
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 115–119
Virtual Conference, November 19, 2020. c©2020 Association for Computational Linguistics

115

iobes: A Library for Span-Level Processing

Brian Lester
Independent

blester125@gmail.com

Abstract

Many tasks in natural language processing,
such as named entity recognition and slot-
filling, involve identifying and labeling spe-
cific spans of text. In order to leverage com-
mon models, these tasks are often recast as se-
quence labeling tasks. Each token is given a
label and these labels are prefixed with special
tokens such as B- or I-. After a model as-
signs labels to each token, these prefixes are
used to group the tokens into spans.

Properly parsing these annotations is critical
for producing fair and comparable metrics;
however, despite its importance, there is not an
easy-to-use, standardized, programmatically
integratable library to help work with span la-
beling. To remedy this, we introduce our open-
source library, iobes. iobes is used for parsing,
converting, and processing spans represented
as token level decisions.

1 Introduction

Tasks like named entity recognition, finding men-
tions for real world things in text, and slot-filling,
finding mentions of relevant objects, often in a
dialogue, require identifying contiguous sections
of the input text and classifying them into one
of several pre-defined classes. While some work
solves span labeling by scoring all possible spans,
followed by filtering with a threshold (Lee et al.,
2017), most work recasts span identification as a
token labeling task (Tjong Kim Sang and De Meul-
der, 2003; Bender et al., 2003; Collobert et al.,
2011; Ma and Hovy, 2016; Lample et al., 2016).
Special prefixes like B- are used in conjunction
with token level type labels, like “PER” for per-
son or “ORG” for organization, to signal where
different spans begin and end. Once a standard
sequence labeling model is used to produce tags
for each token, we use these prefixes to convert the
token level annotations into spans. For example,

the token B-LOC means that we need to start a lo-
cation span here. The tokens labeled with I-LOC
are continuations of this span. Finally, a token of a
different type, or the special O label, representing
a token that is “outside” of a span, will signal the
end of our span. Once we have decoded our spans,
we often use a metric like exact match F1, where
both the span type and the span boundaries have
to match, to compare our predicted spans to the
reference spans.

Unfortunately, there are many subtle places
where implementations of this approach to span la-
beling can diverge. The semantics of these special
prefixes can change. There are multiple encoding
schemes that are all equally expressive but have dif-
ferences in how easy it is for a model to learn them
(Ratinov and Roth, 2009). Many common datasets
are old and therefore distributed in older formats.
Researchers often convert these datasets to newer
formats, but differences or bugs in this process can
introduce discrepancies in the data used to train
models. Policy decisions on handling token level
annotations that do not conform to the rules of the
encoding scheme also introduce differences that
render different models incomparable.

The problems mentioned above all stem from the
lack of a community wide standardization on how
to handle these edge cases. The lack of common
tooling for working with these spans, represented
as token level annotations, has led to many rolling
their own, slightly different implementations. We
introduce the iobes library. A Python (Van Rossum
and Drake, 2009) library that encapsulates all the
rough edges of processing and evaluating spans.
We aim to provide the community with a single,
easy-to-use toolkit whose adoption will ensure the
comparability of span labeling metrics reported by
different researchers.



116

2 Formats

There are several forms that span encoding via
token labeling can take. Later we will see how
these multiple formats—and the conversion be-
tween them—are the cause of many problems, but
for now we will summarize them here.

• IOB: The original span labeling format intro-
duced by Ramshaw and Marcus (1995). In
this format, tokens that are not part of a span
are labeled with O. Tokens that are part of a
span are tagged with the span type, prefixed
with a I-; for example, I-PER is part of a
span representing a person. The special B-
prefix is used to demarcate two spans of the
same type that touch.

• BIO: A simple extension of the IOB format
where all entities, regardless of what entities
they touch, begin with a B-. An advantage
of this format is that it is no longer contex-
tual. The span “Real Madrid” will always
have the tags B-ORG I-ORG, regardless of
what the previous span is. In the IOB scheme,
this would be I-ORG I-ORG by default and
would only use the B- tag when preceded by
another span of type “ORG”.

• IOBES: A further extension to the BIO label-
ing scheme. It adds two new tags types. E-
is used to label the token that is the last item
of a span. The new S- prefix is used for span
that only include a single token. In our exam-
ple the span “Real Madrid” would be labeled
as B-ORG E-ORG. This span encoding for-
mat has several names. BILOU is the same
scheme, but uses a L- instead of E- for span
ending tokens and uses U- rather than S- for
single token spans. There is also the BMEWO
format. This was the original name for the for-
mat introduced in Borthwick (1999). It uses
W- in place of S- and it actually replaces the
tokens inside of the spans, using M- meaning
middle over I- for inside. This format has
be demonstrated to yield better performing
models (Ratinov and Roth, 2009).

3 Discrepancies

Differences in how processing of these spans is
done can cause discrepancies in both the datasets
and the evaluation metrics used by researchers.
While this section draws examples of errors from

specific pieces of work, we would like to emphasize
these are not failures on the part of the authors, but
rather a failing of the community for not providing
tested, reusable tooling.

3.1 Conversion
Many older datasets like CONLL 2003 (Tjong
Kim Sang and De Meulder, 2003) are distributed
in older formats such as IOB. Researchers then
convert them to newer formats like IOBES. This
conversion can go wrong. For example, the data
used in Yang et al. (2018) contained such errors.
A Github issue1 points out that two entities, one
of length one followed by one of length two, in
the original IOB1 format (represented by the tag
sequence I-MISC B-MISC I-MISC) were in-
correctly converted into three separate, length-one
entities. The author states that this transformed
data was received from a friend, meaning that there
is probably another paper—that likely did not open
source their data and code—that has this same er-
ror. The authors analysis claims that the number
of these mistakes are too small to affect the results
when the metric is aggregated over the whole test
sets. Regardless of whether this bug affected these
particular results or not, it is worrying that differ-
ent researchers are using different datasets. After
all, the point of shared datasets is to hold the in-
put data constant, allowing one to demonstrate the
improvements are truly from their new modeling
approach.

3.2 Formatting
A second place where errors can creep in is the
formatting of the token level annotations. Different
encoding schemes have different rules, for exam-
ple, in the BIO tagging scheme each entitiy needs
to start with a B- tag. This means that I- tokens
can only follow B- tokens of the same type. In
the data set for the WNUT 2017 shared task (Der-
czynski et al., 2017), there was an entity of type
“creative-work” that incorrectly started with an I-
token. While this has since been fixed2, gold data
that does not strictly follow the rules of the encod-
ing scheme puts toolkits that provide tagger output
modules that enforce constraints based on the tag-
ging scheme, such as AllenNLP (Gardner et al.,
2017) and Mead-Baseline (Pressel et al., 2018), at
a disadvantage. If you constrain your output to fol-
low the encoding scheme, but the answer does not

1https://github.com/jiesutd/NCRFpp/issues/36
2https://github.com/leondz/emerging entities 17/pull/4

https://github.com/jiesutd/NCRFpp/issues/36
https://github.com/leondz/emerging_entities_17/pull/4


117

follow it, your model literally cannot get this ex-
ample correct. Errors such as these can also cause
problems for encoding scheme conversion code,
which often assumes that the input is well-formed.
Different error handling policies will create differ-
ent gold data.

3.3 Entity Resolution

Yet another problem area is the handling of mal-
formed output sequences. As we established earlier,
there are rules on the allowed transitions from one
tag to another that are dictated by the span encoding
scheme. With the data-driven modeling approaches
that dominate these tasks, there is no guarantee that
the output sequence will be well-formed. How
these errors are handled can cause large differences
in the output entities.

The evaluation script from the CONLL 2000
shared task (Tjong Kim Sang and Buchholz, 2000)
on noun-phrase chunking, conlleval.pl, uses
a policy that can be best described as: A difference
in the types of tags triggers a shift in spans. This
means that when you have a B-PER followed by
an I-LOC you would create two spans, one for the
person and one for the location, even though the
location span did not legally start. The behavior is a
clear outgrowth of the fact that this script originally
was designed for IOB, but it is the de facto entity
resolution policy.

In the NCRF++ toolkit, Yang et al. (2018) use
a different resolution strategy. As discussed in a
Github issue3, they only process legal spans. This
means that they only look for B- tags to start
entities and the corresponding E- tag to end it.
They ignore changes in the type of intervening I-
tags. As demonstrated in Table 1, this can pro-
duce very different entities when compared to the
conlleval.pl outputs.

4 Our Library

To help avoid these kind of preventable mistakes,
and to create a standardized policy on the creation
of entities from illegal tag sequences, we introduce
our library iobes.

4.1 Parsing

Our library includes robust parsers for turning
lists of token level annotations into spans, repre-
sented by the named tuple outlined in Listing 1.

3https://github.com/jiesutd/NCRFpp/issues/87

class Span(NamedTuple):
type: str
start: int
end: int
tokens: List[int]

Listing 1: Our Span class. The value of the end at-
tribute is one more than the index of the final token in
the span. This formulation allows for recovery of the
tokens in the span via Python list slicing.

Our library handles the IOB, BIO, IOBES, BILOU,
and BMEWO schemes.

When encountering malformed token sequences,
our library follows the conlleval.pl method
of entity resolution where new entities are created
when there is a difference in type between adja-
cent token labels. In addition to producing a list
of spans, our library also creates a list of errors.
These errors can help localize where illegal transi-
tions are occurring. Common errors are things like
switching entity types within a span, ending spans
without an E- token, and staring spans with an I-.

4.2 Conversion
Our library also includes tooling for conversion
between all of these different formats. When con-
verting a malformed sequence of tokens, there is
inherent uncertainty in what the true sequence of
spans was. We discussed multiple entity resolu-
tion above, but we found that choosing one when
converting malformed gold labels was overly pre-
scriptive. Unlike the models predictions, we can
have humans fix these malformed gold sequences.
Rather than making some policy decision on the
handling malformed sequences, we raise an excep-
tion and return the list of errors to help the user fix
their gold labels.

4.3 Legal Transitions
The span encoding formats dictate which tokens
can follow others, for example, the IOBES scheme
says the all entities must end with an E-, therefore
an O cannot follow an I-. While most statistical
models, especially those that have a global loss
function, like the conditional random field (CRF)
(Lafferty et al., 2001), learn these relations, it is not
guaranteed that these rules are followed.

Our library is able to enumerate the legality of
all possible transitions. While models encode these
rules as soft, learned constraints embedded in the
model parameters, they can also be enforced by

https://github.com/jiesutd/NCRFpp/issues/87


118

Index Surface Gold Tag Predicted Tag Gold NCRF++ conlleval.pl

0 to O O
1 First B-ORG B-ORG ORG @ 1
2 National I-ORG I-MISC ORG @ 1-3 ORG @ 1-3 MISC @ 2
3 Bank E-ORG E-ORG ORG @ 3

Table 1: Differences in the handling of the malformed tags can yield different entities. The gold annotation is a
span of type organization starting at index 1 and continuing until index 3 (inclusive). This is encoded as B-, I-, E-
tags of type ORG. Our model has predicted correct tags for the tokens “First” and “Bank”, but annotates “National”
as a miscellaneous span. This I-MISC tag is illegal. This tag should only follow B-MISC or I-MISC. The
handling of these illegal tags can result in very different spans. In the original evaluation script from the CONLL
2000 shared task on noun-phrase chunking, a tag of a different type will trigger the ending of the previous entity
and the start of a new one. This yields three entities, none of which match the gold entities. Yang et al. (2018), on
the other hand, use a different entity resolution strategy where only the beginning and end tags are used. Illegal tags
within the entity are ignored and under this scheme we get the correct entity. Mismatches in the entity decoding
method, and specifically the handling of illegal transitions, can result in different entities based on the same tags.
This renders results incomparable.

various techniques, like filtering sequences with
illegal transitions or masking the scores these tran-
sitions get. By providing the legality of transitions,
our library makes it easy to ensure a well-formed
output.

4.4 Engineering

class SpanFormat:
BEGIN: str
INSIDE: str
END: str
SINGLE: str

Listing 2: Our span encoding data structure. These
classes allow us to reuse the same parsing code with dif-
ferent classes to parse IOBES, BILOU, and BMEWO
labels. By checking token prefixes against values in
this data structure, instead of explicit checks against
strings like "S-" or "E-", we can use the same code
for all formats. Having only a single function means
there is less surface area for bugs to creep in and allows
us to test it much more thoroughly.

Our main goal in this library is correctness. We
achieve that by reusing code as much as possible.
By defining data structures that contain the special
prefixes each encoding scheme uses, like the one in
Listing 2, we can use a single, well-tested function
to perform some action—such as span parsing or
converting a span into token labels—for multiple
encoding schemes. We also use property based
tests and the fuzzing of inputs to ensure our code is
behaving properly. Our tests are automatically run
via CI/CD on multiple operating systems to ensure
a smooth experience across platforms.

Our library is lightweight and has no dependen-
cies. Keeping it small makes it as painless as possi-
ble to integrate with unique workflows.

In order to handle multiple encoding
schemes, we provide both specific functions
like parse spans iob, as well as functions like
parse spans, that dispatch on the value of the
span type parameter. Similarly, the legality of
various transitions is available in multiple formats,
including a mask that is ready to be applied to a
CRF. We provide multiple interfaces like this to
support as many use cases as possible.

5 Conclusion

Many span level tasks in natural language process-
ing are recast as token-level labeling. There are
many encoding schemes used to convert these to-
kens into spans and these schemes dictate which
tokens can follow other ones. Unfortunately, pro-
cessing these tokens is a common place where er-
rors and mistakes manifest. We have shown how
mistakes in conversion code, gold annotations, and
entity resolution, in the presence of malformed tag
sequences, render results incomparable.

To remedy these problems, we introduce iobes,
a small, well-tested Python library that helps stan-
dardize the processing of spans. Our library helps
with parsing token labels into a list of spans, identi-
fying locations of errors in token sequences, con-
verting between span encoding schemes, and enu-
merating which transitions are allowed and which
are not. Our library will help avoid these errors
and will ensure that results created by different
researchers are comparable.



119

References
Oliver Bender, Franz Josef Och, and Hermann Ney.

2003. Maximum Entropy Models for Named Entity
Recognition. In Proceedings of the Seventh Confer-
ence on Natural Language Learning at HLT-NAACL
2003, pages 148–151.

Andrew Eliot Borthwick. 1999. A Maximum Entropy
Approach to Named Entity Recognition. Ph.D. the-
sis, USA. AAI9945252.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research,
12(76):2493–2537.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
Shared Task on Novel and Emerging Entity Recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A Deep Semantic Natural Lan-
guage Processing Platform.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Label-
ing Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing, ICML ’01, page 282–289, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, California. Association
for Computational Linguistics.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end Neural Coreference Res-
olution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end Se-
quence Labeling via Bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074, Berlin, Ger-
many. Association for Computational Linguistics.

Daniel Pressel, Sagnik Ray Choudhury, Brian Lester,
Yanjie Zhao, and Matt Barta. 2018. Baseline: A Li-
brary for Rapid Modeling, Experimentation and De-
velopment of Deep Learning Algorithms targeting

NLP. In Proceedings of Workshop for NLP Open
Source Software (NLP-OSS), pages 34–40. Associa-
tion for Computational Linguistics.

Lance Ramshaw and Mitch Marcus. 1995. Text Chunk-
ing using Transformation-Based Learning. In Third
Workshop on Very Large Corpora.

Lev Ratinov and Dan Roth. 2009. Design Chal-
lenges and Misconceptions in Named Entity Recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155, Boulder, Colorado.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 Shared Task
Chunking. In Fourth Conference on Computational
Natural Language Learning and the Second Learn-
ing Language in Logic Workshop.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recog-
nition. In Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003,
pages 142–147.

Guido Van Rossum and Fred L. Drake. 2009. Python 3
Reference Manual. CreateSpace, Scotts Valley, CA.

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign Challenges and Misconceptions in Neural Se-
quence Labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 3879–3889, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

https://www.aclweb.org/anthology/W03-0420
https://www.aclweb.org/anthology/W03-0420
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
https://doi.org/10.18653/v1/W17-4418
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
http://aclweb.org/anthology/W18-2506
http://aclweb.org/anthology/W18-2506
http://aclweb.org/anthology/W18-2506
http://aclweb.org/anthology/W18-2506
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W09-1119
https://www.aclweb.org/anthology/W09-1119
https://www.aclweb.org/anthology/W09-1119
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/C18-1327
https://www.aclweb.org/anthology/C18-1327
https://www.aclweb.org/anthology/C18-1327

