
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 8–13
Virtual Conference, November 19, 2020. c©2020 Association for Computational Linguistics

8

ARBML: Democratizing Arabic Natural Language Processing Tools

Zaid Alyafeai
Dhahran, Saudi Arabia

g201080740@kfupm.edu.sa

Maged S. Al-Shaibani
Dhahran, Saudi Arabia

g201381710@kfupm.edu.sa

Abstract
Automating natural language understanding is
a lifelong quest addressed for decades. With
the help of advances in machine learning and
particularly, deep learning, we are able to pro-
duce state of the art models that can imitate
human interactions with languages. Unfortu-
nately, these advances are controlled by the
availability of language resources. Arabic ad-
vances in this field , although it has a great
potential, are still limited. This is apparent in
both research and development. In this paper,
we showcase some NLP models we trained for
Arabic. We also present our methodology and
pipeline to build such models from data col-
lection, data preprocessing, tokenization and
model deployment. These tools help in the ad-
vancement of the field and provide a system-
atic approach for extending NLP tools to many
languages.

1 Introduction

Arabic language is a widely used language. It is the
sixth most spoken language in the world (Farghaly
and Shaalan, 2009). It also has a noticeable influ-
ence on many other languages around the globe.
Compared to English, Arabic is morphologically a
very rich language (Habash, 2010) with relatively
complex grammar and cursive script including the
use of diacritics. Diacritics are special characters
added to Arabic writing to replace the absence of
short vowels. Moreover, Arabic has a variety of di-
alects that may greatly differ in style and grammar.

Arabic content on the web is vastly emerging
with great diversity in style and subjects, written
in many dialects. This opportunity opens doors
for research to hone machine capabilities to auto-
mate language understanding and comprehension.
However, Arabic inherent characteristics makes it
difficult to resolve and require linguistic expertise.

Natural Language Processing is gaining a lot of
attractions within the research community. The

aim is to create machines that can replicate or ex-
ceed human language understanding. On another
perspective, a lot of effort is invested to develop
software applications to port research advances to
industry. Another effort is also directed to facilitate
researchers job by automating routine workflows,
cleaning and preprocessing, for example. Some ex-
amples of this are huggingface, allennlp and flare.
Most of these tools are designed to work for En-
glish or generalize the pipeline to work for other
languages. Arabic, although it is not as popular as
other languages tools, also has some contributions,
but in the linguistics part only. Some promising
examples are MADAMIRA (Pasha et al., 2014),
FARASA (Abdelali et al., 2016), Adawat (Zer-
rouki, 2020) and CAMeL NLP (Obeid et al., 2020).
These tools address a large spectrum of NLP tasks
for Arabic like segmentation, part of speech tag-
ging, named entity recognition, diacritizatoin and
grammatical analysis. However, most of these tools
are not using the recent advances in NLP. Unfor-
tunately, in the Arabic community, open source
contribution is not widely accepted. This is due
to the copyrights restrictions made by authors as
some of these tools are not licensed for commercial
use. Although, the source code can be delivered on
demand, this mechanism is still not development
friendly with unclear methodology and processes
to version control and collaboration.

In this paper, we introduce our contribution to
the Arabic language open source community. We
present a collection of models that can be utilized
and improved to solve a wide variety of many Nat-
ural Language Processing tasks. Moreover, we in-
troduce three libraries for scrapping, cleaning and
tokenization. We also provide notebooks that can
be easily used to replicate our experiments. We pro-
vide a flexible code design that can be implemented
and extended to other languages.

https://github.com/huggingface
https://allennlp.org/
https://github.com/flairNLP/flair


9

Figure 1: ARBML pipeline.

2 Design

We created ARBML in the hope of democratiz-
ing Arabic natural language processing by creat-
ing a set of demos as well as tools for making it
easy to use for novice users, developers and re-
searchers. We revise the NLP pipeline and make it
suitable for Arabic as indicated in Figure 1. We pro-
vide datasets, preprocessors, tokenizers and models.
Furthermore, we host notebooks that can replicate
our experiments and help users to understand how
to do each task. In the next few sections we explain
our main tools.

2.1 Tnqeeb

This is a repository that hosts a collections of data
gathered from multiple websites. This data is col-
lected using scrapy, a well-known python scraping
library. This implementation comes as a mature
result after a sequence of scraping efforts using low
level python libraries like requests and beautiful-
soup. The current available data is a collected from
three giant Arabic poetry websites: aldiwan, poetry
encyclopedia, and poets gate. We plan to scrape as
many sources as possible on a given topic, poetry,
news, or blogs for instance. We then group, do
initial processing, and de-duplicate these data into
an individual repositories to be easy to work on.

2.2 Tnkeeh

Tnkeeh is a library that is responsible for prepro-
cessing datasets. It has four main procedures

• Cleaning: this module is used for clean-
ing datasets by removing diacritics, extra
spaces, remove English characters and remove

Tatweel - a character used for increasing the
length of characters.

• Segmentation: we use FARASA (Abdelali
et al., 2016) for segmenting texts into mor-
phemes.

• Normalization: Arabic letters can appear in
different forms due to different Unicode’s rep-
resenting the same characters. We created a
dictionary to map the same representations to
their fixed characters.

• Data Splitting: we use a set of of procedures
to split different types of datasets depending
on the tasks to train on. For instance, we
can split datasets if they are for unsupervised,
classifications or parallel tasks.

• Reading: this module reads the different
modes of datasets into python variables.

2.3 Tkseem

Tkseem is a tokenization library that implements
multiple tokenization algorithms optimized for Ara-
bic. We provide six categories of tokenizers with a
simple interface.

• Word Tokenizer: splits words based on white
spaces.

• Character Tokenizer: splits characters depend-
ing on their position on text.

• Sentencepiece Tokenizer: A wrapper for the
sentencepiece library (Kudo and Richardson,
2018).

https://scrapy.org/
https://www.aldiwan.net/
https://poetry.dctabudhabi.ae/
https://poetry.dctabudhabi.ae/
https://www.poetsgate.com/


10

Dataset Description
Arabic Digits 70,000 images (28 x 28) (El-Sawy et al., 2016)
Arabic Letters 16,759 images (32 x 32 ) (El-Sawy et al., 2016)
Arabic Poems 146,604 poems scrapped from (Aldiwan,

2013)
Arabic Translation 100,000 parallel Arabic to English translation

ported from OpenSubtitles
Product Reviews 1,648 reviews on products ported from (ElSa-

har and El-Beltagy, 2015)
Image Captions 30,000 Image paths with captions extracted

and translated from (Lin et al., 2014)
Arabic Poem Meters 55,440 verses with their associated meters col-

lected from (Aldiwan, 2013)
Arabic Fonts 516 images (100 x100) for two fonts

Table 1: Collected and preprocessed Datasets.

Figure 2: Base Tokenizer.

• Morphological Tokenizer: splits words based
on morphology. This was trained using
Madamira (Pasha et al., 2014) on a large Ara-
bic news corpus.

• Random Tokenizer: tokenizes text based on
random splitting of words.

• Disjoint Letter Tokenizer: splits based on let-
ters that are not connected in Arabic script
writing.

All these tokenizers extend a common Base class
Tokenizer (Figure 2) that implements the main func-
tionalities like encode, decode, tokenize, and detok-
enize (Table 2). One useful function of these tok-
enizers is the ability to serialize them and load them
on demand. This approach relaxes the time for
training specially on large corpus. We also provide
different methods for optimization like caching and
memory-mapped files to speed up the tokenization
process.

Function Description
tokenize Converts text to tokens
encode Converts tokens to integers
decode Converts integers to tokens
detokenize Converts tokens back to text
encode sentences Encodes a set of sentences
load model Loads a saved model
save model Saves a given model
encode and save Encodes and saves the model

as numpy array

Table 2: Tokenizer functions.

These tokenizers are evaluated on three NLP
tasks: sentiment analysis, Arabic meter poetry clas-
sification and neural machine translation.

2.4 Models and Datasets

This main module is responsible for storing and
serving different datasets and models. The main
purpose is to give a real time experience for dif-
ferent models that are related to Arabic and NLP.
The main strategy is highlighted in Figure 3. This
procedure shows off our main approach for making
the models easily accessible via different interfaces.
We follow three main stages

• Preprocess Dataset: we collect and preprocess
different datasets that are related to different
tasks. Table 1 shows the main datasets that
we collected. The datasets cover different ar-
eas like translation, sentiment analysis, poem
classification, etc.

• Training: We train the model on the datasets



11

Model Description
Arabic Diacritization Simple RNN model ported from (Barqawi, 2017)
Arabic2English Translation seq2seq with Attention
Arabic Poem Generation CharRNN model with multinomial distribution
Arabic Words Embedding N-Grams model ported from Aravec (Soliman et al.,

2017)
Arabic Sentiment Classification RNN with Bidirectional layer
Arabic Image Captioning Encoder-Decoder architecture with attention
Arabic Word Similarity Embedding layers using cosine similarity
Arabic Digits Classification Basic RNN model with classification head
Arabic Speech Recognition Basic signal processing and classification
Arabic Object Detection SSD Object detection model
Arabic Poems Meter Classification Bidirectional GRU from (Al-shaibani et al., 2020)
Arabic Font Classification CNN

Table 3: Trained and deployed models.

using Keras with TensorFlow backend (Abadi
et al., 2016). We used Keras because it is
straight forward to convert the models using
TensorFlow.js. We use Google Colab for train-
ing our models with proper documentations
in a tutorial-like procedure. We make all the
model available in this repository.

• Deployment: We make the models available
in the browser using TensorFlow.js (Smilkov
et al., 2019). TensorFlow.js is part of the Ten-
sorFlow ecosystem that supports training and
inference of machine learning models in the
browser. The main advantage is a device-
agnostic approach that makes all the models
available on any device that has a browser.
Moreover, the models are light and can run of-
fline. The main motive is to make the models
easily accessible via a simple interface like
the browser. This makes it easier for users to
test different models in a few clicks.

We make all the datasets and models available on
our GitHub : https://github.com/ARBML/ARBML.
The procedure we follow makes it easier for de-
velopers to contribute to our project. Moreover,
our strategy is language-agnostic and encourages
extending it to other languages. In Table 4 we com-
pare ARBML against other tools in the literature.

3 End-user Experience

ARBML provides a solid contribution from two
main perspectives:

• Educational Perspective: People who wish to
learn NLP will greatly benefit from ARBML.

Figure 3: Models procedure.

ARBML provides various training models
with different techniques for both, command
line and web interfaces using Keras and Tern-
sorFlow.js. The pipeline from cleaning the
dataset to model training and deployment is
documented in details as Colab Notebooks.
Additionally, users can test different models
directly in the browser. For instance, we have
a translation model where the users can enter
a statement in Arabic and it will be translated
in English.

• Development and Research: From develop-
ment prospective a lot of tools like tnqeeb,
tkseem and tnkheeh can be used in different
projects related to NLP. Furthermore, develop-
ers can use our deployed models as prototype
to test the possibility of implementing them
in industry. Moreover researchers can use our
pipeline to create new state-of-the-art models
by using our models as a starting point.

https://github.com/ARBML/ARBML/tree/ master/models/Keras
https://github.com/ARBML/ARBML


12

Framework Methodology Models Availability Datasets Accessibility Generalization Programming
Language

Web

Stanford
CoreNLP
(Manning et al.,
2014)

Probabilistic mod-
els

N/A N/A The source code
can be downloaded
from the main
website

Multilingual Java No

MADAMIRA
(Pasha et al.,
2014)

Morphological anal-
ysis developed with
machine learning
tools

Models are available
via the API and the web
interface

N/A Source code is ac-
cessible by email
for education uses
only

Arabic Java Yes

FARASA
(Abdelali et al.,
2016)

Different Models
built with machine
learning

Binaries are available
but the code used for
training the models is
not

N/A Source code for the
API is accessible by
email with license
for educational uses
only

Arabic Java Yes

CAMeL NLP
(Obeid et al.,
2020)

Multitasks learning
models

Models are available
for download

Yes Source code is open
on GitHub

Arabic Python No

Adawat
(Zerrouki,
2020)

General tools not
necessarily built
with machine
learning

N/A Yes Source code is open
on GitHub

Arabic Python Yes

ARBML NLP tasks built with
the recent advances
in NLP field

Models are available on
GitHub

Yes Source code is
available on GitHub
along with the
training notebooks

Generalizable Python Yes

Table 4: Comparing ARBML against other Arabic NLP tools.

4 Conclusion and future plans

Recently, many NLP tools have been developed
but they only focus on English. In this work we
showcased ARBML which is a set of tools that
make Arabic NLP easily accessible through differ-
ent interfaces. We target the NLP pipeline starting
from scrapping datasets, preprocessing, tokeniza-
tion to training and deployment. We focused on
making the design of our tools language-agnostic
and hence can be extended to many other languages,
given we change the morphological aspects. We
collected many datasets that can be easily used by
researchers to develop new models. We also de-
signed three libraries tnqeeb, tnkeeh and tkseem
which can be easily utilized by developers to de-
velop tools to support Arabic NLP. The tools utilize
the morphological nature of Arabic to provide dif-
ferent functionalities that are unique for Arabic.

We plan to add many other models and make
them easily accessible through the browser. Mainly,
our next step is to tackle more advanced models
like transformers (Vaswani et al., 2017). Further-
more, we want to apply different techniques like
quantization and distillation to make the models
available in the browser. Moreover, we would like
to focus on light models like MobileBERT (Sun
et al., 2020), retrain it for Arabic and make it read-
ily usable in the browser.

5 Acknowledgements

ARBML is and open source project that will keep
growing in the future. We would like to thank all
developers who shared ideas, models and helped
us address different issues.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} symposium
on operating systems design and implementation
({OSDI} 16), pages 265–283.

Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and
Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for arabic. In Proceedings of the 2016
conference of the North American chapter of the as-
sociation for computational linguistics: Demonstra-
tions, pages 11–16.

Maged S Al-shaibani, Zaid Alyafeai, and Irfan Ahmad.
2020. Meter classification of arabic poems using
deep bidirectional recurrent neural networks. Pat-
tern Recognition Letters.

Aldiwan. 2013. Aldiwan.

Zerrouki Barqawi. 2017. Shakkala, arabic text vocal-
ization.

Ahmed El-Sawy, EL-Bakry Hazem, and Mohamed
Loey. 2016. Cnn for handwritten arabic digits recog-
nition based on lenet-5. In International confer-
ence on advanced intelligent systems and informat-
ics, pages 566–575. Springer.

Hady ElSahar and Samhaa R El-Beltagy. 2015. Build-
ing large arabic multi-domain resources for senti-
ment analysis. In International Conference on Intel-
ligent Text Processing and Computational Linguis-
tics, pages 23–34. Springer.

Ali Farghaly and Khaled Shaalan. 2009. Arabic natu-
ral language processing: Challenges and solutions.
ACM Transactions on Asian Language Information
Processing (TALIP), 8(4):1–22.

https://www.aldiwan.net/
https://github.com/Barqawiz/Shakkala
https://github.com/Barqawiz/Shakkala


13

Nizar Y Habash. 2010. Introduction to arabic natural
language processing. Synthesis Lectures on Human
Language Technologies, 3(1):1–187.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash.
2020. Camel tools: An open source python toolkit
for arabic natural language processing. In Proceed-
ings of The 12th Language Resources and Evalua-
tion Conference, pages 7022–7032.

Arfath Pasha, Mohamed Al-Badrashiny, Mona T Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of ara-
bic. In Lrec, volume 14, pages 1094–1101.

Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann
Yuan, Nick Kreeger, Ping Yu, Kangyi Zhang, Shan-
qing Cai, Eric Nielsen, David Soergel, et al. 2019.
Tensorflow. js: Machine learning for the web and be-
yond. arXiv preprint arXiv:1901.05350.

Abu Bakr Soliman, Kareem Eissa, and Samhaa R El-
Beltagy. 2017. Aravec: A set of arabic word embed-
ding models for use in arabic nlp. Procedia Com-
puter Science, 117:256–265.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic bert for resource-limited de-
vices. arXiv preprint arXiv:2004.02984.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Taha Zerrouki. 2020. Towards an open platform for
arabic language processing.


