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Abstract

We present SacreROUGE, an open-source li-
brary for using and developing summarization
evaluation metrics.1 SacreROUGE removes
many obstacles that researchers face when us-
ing or developing metrics: (1) The library pro-
vides Python wrappers around the official im-
plementations of existing evaluation metrics
so they share a common, easy-to-use interface;
(2) it provides functionality to evaluate how
well any metric implemented in the library cor-
relates to human-annotated judgments, so no
additional code needs to be written for a new
evaluation metric; and (3) it includes scripts
for loading datasets that contain human judg-
ments so they can easily be used for evalua-
tion. This work describes the design of the
library, including the core Metric interface,
the command-line API for evaluating summa-
rization models and metrics, and the scripts to
load and reformat publicly available datasets.
The development of SacreROUGE is ongoing
and open to contributions from the community.

1 Introduction

Evaluating models is a critical step of the machine
learning workflow. However, unlike classification-
based tasks, evaluating models which generate text
is difficult and is a research area on its own. The
basic workflow for developing a new automatic
evaluation metric is to design/implement the metric,
calculate its correlation to human judgments, then
use that metric to evaluate text generation systems.

While there have been significant efforts to build
libraries for developing machine learning models
(Klein et al., 2017; Gardner et al., 2018; Ott et al.,
2019), no equivalent library exists for develop-
ing evaluation metrics. In this work, we present
SacreROUGE, an open-source, Python-based li-

1https://github.com/danieldeutsch/
sacrerouge

brary for using and developing text generation met-
rics, with an emphasis on summarization.

SacreROUGE removes many obstacles that re-
searchers face when they use or develop evalua-
tion metrics. First, the official implementations of
various metrics do not share a common interface
or programming language, so using many metrics
to evaluate a model can be frustrating and time
consuming. SacreROUGE provides Python-based
wrappers around many evaluation metrics so they
all implement a simple, easy-to-use interface re-
gardless of how they are implemented internally
(§2).

Second, evaluating metrics themselves can be
tricky. Correlations between metric values and
human judgments are calculated at several dif-
ferent granularities, there are multiple commonly
used correlation coefficients, and fairly comparing
human-written references to system output requires
implementing jackknifing. Since the evaluation
code in SacreROUGE is shared across all of the
metrics, any metric which implements the com-
mon Metric interface can be evaluated without
writing additional code (§3).

Third, datasets that contain judgments which are
commonly used to evaluate metrics do not share
the same format, so writing code to load each
dataset requires writing a significant amount of
effort. SacreROUGE provides scripts for popular
summarization datasets that load and reformat them
into a common schema so they can easily be used
for evaluation (§4).

The development of SacreROUGE is ongoing.
We intend to add more metrics and datasets to the
library as they become available. Further, we en-
courage researchers to use the SacreROUGE frame-
work to use existing metrics and develop new ones.
SacreROUGE is released under the Apache 2.0
license and is open to contributions from the com-
munity.

https://github.com/danieldeutsch/sacrerouge
https://github.com/danieldeutsch/sacrerouge
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2 The Metric Interface

The development of evaluation metrics for sum-
marization has been an active area of research for
two decades. However, the community has not con-
verged on a consistent format for the input data, so
each metric uses its own custom schema. Further,
the published code for evaluation metrics is written
in various programming languages based on which
language was popular when the metric was pro-
posed. These challenges make it very cumbersome
to use multiple metrics to evaluate a summariza-
tion system. SacreROUGE addresses these two
problems by unifying all of the metrics’ implemen-
tations into a common interface called Metric.
The interface provides a Pythonic API that allows
for evaluating an individual summary or batch of
summaries. Since all of the metrics share the same
interface, evaluating a summarization system with
several different metrics is trivial.

In order to support older evaluation metrics writ-
ten in languages such as Perl or Java, we have
written Python wrappers around the original code
that still implement the Metric interface. Inter-
nally, the wrappers serialize the input summaries
to the format required by the underlying metric, a
subprocess is created to run the original metric’s
code, and the output is then loaded from disk again
in Python. This way, we do not have to port the
original metric’s code to Python and end-users can
still use the metrics with the Python API.

SacreROUGE currently supports the following
evaluation metrics:

• AutoSummENG (Giannakopoulos et al.,
2008)

• BERTScore (Zhang et al., 2019)

• BEwT-E (Tratz and Hovy, 2008)

• BLEURT (Sellam et al., 2020)

• METEOR (Denkowski and Lavie, 2014)

• MeMoG (Giannakopoulos and Karkaletsis,
2010)

• MoverScore (Zhao et al., 2019)

• NPowER (Giannakopoulos and Karkaletsis,
2013)

• Pyramid Score (Nenkova and Passonneau,
2004)

• PyrEval (Gao et al., 2019)

• QAEval (Deutsch et al., 2020)

• ROUGE (Lin, 2004), including a Python-port
that we wrote, which is significantly faster
than the original Perl version

• SIMetrix (Louis and Nenkova, 2009)

• SumQE (Xenouleas et al., 2019)

Among these metrics, 6 have original implementa-
tions in Java, 6 in Python, 1 in Perl, and 1 with no
known official implementation (Pyramid Score).

Handling Dependencies Many of the evaluation
metrics rely on external resources in the form of
code, models, or data files. Setting up these depen-
dencies in the right format to use the metrics can
be difficult.

The SacreROUGE library addresses this prob-
lem by providing setup scripts for each met-
ric which download or compile any required re-
sources. To make this process as easy as possible
for the end-user, these scripts are run through a
setup-metric command. The command takes
the name of the metric to setup, then downloads the
required dependencies to a common folder which is
managed by SacreROUGE. Abstracting the metric
setup by a simple command makes it such that the
end-user can quickly and easily begin using all of
the metrics within the library.

While there is nothing technically to prevent
SacreROUGE from being used in a Windows envi-
ronment, thus far the scripts for handling the met-
rics’ dependencies have been written for Linux-
based systems.

3 Evaluating Systems and Metrics

The two most common use cases of an evaluation
metric are to evaluate a summarization system and
to evaluate a metric itself by calculating its correla-
tion to human judgments. Since all of the metrics in
SacreROUGE implement a common interface, the
code for these procedures is shared, so developers
of new metrics do not need to rewrite the code to
implement these procedures. This logic is exposed
through evaluate, score, and correlate,
which are subcommands of sacrerouge, the en-
try point for the library’s command-line interface.

The evaluate Subcommand The purpose of
the evaluate subcommand is to calculate a
metric’s score for one summarization system on
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one dataset, which most typically occurs when re-
searchers compare their system’s performance to
others’.

The evaluate subcommand accepts a specific
metric and an input file that contains the output of
a summarization system for an input corpus. The
command will load the input data, pass it to the met-
ric, and save the metric’s output at the summary-
level and system-level. The summary-level output
contains the metric’s value for each individual sum-
mary, whereas system-level output represents the
average performance across the dataset and is most
often reported in papers.

The score Subcommand The typical work-
flow for an evaluation of a metric is to first calculate
the metric’s score on a large number of summaries
produced by multiple summarization systems on
the same set of inputs. Then, a correlation coeffi-
cient is calculated between those scores and human
judgments on the same set of summaries. The first
step of this methodology is handled by the score
subcommand.

The score subcommand is very similar to
evaluate except for two key differences. First,
the input data is not expected to be the output
from a single system. Instead, it is expected to
be the outputs from several summarization systems
for the same sets of input documents. Providing
the output from multiple systems at once allows
SacreROUGE to score each of the summaries more
efficiently than repeated calls to evaluate be-
cause it can avoid duplicate work, such as calculat-
ing reference summary-specific statistics.

Second, the score subcommand will run jack-
knifing on the input data when possible and neces-
sary. Jackknifing is a procedure which allows the
value of a metric on system-produced and human-
written summaries to be fairly compared when the
human-written summaries are used to assess the
quality of the system summary. Briefly, if there is
more than one reference summary, each reference
is evaluated against all of the others. Each system
summary is repeatedly evaluated against each pos-
sible subset of the reference summaries that has
one reference removed. The final system summary
score is an average across those evaluations. When
jackknifing is performed, a jk suffix is appended
to the name of the metric which makes it clear that
it is not comparable to the non-jackknifed version.

The correlate Subcommand After all of the
summaries have been scored using the score sub-
command, the second step of the meta-evaluation
of a metric is to calculate the correlation of those
scores to human judgments. This step is done via
the correlate subcommand.

SacreROUGE calculates the three correlation co-
efficients most commonly used in summarization:
Pearson, Spearman, and Kendall. Further, these
correlations are computed at three different granu-
larities: the summary-level, the system-level, and
globally. The summary-level correlation calculates
the average correlation per input. The system-level
calculates the correlation between average system
performances for each metric. The global corre-
lation directly calculates the correlation between
all of the observed metric values. The former two
granularities are most often used in the summariza-
tion literature, and we refer the reader to Deutsch
et al. (2020) for a more detailed description of how
to calculate each of them.

Handling Different Input Requirements It is
often the case that different metrics require differ-
ent input data (e.g., some metrics use reference
summaries, others need access to the input docu-
ments). Therefore, the required data must be loaded
from the input file and the evaluate and score
subcommands must pass the required data to the
metric.

The interface for loading data from an input file
in SacreROUGE is called a DatasetReader.
For a given input file(s), a DatasetReader
loads the Fields for the evaluation instances. A
Field is a base class which contains the data for
an input instance, such as a DocumentsField
that maintains the contents of the input documents.
Then, each evaluation instance contains a mapping
from the name of a field to its data.

In order to pass the appropriate Fields to the
summarization metrics, we require that every class
that implements the Metric interface lists the
names of the Fields that it uses. For instance,
the wrapper for the document-based evaluation
metric SIMetrix specifies it needs a field called
documents, a key in the evaluation instance
Field mapping. Then, once the input data has
been loaded, the evaluate and score com-
mands can pass the required data to a metric for
evaluation.
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Automatically Generated Subcommands It is
desirable to have a different evaluate and
score subcommand for each individual metric
so that developers can easily specify different met-
ric parameters on the command line. A naive im-
plementation of this would require manually cre-
ating the subcommand for each metric. However,
in order to eliminate as much boilerplate code as
possible, SacreROUGE includes a feature to au-
tomatically generate these subcommands for any
metric that implements the Metric interface.

Using Python’s inspect and typing li-
braries, we are able to examine the constructor
of each metric and generate a command-line ar-
gument for each parameter. For parameters with
primitive types, the argparse library directly
supports casting command line parameters to the
correct types. However, some metrics may use
complex types, such as a list of integers. In such sit-
uations, SacreROUGE assumes that the command
line argument will be a string-serialized JSON ob-
ject that can be deserialized into the required type
at runtime. This allows us to automatically gen-
erate evaluate and score subcommands for
every metric supported by the library.

4 A Common Dataset Format

Over the past two decades, the summarization com-
munity has collected a large number of summariza-
tion datasets and human quality annotations. How-
ever, these very useful datasets are seldom saved
in a common format, forcing every researcher who
wants to train a model on the datasets or use the
judgments to evaluate a metric to write boilerplate
code to load the data.

To mitigate this issue, SacreROUGE provides
scripts that will load the datasets and their corre-
sponding judgments, then serialize them to new
files with a common format. The data is serialized
in such a manner that it can be directly used in the
evaluate, score, and correlate subcom-
mands, thereby making it incredibly easy to run or
evaluate any metric in the library on the dataset.

The preprocessing scripts will save the data in a
human-readable form into three different JSONL
files:2 one for the summarization task data, one
for the summaries that have been scored by the
human judges, and one for the corresponding met-
ric scores for those summaries. Each object in
the task file is uniquely identified by an instance

2A JSONL file contains one serialized JSON per line.

ID and contains the input documents and ground-
truth summaries for one instance. The scored sum-
maries and metric scores files have parallel data.
The objects in both files contain an instance ID that
identifies the input documents that were used to
generate the summary, a summarizer ID that identi-
fies the summarization model used to produce the
summary, and a string that identifies the type of
summarization (either model-generated or human-
written). The summaries file contains the actual
summary output by the system and the references
for the input instance, and the metrics file contains
the corresponding metric scores for that summary.
Example JSON objects from all of the files can be
seen in Appendix A

The scripts to preprocess the datasets are ex-
posed through the setup-dataset subcom-
mand. The subcommand accepts the name of
a dataset, an output directory, and any potential
dataset-specific arguments. Then, SacreROUGE
will load and preprocess the respective dataset. For
datasets which are publicly available, the scripts
will download the data automatically. However,
many summarization datasets are licensed, so the
corresponding preprocessing scripts require paths
to the original data supplied to the command.

The datasets which are currently supported by
SacreROUGE are the Document Understanding
Conference from 2001 to 2007,3 Text Analysis
Conference from 2008 to 2011,4 the MultiLing
2011, 2013, 2015, 2017, and 2019 Workshops,5

and the CNN/DailyMail dataset judgments pro-
vided by Chaganty et al. (2018) and Fabbri et al.
(2020). We intend to add more datasets as they
become available, and other researchers can eas-
ily incorporate their own datasets to our library by
serializing the data into the shared format.

5 Related Work

The idea for SacreROUGE came from the Sacre-
BLEU (Post, 2018) library. SacreBLEU was devel-
oped to standardize and simplify calculating BLEU
(Papineni et al., 2002) for machine translation. Like
SacreROUGE, it provides a simple command-line
interface to download and evaluate on common ma-
chine translation datasets. Whereas SacreBLEU is
mainly for evaluating machine translation models
with BLEU, our library focuses on summarization

3https://duc.nist.gov/
4https://tac.nist.gov/
5http://multiling.iit.demokritos.gr/

https://duc.nist.gov/
https://tac.nist.gov/
http://multiling.iit.demokritos.gr/
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and includes a large number of evaluation metrics.
Further, SacreROUGE also provides a framework
for developing and evaluating new metrics.

One goal of SacreROUGE is to standardize
the implementation and meta-evaluation of met-
rics. The Perl-based Asiya (Giménez and Màrquez,
2010) and Python-based EASSE (Alva-Manchego
et al., 2019) have been developed with similar goals
for machine translation and text simplification, re-
spectively.

Much of the design of SacreROUGE was in-
spired by AllenNLP (Gardner et al., 2018), a library
built on PyTorch (Paszke et al., 2017) for develop-
ing deep learning models. AllenNLP provides use-
ful abstractions over different models and neural
network modules that allows for the sharing of boil-
erplate code so developers can quickly create and
train new machine learning models. SacreROUGE
provides similar abstractions for evaluation met-
rics.

Two concurrent works set out to achieve simi-
lar goals to SacreROUGE, the nlp library from
Hugging Face6 and SummEval (Fabbri et al.,
2020). Both libraries provide easy-to-use inter-
faces for running many evaluation metrics. How-
ever, SacreROUGE provides much more function-
ality for developing and evaluating new metrics,
including providing dataset readers for benchmark
metric evaluation datasets, implementations of fea-
tures such as jackknifing, and calculating common
correlation coefficients.

6 Conclusion

We have presented SacreROUGE, an open-source
library dedicated to the development of summariza-
tion evaluation metrics. With a unified metric inter-
face and common data format, our library makes
it very simple to use existing evaluation metrics as
well as develop new ones with a minimum amount
of effort. We hope that future researchers will con-
tribute their own metrics and datasets to the library
so that it is as easy as possible to run and evaluate
summarization metrics.
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