
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 72–84
Virtual Conference, November 19, 2020. c©2020 Association for Computational Linguistics

72

KLPT – Kurdish Language Processing Toolkit

Sina Ahmadi
Insight Centre for Data Analytics

National University of Ireland Galway
ahmadi.sina@outlook.com

Abstract

Despite the recent advances in applying
language-independent approaches to various
natural language processing tasks thanks to
artificial intelligence, some language-specific
tools are still essential to process a language in
a viable manner. Kurdish language is a less-
resourced language with a notable diversity in
dialects and scripts and lacks basic language
processing tools. To address this issue, we in-
troduce a language processing toolkit to han-
dle such a diversity in an efficient way. Our
toolkit is composed of fundamental compo-
nents such as text preprocessing, stemming,
tokenization, lemmatization and transliteration
and is able to get further extended by future
developers. This project is publicly available1.

1 Introduction

Language technology is an increasingly impor-
tant field in our information era which is depen-
dent on our knowledge of the human language
and computational methods to process it. Un-
like the latter which undergoes constant progress
with new methods and more efficient techniques
being invented, the processability of human lan-
guages does not evolve with the same pace. This
is particularly the case of languages with scarce re-
sources and limited grammars, also known as less-
resourced languages.

Various natural language processing (NLP)
tasks are of pipeline architecture; that is, to ad-
dress a specific task, a few other language pro-
cessing tasks may be initially required (Manning
et al., 2014). With the current advances in the
open-source movements, more researchers and in-
dustrial developers are encouraged to share their
knowledge in an open-source manner, accessi-
ble under certain conditions (Ljungberg, 2000).

1https://github.com/sinaahmadi/klpt

Therefore, the development of underlying tasks in
NLP for a specific language will potentially pave
the way for further contributions to the field, by ei-
ther improving the current tools or further progress
in new tasks. For instance, tokenization as a fun-
damental task is widely required in many other
applications such as part-of-speech tagging, ma-
chine translation and syntactic analysis. Once ad-
dressed, future researchers can build upon it for
more advanced tasks or eventually improve it.

Despite a plethora of performant tools and spe-
cific frameworks for NLP, such as NLTK (Loper
and Bird, 2002), Stanza (Qi et al., 2020), Teanga
(Ziad et al., 2018) and spaCy2, the progress with
respect to less-resourced languages is often hin-
dered by not only the lack of basic tools and re-
sources but also the accessibility of the previous
studies under an open-source licence. This is
particularly the case of Kurdish, a less-resourced
Indo-European language that is the focus of the
current paper. As an example, although the task
of spell-checking and stemming for Kurdish have
been addressed by many previous studies, (Jaf
and Ramsay, 2014; Salavati and Ahmadi, 2018;
Mustafa and Rashid, 2018; Saeed et al., 2018a;
Hawezi et al., 2019) to mention but a few, none
of them provides an implementation of their tool
under any licence.

On the other hand, some previous studies use
specific frameworks that are hardly integrable and
inter-operable. For instance, (Walther and Sagot,
2010) and (Walther et al., 2010) describe their
efforts in developing a large-scale morphological
lexicon and a part-of-speech tagger for Kurdish
within the Alexina framework under the LGPL-LR
licence. Despite the valuable impact of this study
in the field, for example in (Cotterell et al., 2017)
and (Gökırmak and Tyers, 2017), the tool does not

2https://github.com/explosion/spaCy

https://github.com/sinaahmadi/klpt
https://github.com/explosion/spaCy

73

AS� # >iS� >/Z / 7 ; ? Z F H ì K M T [R ` b S i p r t D x Q è G P

G�iBM # Ï + / 7 ; ? D F H ƈfHH K M T [` Ǽf`` b Ȕ i p r t v x ǵfǶ2fď Ŋfǵ? tîft Ƕ
�`�#B+ ŵ Ɠ Ƌ Ī ƺ ǔ Ǽ Œ ǒ ǡ Ǣ Ǩ ǰ Ž ǈ ň ŏ Ɲ ƞ Ŷ ƿ ę ƍ ť ŉ Ʋ ƌ Ƴ š

R

(a) Consonants

AS� a: ¤ e: I i: o: u: U 0,

G�iBM � 2 ā B ŗ Q ȿ m Ƀ
�`�#B+ đ Ǿ ū ť ğ ęę ę Ĥ

k

(b) Vowels

Table 1: A comparison of the Kurdish alphabets. Variations are specified with "/"

seem to be widely used in the subsequent projects.
As such, projects such as (Jaf and Ramsay, 2014)
and (Ahmadi and Hassani, 2020a) tackle the very
same topic from scratch.

Language-specific toolkits have been previ-
ously designed for various languages, such as
IceNLP for Icelandic (Loftsson and Rögnvalds-
son, 2007), VnCoreNLP for Vietnamese (Vu et al.,
2018), FudanNLP for Chinese (Qiu et al., 2013),
PSI-Toolkit for Polish (Graliński et al., 2013) and
ParsiPardaz for Persian (Sarabi et al., 2013). In the
same vein, in order to facilitate the basic language
processing tasks for Kurdish in an organized and
methodical way and aware of the increasing im-
portance of open-source and inter-operable tools
for building more efficient systems and get fur-
ther advanced in the field, we present KLPT–the
Kurdish language processing toolkit. This toolkit
is developed in Python and is composed of core
modules and is extendable by future developers.

2 Kurdish Language

Kurdish belongs to the Northwestern branch of the
Iranian languages within the Indo-European lan-
guage family which is spoken by 20-30 million
speakers in the Kurdish regions of Turkey, Iraq,
Iran and Syria and also, among the Kurdish di-
aspora around the world (Ahmadi et al., 2019).
The division of Kurdish into Northern Kurdish (or
Kurmanji), Central Kurdish (or Sorani), Southern
Kurdish and Laki, respectively with kmr, ckb,
sdh and lki ISO 639-3 language codes, has
been widely studied previously (Edmonds, 2013).
Based on the structural differences between these,
some scholars believe that they are distinct lan-
guages and therefore, refer to them as Kurdish lan-
guages (Kreyenbroek, 2005). On the other hand,
it is also commonly believed by both scholars and

Kurdish people that those are in fact different di-
alects of the Kurdish language (Haig and Matras,
2002; Matras, 2017). In this study, we remain with
this theory and refer to them as Kurdish dialects.
It is worth mentioning that despite the linguistic
similarities of Zazaki, also known as Dimlî, and
Gorani languages and the popular belief that they
are dialects of Kurdish, studies show that they be-
long to the Zaza-Gorani language family which
is independent from the Kurdish language (Paul,
1998; Jugel, 2014; Ahmadi, 2020c).

Kurdish has been historically written in various
scripts, namely Cyrillic, Armenian, Latin and Ara-
bic among which the latter two are still widely
in use. Efforts in standardization of the Kurdish
alphabets and orthographies have not succeeded
to be globally followed by all Kurdish speakers
in all regions (Tavadze, 2019; Haig and Matras,
2002; Aydoğan, 2012). As such, the Kurmanji di-
alect is mostly written in the Latin-based script
while the Sorani, Southern Kurdish and Laki are
mostly written in the Arabic-based script. That,
not only scatters readers and speakers to commu-
nicate together, but also creates further challenges
in processing the language (Esmaili, 2012; Ah-
madi, 2019). Table 1 provides the Latin-based and
Arabic-based Kurdish alphabets used for all the di-
alects.

Kurdish language is a highly inflectional lan-
guage, particularly due to a high number of affixes
and clitics (Ahmadi and Hassani, 2020b). Regard-
ing nouns, although Sorani does not have gender
or grammatical cases, it has a full article mark-
ing system for definite, indefinite and demonstra-
tive in singular and plural forms (Jugel, 2014).
On the other hand, Kurmanji has a fewer num-
ber of article markers for feminine and masculine
genders (Thackston, 2006). With respect to the

74

9.25 %

Dialectology

22.22 %

Information retrieval and Text mining

18.51 %

Lexical resources

3.70 %
Machine Translation

12.96 %

Speech recognition
18.8 %

Morphological and syntactic analysis

1.85 %

Other

11.11 %

Optical character recognition

3.70 % Sign language recognition

(a) per sub-field in NLP

Sorani

Kurmanji

Sorani and Kurmanji

Sorani, Kurmanji and Gorani

78.18%

7.27%

10.90%

3.63%

(b) per dialect

Figure 1: Proportion of publications related to Kurdish language processing

verbs, Kurdish has a few number of around 300
single-word verbs (Walther and Sagot, 2010), e.g.
kirdin/kirin “to do”, which are inflected based on
person (1,2,3, SG, PL), tense (past, present, future),
aspect (indefinite, perfect, progressive, imperfec-
tive) and mood (indicative, subjunctive, condi-
tional). Unlike Kurmanji, Sorani Kurdish does
not have future tense and uses adverbs for this
purpose. However, Kurdish extensively takes use
of compound constructions for creating new verb
forms, particularly with (Noun + Verb), (Adjective
+ Verb) and (Preposition + Verb) forms (Traida,
2007). For instance, siław ‘hi (n)’, pîroz ‘holy’
(adj) and heł (verbal particle denoting ‘up’) with
the single-word verb kirdin can respectively form
compound verbs siław kirdin “to greet”, pîroz
kirdin “to congratulate” and heł kirdin “to turn
on”. The stringing characteristic of the Arabic-
based script of Kurdish further adds to this mor-
phological complexity in such a way that several
word forms may be concatenated together (Ah-
madi, 2020b).

Regarding syntax, Kurdish has a sub-
ject–object–verb word order and is a null-subject
(or pro-drop) language. The presence of gram-
matical markers for nominative and oblique
cases varies within dialects and subdialects. For
instance, in the Sorani subdialects of Sulay-
maniyah and Erbil, respectively categorized as
Southern Sorani and Northern Sorani by (Matras,
2017), the oblique case is marked differently.
Another particularity of the Kurdish language
is its morphosyntactic alignment in the past
tense of transitive verbs. In such tenses, an
ergative–absolutive alignment occurs where the
subject of intransitive verbs behaves like the
patient of the transitive verb in the past (Haig,

1998; Karimi, 2014). Unlike Kurmanji which
uses oblique cases for this purpose, Sorani only
uses different pronominal markers to specify erga-
tivity, therefore it is called split-ergative (Esmaili
and Salavati, 2013). Except the past tenses, a
nominative-accusative alignment is observed in
other tenses.

Not being equally documented and used, Kur-
dish dialects have different levels of linguistic
resourcefulness. In comparison to Sorani and
Kurmanji which are widely used by the media
and press, Southern Kurdish and Laki are under-
documented and lack basic language resources
such as electronic dictionaries and corpora (Fat-
tah, 2000; Ahmadi et al., 2019; Ahmadi, 2020c).

3 Current State of Kurdish Language
Processing

The earliest works in the field of Kurdish language
processing date back to 2009. Our literature re-
view indicates that some of these contributions
fail to provide open-source solutions. Despite fi-
nancial and scientific constraints in Kurdish lan-
guage processing, the Kurdish Language Process-
ing Project (KLPP) (Esmaili et al., 2013) in 20123

and Kurdish Basic Language Resource Kit (Kur-
dish BLARK) (Hassani, 2018) in 20144 have suc-
ceeded to promote an open-source vision based
on research volunteering within the Kurdish sci-
entific communities. However, the outcomes of
these projects are mostly released in an unorga-
nized manner for individual tasks.

In order to understand the current state of the
Kurdish language in the realm of NLP and com-

3http://klpp.github.io
4https://kurdishblark.github.io

http://klpp.github.io
https://kurdishblark.github.io

75

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

0

2

4

6

8

10

12
N

um
be

ro
fp

ub
lic

at
io

ns
total applicable open-source

Figure 2: Number of scientific publications directly related to Kurdish language processing per year

putational linguistics, we reviewed the scientific
publications that directly address an issue in those
fields. A total number of 53 publications are col-
lected from the widely-used academic databases
and search engines such as Google Scholar5, and
then classified based on their discussed sub-fields
which are illustrated in Figure 1. The Kurdish
dialects are not evenly discussed in the previous
studies, with Sorani making up a predominant pro-
portion of almost 90%. Although a smaller pro-
portion represents the Kurmanji dialect, no publi-
cation is found with respect to processing of the
Southern Kurdish or Laki dialects. Regarding the
research focus of the previous works, a range of
NLP sub-fields has been addressed, particularly in
text mining, morphological and syntactic analysis
and, creation of lexical resources. We exception-
ally included optical character recognition as it is
of importance for converting printed material to
electronic forms (Ahmadi et al., 2019). The full
list of the surveyed papers can be found in Ap-
pendix A.2.

More importantly, we analyze previous publica-
tions from the following two perspectives:

• Open-source: Does the paper provide the dis-
cussed resource or tool under an open-source
license? To this end, we verified the con-
tent of the papers and also, checked the Web,
particularly major distributed version control
systems such as GitHub6, GitLab7 and Bit-
Bucket8.

5https://scholar.google.com
6https://github.com
7https://gitlab.com
8https://bitbucket.org

• Applicability: Does the paper, implicitly or
explicitly, propose an approach or method-
ology that can be applied to solve the same
problem in the other dialects of Kurdish? For
the choice of the word, we were inspired
by (Årdal et al., 2011) where the possibil-
ity of applying common practices of software
development for drug discovery are investi-
gated. For instance, (Ahmadi et al., 2019)
is deemed an applicable contribution where
lexicographical resources can be created for
other dialects. On the other hand, (Ahmadi,
2019) is not applicable to other dialects due
to its ad-hoc solution for transliterating So-
rani texts according to its phonological and
phonetic rules.

Figure 2 provides the number of previous pub-
lications in the Kurdish language processing field
per year, and specifies their open-source status and
their applicability. Although most of these pub-
lications are applicable to other dialects, only 18
out of 53 of them provide their resources or tools
under an open-source license. Among the open-
source ones, 11 are outcomes of volunteering
projects, KLPP and Kurdish-BLARK. Given the
small number of non-scientific contributions, we
did not include them in this survey. A few notable
examples of such contributions are Kurdînûs9, Ve-
jin Dictionaries10 and VejinBooks11 which mostly
focus on Sorani Kurdish and script conversion
tasks.

9https://github.com/aso-mehmudi/
kurdinus

10https://lex.vejinbooks.com
11https://books.vejin.net

https://scholar.google.com
https://github.com
https://gitlab.com
https://bitbucket.org
https://github.com/aso-mehmudi/kurdinus
https://github.com/aso-mehmudi/kurdinus
https://lex.vejinbooks.com
https://books.vejin.net

76

4 KLPT Architecture

KLPT is implemented in Python and is composed
of four core modules with specific tasks. Although
we were inspired by the functionality of relevant
NLP toolkits, particularly NLTK and spaCy, no
external library is used in this toolkit. Regarding
the toolkit design, we followed the rules of sci-
entific software development suggested by (Prlić
and Procter, 2012) along with common practices
in Python programming language. Figure 3 pro-
vides the structure of the toolkit. In order to fa-
cilitate the integration of variations specific to di-
alects and scripts and more importantly, to avoid
hard-coding, required files are provided in the
data folder. For instance, the data required
for the preprocess module is imported from
preprocess.json. In addition, third-party
programs can be provided in bin. test and
docs respectively contain test cases and project
documentation. Regarding the latter, we use
Sphinx documentation generator12.

It is worth noting that each module within the
klpt package has been previously studied and
evaluated separately. Our goal is to introduce the
functionality of the modules within the toolkit in
this section.

4.1 Preprocess
Many keyboard layouts are specifically designed
for Kurdish where different character encoding are
assigned to visually-similar graphemes. In addi-
tion to the usage of non-Kurdish keyboards, such
as Arabic, Turkish and Persian keyboards, such
diversity creates abnormality across texts in Kur-
dish writing. For instance, the grapheme « (î/y),
can be represented as © (U+064A), « (U+0649),
¨þ (U+FEF2), © (U+FEF1) and « (U+06CC),
among which only the latter should be used in the
Arabic-based script of Kurdish. Moreover, various
writing conventions are used for each dialect and
script. For instance, in Kurmanji, when dates are
affixed with a morpheme, the suffix may be sepa-
rated by ’, - or without any marker as in 2020’an,
2020-an and 2020an.

To remedy such issues in an automatic and
structured manner, the preprocess module
provides two main functions: normalize()
for normalizing encoding abnormalities by unify-
ing characters in such a way that only one spe-
cific encoding is used for each grapheme and,

12https://www.sphinx-doc.org

standardize() which applies orthographic
conventions to the text. For example, when hêvî
‘hope’ is suffixed with the vowel a (Izafa, mean-
ing ‘of’), a semi-vowel y appears between the two
vowels and is usually written as hêviya or hêvîya
‘hope of’. As the latter form is considered less am-
biguous, this function converts the first form ac-
cordingly. Although defining a universal orthogra-
phy for Kurdish is out of scope of our project, we
believe that writing conventions and orthographies
should be addressed to some extent. Therefore, in
this initial version, we follow the writing conven-
tions proposed by (Aydoğan, 2012) for Kurmanji
and (Hashemi, 2016) for Sorani.

In addition to these two functions,
unify_numeral() is provided to convert
numerals, namely in Farsi (۰۱۲۳۴۵۶۷۸۹),
Eastern Arabic (0123456789) and Western Ara-
bic (0123456789). Although we set the latter
as default for all scripts, users will have the

klpt

bin

data
ckb-morphemes.json

ckb_Hunspell.aff

ckb_Hunspell.dic

default-options.json

kmr-morphemes.json

kmr_Hunspell.aff

kmr_Hunspell.dic

lexicon_ckb_arab.json

lexicon_ckb_latn.json

lexicon_kmr_latn.json

preprocess.json

stopwords_kmr.txt

stopwords_ckb.txt

tokenize.json

transliterate.json

docs

klpt
__init__.py

configuration.py
preprocess.py

stem.py

tokenize.py

transliterate.py

test
setup.py

requirements.txt

Figure 3: Structure of KLPT

https://www.sphinx-doc.org

77

choice to modify the numerals according to
the administrations in the Kurdish regions. All
these three functions are then evoked within
preprocess() function which normalizes,
standardizes and unifies the text according to the
given arguments.

The general procedure followed in this module
can be summarized as string replacement. For
this purpose, we define regular expressions for
each dialect and script. The regular expressions
along with the character mappings are provided in
preprocess.json in such an order that the in-
tended normalization and standardization are car-
ried out correctly. Although this module is not ex-
plicitly evoked within other modules, except in the
transliterate module, it is recommended
that the output of the preprocessing module be
used as the input of other modules by the user.

4.2 Transliterate

Given the diversity of the alphabets used in Kur-
dish, transliteration is a necessity to facilitate
the communication between speakers and is also
beneficial to various NLP tasks, such as named-
entity recognition and machine translation. Al-
though Kurdish orthographies are phonemic, i.e.
each grapheme is supposed to represent a sin-
gle phoneme, transliterating characters within the
alphabets is more challenging than it appears.
This is particularly due to ¤ (U+0648) and
« (U+06CC) in the Arabic-based alphabet which
can be respectively mapped to ’u/w’ and ’î/y’. For
instance, ¤ in Cwy� and �Cw� is transliterated as
bîwir ‘axe’ and kurt ‘short’, respectively. More-
over, there is no grapheme for the vowel i, also
known as Bizroke “the little furtive”, in the Arabic-
based script which creates further challenges in the
morphological analysis of the language (Ahmadi,
2019).

In this module, we focus on transliterating
Arabic-based and Latin-based scripts of Kurdish
using WERGOR transliterator13 (Ahmadi, 2019).
This tool uses a rule-based approach based on the
phonological and syllabic characteristics of Kur-
dish for distinguishing double-usage characters,
i.e. ¤ and «, and predicting the placement of
i. Although the algorithm efficiently transliterates
double-usage characters, it has been evaluated to
detect i with a low accuracy of 39%.

13https://github.com/sinaahmadi/wergor

4.3 Stem

Although the task of stemming has been previ-
ously addressed in the literature, no open-source
viable solution was available for Kurdish. There-
fore, we developed morphological rules contain-
ing combinations of Kurdish morphemes in Sorani
and Kurmanji, and also an annotated lexicon con-
taining lemmas with specific flags such as part-of-
speech tags and stems. The morphological rules
and the lexicons are then used to develop a mor-
phological analyzer and spell-checker in HUN-
SPELL (Ooms, 2017) for Kurdish, where they are
respectively known as affixes (.aff) and dictio-
nary (.dic). Thanks to the wide usage of HUN-
SPELL in open-source text editors such as Apache
OpenOffice, our development will be also benefi-
cial for general purposes such as spell-checking in
text editors. More importantly, we integrate HUN-
SPELL in KLPT for this module using a wrapper
program14.

The Stem module comes with two classes:
Stem and Spellcheck. Although these two
classes focus on two different tasks, they are
provided in the same module as they are both
based on the same implementation in Hunspell.
Given a word, the Stem class provides four main
functions, namely stem() for retrieving word-
form stem, e.g. kirdin/kirin (do.INF) → kir,
lemmatize() for lemmatization, e.g. kirdbûm
(do.1SG.PST.PFV) → kirdin, analyze() for
morphological analysis which returns a dictionary
containing the flags according to HUNSPELL such
as part-of-speech, terminal suffixes and inflec-
tional suffixes and finally, suffix_suggest()
which returns all the possible suffixes that can ap-
pear with a given lexeme. In addition to these,
generate() will also be added to the module
which generates a word-form given morphemes.

On the other hand, the Spellcheck
class provides check_spelling() and
correct_spelling() which are respectively
used for spell checking (Boolean output) and spell
correction. For instance, given ¢�A�¤¤ C�w�

(xwardûmate), check_spelling() detects
that it is incorrectly written and a few suggestions
are provided by correct_spelling(),
among which ¢�A�¤¤ C�w� (xwardûmane) “(we)
have eaten”. The performance of the tool is
further described in (Ahmadi, 2020d,a).

14https://github.com/MSeal/cython_
hunspell

https://github.com/sinaahmadi/wergor
https://github.com/MSeal/cython_hunspell
https://github.com/MSeal/cython_hunspell

78

4.4 Tokenize

Although both Arabic-based and Latin-based al-
phabets use spaces to delimit word boundaries,
not all words correspond to a token in Kurdish.
This is particularly due to the complex morphol-
ogy, e.g. article marking suffixes, and the writ-
ing traditions. In the Arabic-based alphabet, there
is a tendency to concatenate clitics, affixes and
words together which results many tokens being
written as one single word-form without any space
as in ¢�AyJ�wy¡ (hîwaşyane) “(it) is also their
hope” which is composed of four tokens, noun
hîwa, endoclitic =ş, pronominal enclitic -yan and
present copula e. The Latin-based script, partic-
ularly when used for writing Kurmanji, respects
word boundaries in a better way. For instance, the
same phrase is written as “hêvîya wan jî ew e”.

In this module, we use the tokenization ap-
proach proposed by (Ahmadi, 2020b). This ap-
proach uses an annotated lexicon with a morpho-
logical analyzer to tokenize words in Sorani and
Kurmanji. Given the wide usage of compound
forms in word formation in Kurdish, a lexicon is
also provided for multi-word expressions (MWEs)
and their possible forms, with and without space.
That way, the inconsistencies in writing com-
pound words is tackled efficiently. In addition to
mwe_tokenize() and word_tokenize()
which are respectively provided for the tokeniza-
tion of words and MWEs, sent_tokenize()
is a third function which tokenizes a given text into
sentences based on punctuation marks. It is worth
mentioning that words and MWEs are respectively
separated by and by default which can
be customized by the user.

4.5 Configuration

Given the combination of scripts and dialects of
the input data, verification of the several config-
urations of each class can be complex. There-
fore, we provide the configuration module
which is used internally within the modules when
an object of a class is initialized. This way, the
class constructors validate the arguments by evok-
ing this module and the error-handling is carried
out only in the Configuration class.

For further clarification on the interaction of
the individual modules within the KLPT package,
Figure A.5 shows its package and class diagrams
in the Unified Modeling Language (UML).

5 Usages

In this section, we provide basic usages of the
application programming interface (API) of the
KLPT package. The package is available on the
Python Package Index (PyPI)15 in Python 3.5 and
later and, can be installed as follows:

pip install klpt

The installation of the package comes with the
data files, i.e. data folder, and requirements
which are also installed. Once the package in-
stalled, each module can be imported and used as
described above. Figure 4 provides an example on
how to work with various modules of the package.

>>> from klpt.preprocess import Preprocess
>>> from klpt.transliterator import Transliterate
>>> from klpt.tokenize import Tokenize
>>> from klpt.stem import Stem

Preprocess module
>>> preprocessor = Preprocess("Sorani", "Arabic",
numeral="Latin")
>>> preprocessor.normalize("لە ســـا,ەکانی ١٩٥٠دا")
 لە سا,ەکانی 1950دا
>>> preprocessor.standardize("راستە لەو وو1تەدا")
 ڕاستە لەو و1تەدا

Transliterate module
>>> transliterator = Transliterate("Kurmanji", "Latin",
target_script="Arabic")
>>> transliterator.transliterate("rojhilata navîn")
 'رۆژھلاتا ناڤین'

Stem module
>>> stemmer = Stem("Sorani", "Arabic")
>>> stemmer.check_spelling("سوتاندبووت")
False
>>> stemmer.correct_spelling("سوتاندبووت")
 ('سووتاندبووت', 'سووتاندت', 'سووتاندن', 'سووتاند')
>>> stemmer.stem("سووتاندبووت")
 (,'سووت')
>>> stemmer.analyze("دیتبامن")
{'pos': 'verb', 'is': 'past_intransitive', 'stem':
 {'بامن' :'terminal_suffix' ,'دیت' :'verb_stem‘ ,'دی'

Tokenize module
>>> tokenizer = Tokenize("Kurmanji", "Latin")
>>> tokenizer.word_tokenize("endamên encûmena wezîrên")
['▁endam▁ên', '▁encûmen▁a', '▁wezîr▁ên']

Figure 4: Basic usage of the KLPT package for
the Sorani and Kurmanji dialects

6 Conclusion and Future Work

In this paper, we present KLPT, an open-source
toolkit developed in Python and composed of
core modules, namely Preprocess, Stem,

15https://pypi.org

https://pypi.org

79

Tokenize and Transliterate for process-
ing the Sorani and Kurmanji dialects of Kurdish.
In addition to the provided modules, the toolkit
enables future researchers to contribute their work
by extending the modules for more advanced tasks
and other dialects. We believe that recognizing
every single contribution to the toolkit is encour-
aging for researchers and also, beneficial to help
Kurdish to pass over its less-resourced status.

As a future work, we would like to extend the
current version to include syntactic and seman-
tic parsing for Sorani and Kurmanji. Given the
scarcity of resources regarding computational lin-
guistics and natural language processing, we be-
lieve that the KLPT package will create a new field
of interest for Kurdish linguists as well. Therefore,
we are aiming at creating educational content to
introduce the field to non-expert public too.

Acknowledgments

The author would like to thank his two colleagues,
Dr. Kyumars Sheykh Esmaili and Dr. Hos-
sein Hassani who respectively initiated the Kur-
dish Language Processing Project and Kurdish-
BLARK. Despite the lack of financial support
of Kurdish-related projects, these initiatives have
made huge contributions thanks to volunteer re-
searchers. Similarly, the constructive comments
of the three anonymous reviewers were very use-
ful and are much appreciated.

References
Roshna Abdulrahman, Hossein Hassani, and Sina Ah-

madi. 2019. Developing a Fine-grained Corpus for
a Less-resourced Language: the case of Kurdish.
In Proceedings of the 2019 Workshop on Widening
NLP, pages 106–109.

Roshna Omer Abdulrahman and Hossein Hassani.
2020. Using Punkt for Sentence Segmentation in
non-Latin Scripts: Experiments on Kurdish (Sorani)
Texts. arXiv preprint arXiv:2004.14134.

Sina Ahmadi. 2019. A Rule-based Kurdish
Text Transliteration System. Asian and Low-
Resource Language Information Processing (TAL-
LIP), 18(2):18:1–18:8.

Sina Ahmadi. 2020a. A Lemmatization System for So-
rani Kurdish. under review.

Sina Ahmadi. 2020b. A Tokenization System for the
Kurdish Language. In the Proceedings of the Sev-
enth Workshop on NLP for Similar Languages, Vari-
eties and Dialects (VarDial 2020).

Sina Ahmadi. 2020c. Building a Corpus for the
Zaza–Gorani Language Family. In the Proceedings
of the Seventh Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial 2020).

Sina Ahmadi. 2020d. Hunspell for Sorani Kurdish
Spell-checking and Morphological Analysis. under
review.

Sina Ahmadi and Hossein Hassani. 2020a. Towards
Finite-State Morphology of Kurdish. arXiv preprint
arXiv:2005.10652.

Sina Ahmadi and Hossein Hassani. 2020b. Towards
Finite-State Morphology of Kurdish. (under review)
ACM Transactions on Asian and Low-Resource Lan-
guage Information Processing (TALLIP).

Sina Ahmadi, Hossein Hassani, and Kamaladdin
Abedi. 2020. A corpus of the Sorani Kurdish folk-
loric lyrics. In Proceedings of the 1st Joint Spoken
Language Technologies for Under-resourced lan-
guages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL) Work-
shop at the 12th International Conference on Lan-
guage Resources and Evaluation (LREC).

Sina Ahmadi, Hossein Hassani, and John P McCrae.
2019. Towards electronic lexicography for the Kur-
dish language. In Proceedings of the sixth biennial
conference on electronic lexicography (eLex). eLex
2019.

Abdulbasit Al-Talabani, Zrar Abdul, and Azad Ameen.
2017. Kurdish dialects and neighbor languages au-
tomatic recognition. ARO-The Scientific Journal of
Koya University, 5(1):20–23.

Purya Aliabadi. 2014. Semi-automatic development
of KurdNet, the Kurdish Wordnet. In Proceedings
of the ACL 2014 Student Research Workshop, pages
94–99.

Purya Aliabadi, Mohammad Sina Ahmadi, Shahin
Salavati, and Kyumars Sheykh Esmaili. 2014. To-
wards building kurdnet, the Kurdish Wordnet. In
Proceedings of the Seventh Global Wordnet Confer-
ence, pages 1–6.

Christine Årdal, Annette Alstadsæter, and John-Arne
Røttingen. 2011. Common characteristics of open
source software development and applicability for
drug discovery: a systematic review. Health Re-
search Policy and Systems, 9(1):36.

Duygu Ataman. 2018. Bianet: A parallel news cor-
pus in turkish, kurdish and english. arXiv preprint
arXiv:1805.05095.

Mustafa Aydoğan. 2012. Rêbera rastnivîsînê. Weşanx-
aneya Rûpelê. Ziman. Rûpel.

Anvar Bahrampour, Wafa Barkhoda, and Bahram Za-
hir Azami. 2009. Implementation of three text to
speech systems for Kurdish language. In Iberoamer-
ican Congress on Pattern Recognition, pages 321–
328. Springer.

https://books.google.ie/books?id=Z7lDnwEACAAJ

80

Wafa Barkhoda, Bahram ZahirAzami, Anvar Bahram-
pour, and Om-Kolsoom Shahryari. 2009. A compar-
ison between allophone, syllable, and diphone based
TTS systems for Kurdish language. In Signal Pro-
cessing and Information Technology (ISSPIT), 2009
IEEE International Symposium on, pages 557–562.
IEEE.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, et al. 2017. CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection in 52 Languages. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 1–30.

Fatemeh Daneshfar, Wafa Barkhoda, and Bahram Zahir
Azami. 2009. Implementation of a Text-to-Speech
System for Kurdish Language. In Digital Telecom-
munications, 2009. ICDT’09. Fourth International
Conference on, pages 117–120. IEEE.

Özlem Batur Dinler and Nizamettin Aydin. 2018a. Ex-
traction of the acoustic features of semi-vowels in
the Kurdish language. The Online Journal of Sci-
ence and Technology-April, 8(2).

Özlem Batur Dinler and Nizamettin Aydin. 2018b.
Kurdish recognition system digit. The Online Jour-
nal of Science and Technology, 8(1):101.

Özlem Batur Dinler and Fatih Karabıber. 2017. For-
mant analysis of vowels in Kurdish language. In
Signal Processing and Communications Applica-
tions Conference (SIU), 2017 25th, pages 1–4. IEEE.

Alexander Johannes Edmonds. 2013. The Dialects of
Kurdish. Ruprecht-Karls-Universität Heidelberg.

Kyumars Sheykh Esmaili. 2012. Challenges
in Kurdish text processing. arXiv preprint
arXiv:1212.0074.

Kyumars Sheykh Esmaili, Donya Eliassi, Shahin
Salavati, Purya Aliabadi, Asrin Mohammadi, So-
mayeh Yosefi, and Shownem Hakimi. 2013. Build-
ing a test collection for Sorani Kurdish. In Com-
puter Systems and Applications (AICCSA), 2013
ACS International Conference on, pages 1–7. IEEE.

Kyumars Sheykh Esmaili and Shahin Salavati. 2013.
Sorani kurdish versus kurmanji kurdish: An empir-
ical comparison. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
300–305.

Kyumars Sheykh Esmaili, Shahin Salavati, and An-
witaman Datta. 2014. Towards Kurdish information
retrieval. ACM Transactions on Asian Language In-
formation Processing (TALIP), 13(2):7.

Ismaïl Kamandâr Fattah. 2000. Les dialectes kurdes
méridionaux: étude linguistique et dialectologique.
Acta Iranica : Encyclopédie permanente des études
iraniennes. Peeters.

Memduh Gökırmak and Francis M Tyers. 2017. A de-
pendency treebank for Kurmanji Kurdish. In Pro-
ceedings of the Fourth International Conference on
Dependency Linguistics (Depling 2017), pages 64–
72.

Filip Graliński, Krzysztof Jassem, and Marcin Junczys-
Dowmunt. 2013. PSI-toolkit: A natural language
processing pipeline. In Computational Linguistics,
pages 27–39. Springer.

Geoffrey Haig. 1998. On the interaction of morpholog-
ical and syntactic ergativity: Lessons from Kurdish.
Lingua, 105(3-4):149–173.

Geoffrey Haig and Yaron Matras. 2002. Kurdish lin-
guistics: a brief overview. STUF-Language Typol-
ogy and Universals, 55(1):3–14.

Dyako Hashemi. 2016. Kurdish orthography [In
Kurdish]. http://yageyziman.com/Renusi_
Kurdi.htm. Accessed: 2020-07-25.

Abdulla D Hashim and Fattah Alizadeh. 2018. Kurdish
sign language recognition system. UKH Journal of
Science and Engineering, 2(1):1–6.

Hossein Hassani. 2017a. Kurdish interdialect machine
translation. In Proceedings of the fourth workshop
on NLP for similar languages, varieties and dialects
(VarDial), pages 63–72.

Hossein Hassani. 2017b. A method for proper noun
extraction in Kurdish. In OASIcs-OpenAccess Se-
ries in Informatics, volume 56. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Hossein Hassani. 2018. BLARK for multi-dialect lan-
guages: towards the Kurdish BLARK. Language
Resources and Evaluation, 52(2):625–644.

Hossein Hassani and Rahel Kareem. 2011. Kurdish
text to speech (ktts). Designing for Global Markets,
10:79–89.

Hossein Hassani and Dzejla Medjedovic. 2016. Au-
tomatic Kurdish dialects identification. Computer
Science & Information Technology, 6(2):61–78.

Roojwan Sc Hawezi, Muhammed Y Azeez, and
Ahmed A Qadir. 2019. Spell checking algorithm
for agglutinative languages “Central Kurdish as an
example”. In 2019 International Engineering Con-
ference (IEC), pages 142–146. IEEE.

Sardar Jaf. 2016. A simple approach to unify ambigu-
ously encoded Kurdish characters. In Proceedings
of the International Conference Computational Lin-
guistics in Bulgaria (CLIB 2016)., pages 86–94. In-
stitute for Bulgarian Language, Bulgarian Academy
of Sciences.

https://books.google.ie/books?id=Zm0LAQAAMAAJ
https://books.google.ie/books?id=Zm0LAQAAMAAJ
http://yageyziman.com/Renusi_Kurdi.htm
http://yageyziman.com/Renusi_Kurdi.htm

81

Sardar Jaf and Allan Ramsay. 2014. A Stemmer and a
POS tagger for Sorani Kurdish. In 6th International
Conference on Corpus Linguistics (CILC-14). Gran
Canaria, Spain, Cambridge Scholars.

Sardar Jaf and Allan Ramsay. 2016. A Rule-based
Part-of-speech Tagger For Sorani Kurdish. Input a
Word, Analyze the World: Selected Approaches to
Corpus Linguistics, page 39.

Thomas Jugel. 2014. On the linguistic history of Kur-
dish. Kurdish Studies, 2(2):123–142.

Kanaan M Kaka-Khan. 2017. Building Kurdish chat-
bot using free open source platforms. UHD Journal
of Science and Technology, 1(2):46–50.

Kanaan M Kaka-Khan. 2018. English to Kurdish Rule-
based Machine Translation System. UHD Journal
of Science and Technology.

Zina Kamal and Hossein Hassani. 2020. Towards Kur-
dish text to sign translation. In Proceedings of the
LREC2020 9th Workshop on the Representation and
Processing of Sign Languages: Sign Language Re-
sources in the Service of the Language Community,
Technological Challenges and Application Perspec-
tives, pages 117–122, Marseille, France. European
Language Resources Association (ELRA).

Yadgar Karimi. 2014. On the syntax of ergativity in
Kurdish. Poznan Studies in Contemporary Linguis-
tics, 50(3):231–271.

Philip G Kreyenbroek. 2005. On the Kurdish language.
In The Kurds, pages 62–73. Routledge.

Patrick Littell, Kartik Goyal, David R Mortensen,
Alexa Little, Chris Dyer, and Lori Levin. 2016.
Named entity recognition for linguistic rapid re-
sponse in low-resource languages: Sorani Kurdish
and Tajik. In Proceedings of COLING 2016, the
26th International Conference on Computational
Linguistics: Technical Papers, pages 998–1006.

Jan Ljungberg. 2000. Open source movements as a
model for organising. European Journal of Infor-
mation Systems, 9(4):208–216.

Hrafn Loftsson and Eiríkur Rögnvaldsson. 2007.
IceNLP: A natural language processing toolkit for
Icelandic. In Eighth Annual Conference of the In-
ternational Speech Communication Association.

Edward Loper and Steven Bird. 2002. NLTK: The
Natural Language Toolkit. In Proceedings of the
ACL-02 Workshop on Effective Tools and Method-
ologies for Teaching Natural Language Processing
and Computational Linguistics, pages 63–70.

Shervin Malmasi. 2016. Subdialectal differences in
Sorani Kurdish. In Proceedings of the third work-
shop on nlp for similar languages, varieties and di-
alects (vardial3), pages 89–96.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
annual meeting of the association for computational
linguistics: system demonstrations, pages 55–60.

Yaron Matras. 2017. Revisiting Kurdish
dialect geography: Preliminary findings
from the Manchester Database. http:
//kurdish.humanities.manchester.
ac.uk/wp-content/uploads/2017/07/
PDF-Revisiting-Kurdish-dialect-geography.
pdf. [Online; accessed 04-Mar-2019].

Bayan Omar Mohammed. 2012. Uniqueness in
Kurdish handwriting. International Journal of
Engineering & Computer Science IJECS-IJENS,
12(06):42–50.

Bayan Omar Mohammed. 2013. Handwritten Kurdish
character recognition using geometric discertization
feature. Volume, 4:51–55.

FS Mohammed, L Zakaria, Nazlia Omar, and MY Al-
bared. 2012. Automatic Kurdish Sorani text cate-
gorization using n-gram based model. In Computer
& Information Science (ICCIS), 2012 International
Conference on, volume 1, pages 392–395. IEEE.

Arazo M Mustafa and Tarik A Rashid. 2018. Kurdish
stemmer pre-processing steps for improving infor-
mation retrieval. Journal of Information Science,
44(1):15–27.

Jeroen Ooms. 2017. hunspell: High-Performance
Stemmer, Tokenizer, and Spell Checker.
https://hunspell.github.io/.

Ludwig Paul. 1998. The position of Zazaki among
West Iranian languages. Old and Middle Iranian
Studies, pages 163–176.

Andreas Prlić and James B Procter. 2012. Ten sim-
ple rules for the open development of scientific soft-
ware. PLoS Comput Biol, 8(12):e1002802.

Akam Qader and Hossein Hassani. 2019. Kurdish
(sorani) speech to text: Presenting an experimental
dataset. arXiv preprint arXiv:1911.13087.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza:
A python natural language processing toolkit
for many human languages. arXiv preprint
arXiv:2003.07082.

Xipeng Qiu, Qi Zhang, and Xuan-Jing Huang. 2013.
Fudannlp: A toolkit for chinese natural language
processing. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 49–54.

Tarik A Rashid, Arazo M Mustafa, and A Saeed.
2017a. A robust categorization system for Kurdish
Sorani text documents. Inf. Technol. J, 16(1):27–34.

https://www.aclweb.org/anthology/2020.signlang-1.19
https://www.aclweb.org/anthology/2020.signlang-1.19
http://kurdish.humanities.manchester.ac.uk/wp-content/uploads/2017/07/PDF-Revisiting-Kurdish-dialect-geography.pdf
http://kurdish.humanities.manchester.ac.uk/wp-content/uploads/2017/07/PDF-Revisiting-Kurdish-dialect-geography.pdf
http://kurdish.humanities.manchester.ac.uk/wp-content/uploads/2017/07/PDF-Revisiting-Kurdish-dialect-geography.pdf
http://kurdish.humanities.manchester.ac.uk/wp-content/uploads/2017/07/PDF-Revisiting-Kurdish-dialect-geography.pdf
http://kurdish.humanities.manchester.ac.uk/wp-content/uploads/2017/07/PDF-Revisiting-Kurdish-dialect-geography.pdf

82

Tarik A Rashid, Arazo M Mustafa, and Ari M Saeed.
2017b. Automatic Kurdish text classification using
kdc 4007 dataset. In International Conference on
Emerging Internetworking, Data & Web Technolo-
gies, pages 187–198. Springer.

Ari M Saeed, Tarik A Rashid, Arazo M Mustafa,
Rawan A Al-Rashid Agha, Ahmed S Shamsaldin,
and Nawzad K Al-Salihi. 2018a. An evaluation of
Reber stemmer with longest match stemmer tech-
nique in Kurdish Sorani text classification. Iran
Journal of Computer Science, 1(2):99–107.

Ari M Saeed, Tarik A Rashid, Arazo M Mustafa, Polla
Fattah, and Birzo Ismael. 2018b. Improving Kur-
dish Web Mining through Tree Data Structure and
Porter’s Stemmer Algorithms. UKH Journal of Sci-
ence and Engineering, 2(1):48–54.

Shahin Salavati and Sina Ahmadi. 2018. Building a
Lemmatizer and a Spell-checker for Sorani Kurdish.
In Proceedings of the 8th Language & Technology
Conference: Human Language Technologies as a
Challenge for Computer Science and Linguistics,
Poznan, Poland.

Shahin Salavati, Kyumars Sheykh Esmaili, and Fardin
Akhlaghian. 2013. Stemming for Kurdish informa-
tion retrieval. In Asia Information Retrieval Sympo-
sium, pages 272–283. Springer.

Zahra Sarabi, Hooman Mahyar, and Mojgan Farhoodi.
2013. ParsiPardaz: Persian language processing
toolkit. In ICCKE 2013, pages 73–79. IEEE.

Abdusalam Abdulla Shaltooki and Mzhda Hiwa Hama.
2016. Sentiment analyses for Kurdish social net-
work texts using Naive Bayes classifier. Journal of
Human Development, 1(4):393–397.

Givi Tavadze. 2019. Spreading of the Kurdish Lan-
guage Dialects and Writing Systems Used in the
Middle East. Bull. Georg. Natl. Acad. Sci, 13(1).

Wheeler M Thackston. 2006. Kurmanji Kurdish:A Ref-
erence Grammar with Selected Readings. Harvard
University.

Sandrine Traida. 2007. Morphosyntactic Study of the
compound verbs in Sorani Kurdish Étude morpho-
syntaxique des verbes composés (nom-verbe) en
kurde (dialecte sorani) [in French]. PhD thesis at
the Université Paris 3 - Sorbonne Nouvelle.

Hadi Veisi, Mohammad MohammadAmini, and Hawre
Hosseini. 2020. Toward kurdish language process-
ing: Experiments in collecting and processing the
asosoft text corpus. Digital Scholarship in the Hu-
manities, 35(1):176–193.

Thanh Vu, Dat Quoc Nguyen, Mark Dras, Mark John-
son, et al. 2018. VnCoreNLP: A Vietnamese Natu-
ral Language Processing Toolkit. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, pages 56–60.

Géraldine Walther and Benoît Sagot. 2010. Develop-
ing a large-scale lexicon for a less-resourced lan-
guage: General methodology and preliminary ex-
periments on Sorani Kurdish. In Proceedings of
the 7th SaLTMiL Workshop on Creation and use of
basic lexical resources for less-resourced languages
(LREC 2010 Workshop).

Géraldine Walther, Benoît Sagot, and Karën Fort. 2010.
Fast development of basic nlp tools: Towards a lexi-
con and a pos tagger for Kurmanji Kurdish. In Inter-
national conference on lexis and grammar, page 0.

Rasty Yaseen and Hossein Hassani. 2018. Kurdish op-
tical character recognition. UKH Journal of Science
and Engineering, 2(1):18–27.

Rina D Zarro and Mardin A Anwer. 2017.
Recognition-based online Kurdish character
recognition using hidden Markov model and har-
mony search. Engineering Science and Technology,
an International Journal, 20(2):783–794.

Housam Ziad, John Philip McCrae, and Paul Buite-
laar. 2018. Teanga: a linked data based platform
for natural language processing. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

83

A Appendix

Reference Year Field open-source applicable dialects
(Mohammed et al., 2012) 2012 Dialectology no no Sorani

(Esmaili and Salavati, 2013) 2013 Dialectology no yes Sorani, Kurmanji
(Hassani and Medjedovic, 2016) 2016 Dialectology no yes Sorani, Kurmanji

(Malmasi, 2016) 2016 Dialectology yes yes Sorani
(Al-Talabani et al., 2017) 2017 Dialectology no yes Sorani, Kurmanji, Gorani

(Littell et al., 2016) 2016 Information retrieval and Text mining no yes Sorani
(Hassani, 2017b) 2017 Information retrieval and Text mining yes yes Sorani, Kurmanji
(Esmaili, 2012) 2012 Information retrieval and Text mining no no Sorani

(Esmaili et al., 2014) 2014 Information retrieval and Text mining yes yes Sorani, Kurmanji
(Jaf, 2016) 2016 Information retrieval and Text mining no yes Sorani

(Rashid et al., 2017a) 2017 Information retrieval and Text mining no yes Sorani
(Rashid et al., 2017b) 2017 Information retrieval and Text mining no yes Sorani

(Ahmadi, 2019) 2019 Information retrieval and Text mining yes no Sorani
(Saeed et al., 2018b) 2018 Information retrieval and Text mining no yes Sorani
(Saeed et al., 2018b) 2018 Information retrieval and Text mining no yes Sorani

(Mustafa and Rashid, 2018) 2018 Information retrieval and Text mining no yes Sorani
(Saeed et al., 2018a) 2018 Information retrieval and Text mining no no Sorani
(Ahmadi et al., 2020) 2020 Lexical resources yes yes Sorani
(Esmaili et al., 2013) 2013 Lexical resources yes yes Sorani
(Aliabadi et al., 2014) 2014 Lexical resources yes yes Sorani

(Aliabadi, 2014) 2014 Lexical resources no yes Sorani
(Veisi et al., 2020) 2020 Lexical resources yes yes Sorani

(Ahmadi et al., 2019) 2019 Lexical resources yes yes Sorani, Kurmanji, Gorani
(Abdulrahman et al., 2019) 2019 Lexical resources yes yes Sorani

(Abdulrahman and Hassani, 2020) 2020 Lexical resources yes yes Sorani
(Ataman, 2018) 2018 Lexical resources yes yes Kurmanji
(Hassani, 2017a) 2017 Machine Translation no yes Sorani, Kurmanji

(Kaka-Khan, 2018) 2018 Machine Translation no yes Sorani
(Walther and Sagot, 2010) 2010 Morphological and syntactic analysis yes yes Sorani

(Walther et al., 2010) 2010 Morphological and syntactic analysis yes yes Kurmanji
(Salavati et al., 2013) 2013 Morphological and syntactic analysis yes yes Sorani

(Jaf and Ramsay, 2014) 2014 Morphological and syntactic analysis no yes Sorani
(Jaf and Ramsay, 2016) 2016 Morphological and syntactic analysis no yes Sorani

(Gökırmak and Tyers, 2017) 2017 Morphological and syntactic analysis yes yes Kurmanji
(Salavati and Ahmadi, 2018) 2018 Morphological and syntactic analysis no yes Sorani
(Mustafa and Rashid, 2018) 2018 Morphological and syntactic analysis no yes Sorani

(Ahmadi and Hassani, 2020a) 2020 Morphological and syntactic analysis no yes Sorani
(Mohammed, 2012) 2012 Optical character recognition no no Sorani
(Mohammed, 2013) 2013 Optical character recognition no yes Sorani

(Shaltooki and Hama, 2016) 2016 Optical character recognition no yes Sorani
(Zarro and Anwer, 2017) 2017 Optical character recognition no yes Sorani

(Yaseen and Hassani, 2018) 2018 Optical character recognition no yes Sorani
(Dinler and Aydin, 2018b) 2018 Optical character recognition no yes Sorani

(Kaka-Khan, 2017) 2017 Other no yes Sorani
(Hashim and Alizadeh, 2018) 2018 Sign language recognition no yes Sorani
(Kamal and Hassani, 2020) 2020 Sign language recognition yes yes Sorani

(Daneshfar et al., 2009) 2009 Speech recognition no yes Sorani
(Barkhoda et al., 2009) 2009 Speech recognition no no Sorani

(Bahrampour et al., 2009) 2009 Speech recognition no yes Sorani
(Hassani and Kareem, 2011) 2011 Speech recognition no yes Sorani
(Dinler and Karabıber, 2017) 2017 Speech recognition no no Kurmanji

(Dinler and Aydin, 2018a) 2018 Speech recognition no yes Sorani, Kurmanji
(Qader and Hassani, 2019) 2019 Speech recognition yes yes Sorani

Table A.2: Classification of the publications in the field of Kurdish language processing

84

stemtokenize transliterate

preprocess

configuration

<<access>>

<<access>>

Preprocess

dialect: NoneType
script: NoneType
numeral: NoneType (default "Latin")

normalize(): str
standardize(): str
unify_numerals(): str
preprocess(): str

Configuration

dialect : NoneType
numeral : NoneType
script : NoneType
target_script : NoneType
unknown : NoneType

normalize_arguments(): list(str)
validate_dialect(): boolean
validate_numeral(): boolean
validate_script(): boolean
validate_target_script(): boolean
validate_unknown(): boolean
validate_module(): boolean

<<access>>

<<access>>

<<import>><<import>>

Stem

+ hunspell: CyHunspell

dialect: NoneType
lemmatize(): str
analyze(): dict
generate(): str
script: NoneType
stem(): str
suffix_suggest(): list(str)

Spellcheck

+ hunspell: CyHunspell

check_spelling(): boolean
correct_spelling(): list(str)
dialect: NoneType
script: NoneType

Transliterate

UNKNOWN : str
bizroke : str
consonants : dict
vowels : dicts
dialect : NoneType
script : NoneType
characters_mapping : dict
digits_mapping : dict
punctuation_mapping : dict
target_script : NoneType
numeral : NoneType

arabic_to_latin(): str
bizroke_finder(): str
latin_to_arabic(): str
syllable_detector(): list(str)
transliterate(): str
uw_iy_detector(): str

Tokenize

acronyms: str
alphabets : str
dialect: NoneType
digits : str
lexicon: list(str)
morphemes: dict
mwe_lexicon: dict
prefixes: list(str)
script: NoneType
starters: str
suffixes: list(str)
tokenize_map: dict
websites: str

mwe_tokenize(): list(str)
sent_tokenize(): listr(str)
word_tokenize(): list(str)

<<access>>

KLPT

Figure A.5: The Package and class models of KLPT in the Unified Modeling Language (UML)

