-
tion extraction (Stevenson and Greenwood, 2005;
Atkinson et al., 2009), and querying (Bulskov et al.,
2002; Li et al., 2003) for recommender (Blanco-
Fernández et al., 2008) and question-answer (Tapeh

github.com/TRSS-NLP/WAFFLE
github.com/TRSS-NLP/WAFFLE
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Figure 1: WordNet is-a (noun-based hypernym/hyponyms) hierarchy for establishment.

and Rahgozar, 2008) systems.
The current version of WordNet (117,000

synsets in version 3.1 with 27 relation types) is
available through an interactive browser, APIs,
and stand alone database files which can be cus-
tomized.1 However, beyond recreating common
functionality, we believe there is an increasing need
for the availability of WordNet in an open source
graph-based data structure to support large-scale
use and research (e.g. for deep learning (Yuan et al.,
2016; Diao et al., 2018; Vial et al., 2019; Kobylin-
ski and Wasiluk, 2019), hierarchical embeddings
(Bernardy and Maskharashvili, 2019), and graph-
based approaches generally (Naskrȩt et al., 2018;
Pinter and Eisenstein, 2018). These use cases lever-
age not only the content of WordNet, but need to
do so with increasing sensitivity to the structure
of WordNet. This is not only to operate more effi-
ciently, but to open up additional potential avenues
of research. To satisfy this need, we present WAF-
FLE: WordNet Applied to FreeForm Linguistic
Exploration as a fully-connected queryable graph
representation of WordNet to provide: (1) flexibil-
ity in exploring all of WordNet’s relations across
synsets and hierarchies rather than particular part-
of-speech-based subgraphs; (2) scalable processing
for large datasets; and (3) support for all common
operations on WordNet (look-up, similarity mea-
sures).

The remainder of this paper is structured as fol-
lows: Section 2 introduces the details of WAF-
FLE’s graph structure, computation and descriptive
statistics. Section 3 demonstrates common Word-
Net operations compared to non-graph structure

1http://wordnetweb.princeton.edu/perl/
webwn

approaches. Section 4 discusses related methods of
WordNet access. Section 5 concludes with WAF-
FLE’s access and licensing details with plans for
future versions.

2 WAFFLE Graph Overview

2.1 Data Format

Per its official description, WordNet’s database is
made available in:

... an ASCII format consisting of eight
files, two for each syntactic category. Ad-
ditional files are used by the WordNet
search code but are not strictly part of
the database.... Each index file is an al-
phabetized list of all the words found
in WordNet in the corresponding part of
speech. On each line, following the word,
is a list of byte offsets (synset offset s) in
the corresponding data file, one for each
synset containing the word.... Pointers
are followed and hierarchies traversed
by moving from one synset to another via
the synset offset s.2

The two files for each syntactic category refer to
a data and an index file, with the data file holding
attributes and relationships of each word in Word-
Net and index containing the mapping of words to
synsets present in the data file. These relationships
and indices are defined as byte offsets, which have
the advantage of allowing for APIs working with
the WordNet files to quickly traverse the datafile at

2https://wordnet.princeton.edu/
frequently-asked-questions

http://wordnetweb.princeton.edu/perl/webwn
http://wordnetweb.princeton.edu/perl/webwn
https://wordnet.princeton.edu/frequently-asked-questions
https://wordnet.princeton.edu/frequently-asked-questions
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Figure 2: (a) The core constellation of all wordsense-wordsense relationships within WordNet, with nodes colored
and scaled according to degree (darker and smaller = lower degree; brighter and larger = higher degree). In addition
to the central network containing interconnected wordsenses, there exist many disconnected sub-networks that
appear when synsets are not rendered. Several of these isolated networks are visible surrounding the main network.
(b) A detailed view of the northwest corner of the graph in (a), with closely clustered neighborhoods visible as
well as long chains of wordsenses that link otherwise disparate regions.

query-time, but come at the cost of being an unintu-
itive relationship-building and indexing scheme for
humans. Further, the number of columns in each
row within both index and data files are variable;
for instance, a data entry with 3 synset-to-synset
relationships will have 8 more columns than an
entry with 1 such relationship, as each relation-
ship introduces 4 new fields. This design choice
makes the data terse, but increases user effort to
parse the structure of and relationships within each
row when loading into relational formats, graph
databases, and desktop network analysis software.

WAFFLE parses the data within the data file and
reformats the results into graph representations that
trade off representation compactness (previously
optimized for quick on-disk or in-memory lookup)
for human-legibility and advanced graph analysis
when loaded into supported tools (c.f. Section 2.2).
The essential form of the transformed data format
is that of a node list and edge list, output as .CSV
and .JSON files. These files catalog the attributes
(e.g. type, part-of-speech, definition, example sen-
tences) and relationships (i.e. source node, type,
edge attributes, and target node) of each item in
WordNet, respectively. This representation is ready
for import in such network analysis tools as Gephi

(Bastian et al., 2009) and Cytoscape.3 For addi-
tional utility, WAFFLE also exports the graph as a
single .graphml file, a widely-supported graph in-
terchange format that contains both node and edge
information (Brandes et al., 2002).4 WAFFLE is
designed to work with the version 3.3 data provided
on GitHub under Apache 2.0 license by the main-
tainers of the Natural Language Tool Kit (“NLTK”)
(Bird et al., 2009), but is compatible with any data
following the WordNet specification.5 In the spirit
of open source software and compatible with the
original Wordnet 3.0 license, we present all origi-
nal components of WAFFLE on GitHub under an
open MIT license.6

2.2 Construction Methodology

WAFFLE runs in Python 3 (Van Rossum and Drake,
2009), and combines a custom parser for the Word-
Net format with auxiliary functions to construct
an in-memory graph using the NetworkX library
(Hagberg et al., 2008). The resulting graph contains

3https://cytoscape.org
4Specification found at https://graphml.

graphdrawing.org/specification.html
5https://github.com/nltk/wordnet
6https://wordnet.princeton.edu/

license-and-commercial-use, and https:
//opensource.org/licenses/MIT

https://cytoscape.org
https://graphml.graphdrawing.org/specification.html
https://graphml.graphdrawing.org/specification.html
https://github.com/nltk/wordnet
https://wordnet.princeton.edu/license-and-commercial-use
https://wordnet.princeton.edu/license-and-commercial-use
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
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approximately 288,000 nodes and 392,000 relation-
ships between them, and offers a starting point for
the application of any of NetworkX’s network-level
analysis algorithms, including clustering, central-
ity, link prediction, graph cutting, similarity, and
shortest pathfinding families of operations.7

The graph construction begins with an initial
parse of the data files, loading into memory synset
and word attributes from each line sequentially
through each part-of-speech’s own file. For each
line, a dictionary is constructed to hold the synset
data with the following structure and key attributes:

• offset: byte offset for lookup of relationships
• type: part of speech type
• words: a list of word dictionaries containing

– lemma
– sense: the numerical representation of

which use of the lemma the synset de-
scribes

• nPointers: number of outbound pointers the
synset has
• pointers: a list of pointer dictionaries contain-

ing
– symbol: the WordNet specified symbol

representing relationship type (enumer-
ated in Table 1)

– offset: the target byte offset of the pointer
– pos: part of speech of the pointer
– source/target: a special 4-digit hexadeci-

mal designation from WordNet that deter-
mines the specificity of the relationship,
e.g. from a certain word-sense belonging
to this synset to another word-sense, or
from the synset to another synset.

This initial traversal and load from the data files
creates a full representation of WordNet in such a
way that synset, word, and lemma relationships can
all be individually output and relationships traced
to one another without the need for reference to
the index file. The second pass through involves
the building of a node list containing all synset and
word information as well as an edge-list contain-
ing relationships by name rather than by offset. If,
however, the source/target field of a pointer des-
ignates that the relationship is from a synset to a
wordsense, wordsense to synset, or wordsense to
wordsense, it is possible that the reference is to
a wordsense that is known only by its offset and

7https://networkx.github.io/
documentation/stable/reference/
algorithms/index.html

not yet its identity (the synset it belongs to may
be later in the file). Consequently, the synset-to-
wordsense memberships are stored in a separate
dictionary and relationships that belong to this cat-
egory are saved. Once the synset-to-synset rela-
tionships are all constructed and the file iteration
complete, the remaining relationships are traversed
and edges created. This results in a complete, byte-
offset-resolved data format. As synsets have no
representation other than their conceptual meaning,
they are identified by their offsets as primary keys
in the WAFFLE graph.

At this stage, the output is in its most flexi-
ble form and users looking for maximum versa-
tility should take the .CSV and .JSON node list
and edge list outputs as starting points for their
work. For users interested in analyzing WordNet
within Python, WAFFLE also constructs a Net-
workX graph from the in-memory representations
of this data, annotating edge labels and weights
that are exported into a .graphml format for graph
transformations and further manipulation.

2.3 Graph Overview and Summary Statistics

The WAFFLE graph contains 117,478 nodes of
type synset, 170,479 wordsense, and 391,949 edges
spanning membership relations and 26 other seman-
tic relationship symbols. Table 1 provides a break-
down of total edges in the network by relationship
type, and Figure 2 illustrates a top-level look at
the information content of WordNet’s relationships.
Figure 3 showcases the different presentations of
the WordNet data that subgraph extracts and trans-
formations on the base graph structure can provide.

2.4 Graph Transformations

The graph of synset-to-synset, wordsense-to-
wordsense, and synset-to-wordsense relationships
across the 27 relationships (Table 1) represents the
most heterogeneous form of the WordNet graph.
While this form is a good starting point for famil-
iarizing with WordNet’s structure, it can be useful
to condense either multiple edge types together
or represent parallel edges as one, import into a
database-specific format, or study only wordsense-
to-wordsense relationships wherein a common
shared synset induces an edge between wordsenses.
WAFFLE provides avenues for these transforma-
tions, each of which serves as a template for further
user-driven customization.

https://networkx.github.io/documentation/stable/reference/algorithms/index.html
https://networkx.github.io/documentation/stable/reference/algorithms/index.html
https://networkx.github.io/documentation/stable/reference/algorithms/index.html
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Symbol Relationship Count
has member Synset Membership 208353

∼ Hyponym 89174
@ Hypernym 89174
+ Derivationally Related 74591
& Similar To 21434
#m Member Holonym 12288
%m Member Meronym 12288
%p Part Meronym 9111
#p Part Holonym 9111
@i Instance Hypernym 8587
∼i Instance Hyponym 8587
\ Pertainym to Noun or 8054

Derived from Adjective
! Antonym 7983
-c Domain Member Topic 6689
;c Synset Domain Topic 6689
∧ Also See 3276
$ Verb Group 1744
-r Domain Member Region 1498
;r Synset Domain Region 1498
-u Domain Member Usage 1368
;u Synset Domain Usage 1368
= Attribute 1278
#s Substance Holonym 797
%s Substance Meronym 797
∗ Entailment 408
> Cause 221
< Participle of Verb 73

Table 1: WordNet relations and counts in the
WAFFLE graph. Availability of relations is keyed
to part of speech (https://wordnet.princeton.
edu/documentation/wninput5wn).

2.4.1 Edge Condensation and Weighting

WAFFLE provides an optional step in the graph
creation process that normalizes each of the 27 se-
mantic relationships (many are directional inverses
of one another – e.g. hypernymy and hyponymy)
into a single edge type of connectedness, and stores
the count of relationships condensed between any
two nodes in the graph as the weight between them.
Although this edge condensation certainly results in
a reduction of total information content, it presents
the advantages of edge normalization and creation
of bidirectionally-weighted edges between nodes.
This makes the treatment of the graph as homoge-
neous in centrality and betweenness calculations
more immediately accessible.

2.4.2 Graph Database Import

Although NetworkX and Python provide a pow-
erful platform for in-memory graph creation and
analysis, potential users of WordNet may be inter-
ested in loading and querying WordNet from within
a user’s graph database. To this end, WAFFLE pro-
duces a .graphml output that is ready for import
into a graph database, and includes a Cypher query-

language script for importing WordNet into Neo4j,
a prominent desktop and server-deployable graph
database, using its officially-supported APOC
(Awesome Procedures On Cypher) plugin.8 This
enables the WAFFLE-produced graph to be readily-
queryable by local and remote applications as well
as data analysts issuing Cypher. Analyzing Word-
Net through the use of a powerful graph query
language like Cypher opens the door to direct path-
based querying of the data, as illustrated in the
Figure 3.

2.4.3 Expanded Graph Flexibility
For the analysis of words in specific senses and
their relations to one another, users may only want
to consider synsets as stepping stones to and from
specific wordsenses, and in so doing analyze their
relationships only by proxy. To achieve this, a
transformation of the graph through the following
Cypher can be conducted:
MATCH (w1:Wordsense)-[:has_member]-(s:

Synset)-[:has_member]->(w2:Wordsense)

WHERE id(w1) > id(w2)
MERGE (w1)-[:shared_synset]-(w2)

From this point, the direct wordsense-to-
wordsense relationships can be explored and sub-
graphs extracted, providing an intuitive perspec-
tive towards exploring semantic relations of words
and their shared meanings. This approach con-
denses the total number of synset-membership-
based edges in half (each new edge represents two
original connections), optimizing the memory foot-
print and query structure.

Compared to the full synset-inclusive graph, this
representation is both visually-accessible and en-
ables wordsense-to-wordsense pathfinding that nei-
ther the original graph nor references to the Word-
Net data and index files provide (directly or in a
specific API). A count of degrees of separation
in this graph of directly-linked words translates
simply to how many synsets (or other direct con-
nections) away from one another the two words
are. Similarly, by abstracting away the synset-to-
synset relationships, users of this particular view
do not need to resolve polarity, or semantic di-
rectionality, of the many synset-to-synset relation-
ships and can focus on the introduced necessarily-
equivalent “shared synset” relationships. Although

8The pure Cypher (non-APOC) components of this work-
flow are applicable as well to any database supporting
the Cypher language. See https://www.opencypher.
org and https://www.neo4j.com

https://wordnet.princeton.edu/documentation/wninput5wn
https://wordnet.princeton.edu/documentation/wninput5wn
https://www.opencypher.org
https://www.opencypher.org
https://www.neo4j.com
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direct wordsense-to-wordsense relationships en-
coded in WordNet are retained by this example
transformation, users can modify the Cypher or
remove these connections before their analyses to
ensure homogeneity of edge-types. As a result,
node-level (e.g. degree, betweenness centrality)
statistics and neighborhood (e.g. community de-
tection) operations can be produced where each
edge is directly comparable to all other edges in the
network. Both this format of the WordNet graph
and the synset-inclusive form are available with the
WAFFLE source code (c.f. Section 5).

2.4.4 Subgraph Extraction
Subgraph extraction using WAFFLE enables fo-
cused views such as the examples in Figure 3. This
process is useful not just for creating publication-
ready graphics, but also for targeted exploration of
specific regions of the full WordNet. A traditional
example of subgraph extraction involves selecting
a seed group of nodes and including nodes isometri-
cally from that core. More creative and specialized
subgraphs such as those containing all nodes and
induced edges within one degree of the shortest
spanning path between two wordsenses or synsets
can be created as well. This flexibility in navi-
gating and observing the WordNet graph through
WAFFLE not as a tree structure but as a non-rooted
graph structure offers unique opportunities. These
comparisons, as well as a treatment of analogous
functionality, are featured in Section 3.

3 Features, Strengths, and Comparisons

While novel in structure, WAFFLE parallels but
does not present itself as a replacement to exist-
ing representations and forms of access to Word-
Net. For comparison, we present several canoni-
cal operations performed on WordNet through its
WAFFLE-processed form and as accessed through
NLTK. We break common functionality associated
with WordNet into: (1) Information Retrieval; (2)
Synset Relationship-finding; (3) Computation of
Semantic “Distance”; and (4) Visualization. For
each category, we present examples and syntax in
both WAFFLE and the NLTK WordNet wn library.9

3.1 Information Retrieval

Lookup operations treat WordNet as an informa-
tion repository rather than a structure or tool for

9https://www.nltk.org/_modules/nltk/
corpus/reader/wordnet.html

computation, and accordingly, stand to suit com-
mon methods of information retrieval just as well
as graph-based approaches. Despite their simplic-
ity, these lookups are a very natural place to begin
investigation of linguistics using WordNet and of-
fer a direct comparison between NLTK-equivalent
standalone wn WordNet API and WAFFLE. For
ease of reproduction and generalization, several
WAFFLE graph examples are provided as Cypher
queries.

Synset lookup by lemma in NLTK re-
turns a list of Sysnset objects that cor-
respond to the called lemma, in this case
wn.synsets(‘establishment’) , no-

tably including synsets that do not have a
wordsense corresponding to the lemma queried:

Synset(‘constitution.n.02’)
Synset(‘institution.n.01’)
Synset(‘administration.n.02’)
Synset(‘establishment.n.04’)
...
Synset(‘establishment.n.07’)

This can be attributed to the way that wn identifies
these synset lookups, ordering them based on fre-
quency counts from WordNet concordance texts.10

By comparison, the equivalent Cypher query:

MATCH (w:Wordsense)-[:has_member]-(s:
Synset) WHERE w.lemma = "
establishment" RETURN s

is more verbose, but precisely describes the rela-
tionship between what’s being matched (a word-
sense with the exact lemma) and what’s being re-
turned (a synset with membership relation). Be-
cause of the design of the WAFFLE graph, synsets
are identified not by a single exemplar usage, but
by a unique identifier corresponding to the synset’s
original byte offset. This trade-off reduces the
opportunity for synset misinterpretation, and all
wordsenses belonging to a synset can be retrieved
through an inversion of the original query:

MATCH (s:Synset {id:someID})-[:
has_member]-(w:Wordsense) RETURN w.
lemma

This operation is done in wn by calling the
.lemmas() function of a Synset object.

This theme of terseness being exchanged for
flexibility and explicitness in WAFFLE contin-
ues for definition and example lookups on synset
objects. These operations are handled by the

10https://wordnet.princeton.edu/
documentation/wn1wn

https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
https://www.nltk.org/_modules/nltk/corpus/reader/wordnet.html
https://wordnet.princeton.edu/documentation/wn1wn
https://wordnet.princeton.edu/documentation/wn1wn
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Figure 3: For the lemma establishment: (a) The uncondensed graph view of any wordsense (turquoise) with the
lemma and all connections within 3 degrees of those wordsense nodes. The direct relationships of wordsenses
(dark teal) to one another is not very clear, but the overall topology and role of synsets (light blue-grey) in bridging
relationships is made clear. (b) The condensed wordsense-only graph view of wordsenses and all shared synset
and syntactic relationships within 4 degrees of those nodes. The connections between individual wordsenses is
much more clear compared to (a), but senses that do not have any direct relationships to another wordsense or
shared synsets – in this case one of the three wordsenses – are not included in this transformation. Node size is
modulated by degree.

.definition() and .examples() func-
tion calls in wn. For WAFFLE, these values are
stored as properties (attributes) of the synset object
nodes in the graph and closely align to the style
of retrieval in wn. For example, the Cypher query
used to retrieve the definition of any word with its
associated numerical synset identifier (n874164 -
demonstrative 0) is:
MATCH (s:Synset {id:someID}) RETURN s.

definition

Considering these are attribute-lookup opera-
tions rather than path-traversal operations, no graph
pattern matching is required. However, in the event
that all definitions for synsets containing a certain
lemma in their word sense were to be investigated,
the associated Cypher query combines two wn calls
and organizes results into a single query. Returning
to our example, in order to look up all definitions
for synsets that contain words of the lemma “estab-
lishment”, the Cypher would be:
MATCH (w:Wordsense)-[:member\of]-(s:

Synset) WHERE w.lemma ="
establishment" RETURN s.definition

As the desired lookup becomes more complex,
the value of concisely stating the information re-
trieval task as a graph look-up begins to quickly

outweigh the original advantage in terseness a tra-
ditional interface to the data offers.

3.2 Synset Relationship-finding

Relationship-finding is an operation that graphs
are configured to perform, and graph-querying lan-
guages like Cypher designed to express. As a result,
WAFFLE presents a method of working with famil-
iar relationships and introduces the ability to easily
specify graph traversals in WordNet that would oth-
erwise have recalled many individually-chained or
recursive function calls.

In practice, single-level depth relationship oper-
ations in wn are straightforward: individual func-
tions belonging to the Synset object will return the
result of the immediate neighbor lookup - e.g. Ta-
ble 2. In the WAFFLE graph, the following query
illustrates beginning at a target wordsense and find-
ing synsets related to its parent synset – in this case
with the @ (hypernym) relationship.

MATCH (w:Wordsense)-[:has_member]-(s1:
Synset)-[:@]-(s2:Synset) RETURN s2

MATCH p=(w:Wordsense)-[:has_member]-(s1:
Synset)-[:@]-(s2:Synset) RETURN p
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NLTK return
.hypernyms() [body.n.02]
.hyponyms() [county council.n.01,

curia.n.01,
executive.n.02,
government officials.n.01,
management.n.02,
judiciary.n.01,
top brass.n.01]

.part holonyms() [government.n.01]

.member meronyms() [advisory board.n.01]

Table 2: Example NLTK wn relation calls and returns
for the Synset object “establishment.n.03”.

Any of the relation symbols (c.f. Table 1) can
be substituted in the query to replace the hypernym
relationship with the semantic relation of interest.
It is worth noting that two of the relationships share
the \ relationship symbol, which represents either
a noun pertainym or derivation from an adjective
based on context and results in a total of 26 unique
syntactic edge labels within the WAFFLE graph.

3.3 Computation of Semantic “Distance”
NLTK’s wn provides a number of distance op-
erations to quantify differences between shared
synsets (common in wordsense disambiguation and
document/query similarity tasks). In general, meth-
ods for computing path similarity range from sim-
ple (number of hops in a hierarchy) to complex -
e.g. Leacock-Chodorow (Leacock and Chodorow,
1998) or Wu-Palmer (Wu and Palmer, 1994) simi-
larities in Table 3.

NLTK return
Lowest Common Hypernym [Subsumer]
.lowest common hypernyms() entity.n.01
Shortest Path (1/number of hops)
.path similarity() 0.0833
Leacock-Chodorow similarity
.lch similarity() 1.1526
Wu-Palmer similarity
.wup similarity() 0.1538

Table 3: NLTK path similarities for comparing the
Synset objects wn.synset(“establishment.n.03”) and
wn.synset(“establishment.n.04”).

These functionalities are unique to wn because
of its model of WordNet as a tree structure, where
traversals up and down the tree – up to and includ-
ing the root nodes that bind each conceptual cate-
gory (e.g. “entity”) – provide markers of similarity
and distance. In WAFFLE, there is no concept
of moving up or down individual hierarchies; in-
stead, these traversals in granularity and specificity
represent directional edges in the graph. Distance

queries, configurable to report on only one type of
edge or multiple edge types, can be used to find
path lengths from synsets or wordsense to one an-
other, but these results would be incomparable to
the specific calculations underlying each similarity
or lowest-common ancestor lookup.

The same superimposition of multiple WordNet
hierarchies that makes WAFFLE directly incom-
parable to existing similarity measures offers a
novel approach to similarity and pathfinding in the
WordNet data: the identification and exploration
of cyclic structures in WordNet is now explicitly
defined. Furthermore, WAFFLE’s flexibility to be
transformed on a graph level is unmatched by wn.
The transformation in Section 2 is but one example
of modifying the base graph structure to create a
purpose-built representation.

3.4 Visualization
Building and visualizing graph structures using
NetworkX and Matplotlib in wn is possible.11 How-
ever, the nature and scope of these created graphs is
tied to and limited by the funnel of the API design.
For wn, an example of this limitation is that each
graph query must involve recursive calls to the re-
lationships branching out from a word, lemma, or
synset of interest. In contrast, fluid and customiz-
able graph visualization is one of the foremost de-
sign principles behind the structure and format of
WAFFLE.

Graph data structures lend themselves naturally
to network visualization, and the provision of mul-
tiple data formats in common interchange formats
and specific scripts for loading and transformation
in Cypher-enabled platforms creates a platform on
which all users are invited to explore and expand.
Figures 2 and 3 are but introductory examples of
the types of visualization that WAFFLE can be
used to generate in the study of linguistic relations
and the structure of language in general.

4 Related Work

There are many ways of accessing the content
WordNet beyond the the database files which al-
lows for a tremendous amount of choice in devel-
oping against WordNet.12 Further, NLTK and com-
parable packages from WordNet::Similarity (Peder-
sen et al., 2004) and spaCy, to name a few, provide

11Bird et al. (2009, 170-171) and https://www.nltk.
org/book/ch14.html

12https://wordnet.princeton.edu/
related-projects

https://www.nltk.org/book/ch14.html
https://www.nltk.org/book/ch14.html
https://wordnet.princeton.edu/related-projects
https://wordnet.princeton.edu/related-projects
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comprehensive approaches to exploring not only
the content, but also the structure of WordNet.13

However, compared to WAFFLE, these existing
offerings facilitate one-off to moderately-scalable
investigations; given more to exploratory research
and processing rather than use with large data sets,
sophisticated applications, or classes of problems
that need to leverage the structural elements of
WordNet.

Some existing offerings are more oriented to
graph-based structures. For example, the Global
WordNet Association does produce formats (JSON,
XML, RDF) that could be easily translated into
graph data structures but introduce a number of ad-
ditional relationships that reflect ongoing research
and linkage to multi-lingual WordNets.14 Similarly,
FrameNet (Baker et al., 1998) is graph-based and
accessible with NLTK, but provides more seman-
tic and syntactic connections within the context of
frame semantics with no direct link to WordNet.
ConceptNet (Speer et al., 2017) is graph-based as
well with a closer relationship to WordNet with
explicit external linking, but is focused on a much
broader range of information for natural language
understanding, common sense reasoning, crowd
sourced knowledge, etc. Future connections to
these offerings will be explored, but, as is introduce
a number of additional complexities that WAFFLE
seeks to avoid.

5 Availability and Future Work

We have presented WAFFLE, an open source graph
data structure that relies upon platform-agnostic for-
mats to facilitate robust interrogation and flexibility
when using WordNet in research or applications.
WAFFLE’s software, example load scripts, and the
associated figures and graph files are available at
github.com/TRSS-NLP/WAFFLE.

While we encourage users to capitalize on the
advantages afforded by the design and transforma-
tions presented in Section 2 to implement the Word-
Net data in entirely new ways, we envisage several
avenues of augmentation: (1) linking WAFFLE to
corpora to perform more sophisticated path mea-
sures using information content (Jiang and Con-
rath, 1997; Lin, 1998; Resnik, 1995) and associated
word embeddings; (2) connecting additional Word-
Net information such as morphosemantic links, log-

13https://spacy.io/universe/project/
spacy-wordnet

14http://globalwordnet.github.io/
schemas/

ical forms and other semantic annotations (existing
as “standoff” files; and (3) multi-lingual connec-
tions through with Open Multilingual Wordnet and
potentially others referenced in Section 4.15
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