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Abstract

We investigate the utility of audiovisual dia-
log systems combined with speech and video
analytics for real-time remote monitoring of
depression at scale in uncontrolled environ-
ment settings. We collected audiovisual con-
versational data from participants who inter-
acted with a cloud-based multimodal dialog
system, and automatically extracted a large set
of speech and vision metrics based on the rich
existing literature of laboratory studies. We
report on the efficacy of various audio and
video metrics in differentiating people with
mild, moderate and severe depression, and dis-
cuss the implications of these results for the
deployment of such technologies in real-world
neurological diagnosis and monitoring applica-
tions.

1 Introduction

Diagnosis, detection and monitoring of neurologi-
cal and mental health in patients remain a critical
need today. This necessitates the development of
technologies that improve individuals’ health and
well-being by continuously monitoring their status,
rapidly diagnosing medical conditions, recogniz-
ing pathological behaviors, and delivering just-in-
time interventions, all in the user’s natural informa-
tion technology environment (Kumar et al., 2012).
However, early detection or progress monitoring of
neurological or mental health conditions, such as
clinical depression, Amyotrophic Lateral Sclerosis
(ALS), Alzheimer’s disease, dementia, etc., is of-
ten challenging for patients due to multiple reasons,
including, but not limited to: (i) lack of access to
neurologists or psychiatrists; (ii) lack of awareness
of a given condition and the need to see a special-
ist; (iii) lack of an effective standardized diagnostic
or endpoint for many of these health conditions;
(iv) substantial transportation and cost involved in
conventional or traditional solutions; and in some
cases, (v) shortage of medical specialists in these
fields to begin with (Steven and Steinhubl, 2013).
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We developed NEMSI (Suendermann-Oeft et al.,
2019), or the NEurological and Mental health
Screening Instrument, to bridge this gap. NEMSI
is a cloud-based multimodal dialog system that
conducts automated screening interviews over the
phone or web browser to elicit evidence required
for detection or progress monitoring of the afore-
mentioned conditions, among others. While in-
telligent virtual agents have been proposed in ear-
lier work for such diagnosis and monitoring pur-
poses, NEMSI makes novel contributions along
three significant directions: First, NEMSI makes
use of devices available to everyone everywhere
(web browser, mobile app, or regular phone), as op-
posed to dedicated, locally administered hardware,
like cameras, servers, audio devices, etc. Second,
NEMSTI’s backend is deployed in an automatically
scalable cloud environment allowing it to serve an
arbitrary number of end users at a small cost per
interaction. Thirdly, the NEMSI system is natively
equipped with real-time speech and video analyt-
ics modules that extract a variety of features of
direct relevance to clinicians in the neurological
and mental spaces.

A number of recent papers have investigated au-
tomated speech and machine vision features for
predicting severity of depression (see for exam-
ple France et al., 2000; Joshi et al., 2013; Meng
et al., 2013; Jain et al., 2014; Kaya et al., 2014;
Nasir et al., 2016; Pampouchidou et al., 2016; Yang
etal., 2017). These include speaking rate, duration,
amplitude, and voice source/spectral features (fun-
damental frequency (F0), amplitude modulation,
formants, and energy/power spectrum, among oth-
ers) computed from the speech signal, and facial
dynamics (for instance, landmark/facial action unit
motions, global head motion, and eye blinks) and
statistically derived features from emotions, action
units, gaze, and pose derived from the video sig-
nal. We use these studies to inform our choices of
speech and video metrics computed in real time,
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allowing clinicians to obtain useful analytics for
their patients moments after they have interacted
with the NEMSI dialog system.

We need to factor in additional considerations
while deploying analytics modules as part of scal-
able real-time cloud-based systems in practice.
Many of the studies above analyzed data recorded
either offline or in laboratory conditions, implicitly
assuming signal conditions which may hold differ-
ently or not at all during real world use. These con-
siderations include, but are not limited to: (i) wide
range of acoustic environments and lighting con-
ditions resulting in variable background noise and
choppy/blocky video at the user’s end!, (ii) limita-
tions on a given user’s network connection band-
width and speed; (iii) the quantum of server traffic
(or the number of patients/users trying to access the
system simultaneously); and (iv) device calibration
issues, given the wide range of user devices. This
paper investigates the utility of a subset of audio
and video biomarkers for depression collected us-
ing the NEMSI dialog system in such real-world
conditions.

The rest of this paper is organized as follows:
Sections 2 and 3 first present the NEMSI dialog
system and the data collected and analyzed. Sec-
tion 4 then details the speech and video feature
extraction process. Section 5 presents statistical
analyses of different groups of depression cohorts
as determined by the reported PHQ-8 score, before
Section 6 rounds out the paper, discussing the im-
plications of our observations for real-world mental
health monitoring systems.

2 System

2.1 NEMSI dialog ecosystem

NEMSI (NEurological and Mental health Screen-
ing Instrument) is a cloud-based multimodal dialog
system. Refer to Suendermann-Oeft et al. (2019)
for details regarding the system architecture and
various software modules.

NEMSI end users are provided with a website
link to the secure screening portal as well as lo-
gin credentials by their caregiver or study liaison
(physician or clinic). Once appropriate microphone
and camera checks that the captured audio and
video are of sufficient quality are complete, users
hear the dialog agent’s voice and are prompted to
start a conversation with the agent, whose virtual

'Such conditions often arise despite explicit instructions
to the contrary.
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image also appears in a web window. Users are
also able to see their own video, if so needed, in
a small window in the upper right corner of the
screen. The virtual agent then engages with users in
a conversation using a mixture of structured speak-
ing exercises and open-ended questions to elicit
speech and facial behaviors relevant for the type of
condition being screened for.

Analytics modules extract multiple speech (for
instance, speaking rate, duration measures, FO0, etc.)
and video features (such as range and speed of
movement of various facial landmarks) and store
them in a database, along with information about
the interaction itself such as the captured user
responses, call duration, completion status, etc.
All this information can be accessed by the clini-
cians after the interaction is completed through an
easy-to-use dashboard which provides a high-level
overview of the various aspects of the interaction
(including the video thereof and analytic measures
computed), as well as a detailed breakdown of the
individual sessions and the underlying interaction
turns.

3 Data

Depending on the health condition to be monitored
and on the clinician’s needs, different protocols
can easily be employed in the NEMSI system. For
the present study, we designed a protocol target-
ing the assessment of depression severity, based
on (Mundt et al., 2007). The protocol elicits five
different types of speech samples from participants
that are consistently highlighted in the literature:
(a) free speech (open-ended questions about sub-
jects’ emotional and physical state), (b) automated
speech (counting up from 1), (c) read speech, (d)
sustained vowels, and (e) measure of diadochoki-
netic rate (rapidly repeating the syllables /pa ta ka/).

After dialog completion, participants are asked
to answer the Patient Health Questionnaire eight-
item depression scale (PHQ-8), a standard scoring
system for depression assessment (Kroenke et al.,
2009). The self-reported PHQ-8 score serves as a
reference point for our analysis. Further, we ask
for information about age, sex, primary language
and residence.

In total, we collected data from 307 interactions.
After automatic data cleaning®, 208 sessions re-

2We removed interactions for which PHQ-8 answers or
relevant speech metrics were missing and sessions for which
no face was detected in the video



mained for analysis. From those 208 participants,
98 were females, 97 were males and 13 did not
specify. Mean participant age is 36.5 (SD = 12.1).
184 participants specified English as their primary
language, 9 other languages and 15 did not spec-
ify. 176 participants were located in the US, 8 in
the UK, 5 in Canada, 4 in other countries and 15
did not specify. Figure 1 shows the distribution of
PHQ-8 scores among women and men.
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5-9
Mild

10-14 15-24
Moderate Moderately Severe -
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PHQ8 score and indicated depression severity

Figure 1: Distribution of PHQ-8 scores by gender.

4 Signal Processing and Metrics
Extraction

4.1 Speech Metrics

For the speech analysis, we focus on timing mea-
sures, such as speaking rate and percentage of
pause duration, frequency domain measures, such
as fundamental frequency (FO) and jitter, and
energy-related measures, such as volume and shim-
mer. We have selected commonly established
speech metrics for clinical voice analysis (France
et al., 2000; Mundt et al., 2012, 2007).

As described in Section 3, there are different
types of speech samples, e.g. free speech and sus-
tained vowels. Not all acoustic measures are mean-
ingful for each type of stimuli. Table 2 presents all
extracted metrics for the particular speech sample

types.

All metrics are extracted with Praat (Boersma
and Van Heuven, 2001). For the following mea-
sures, heuristics have been used to ignore ob-
vious outliers in the analysis: articulation rate
(excluded >350 words/min), speaking rate (ex-
cluded >250 words/min), percent pause time (ex-
cluded >80%).
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Cutpoint Free speech Held Vowels
(group sizes)
5 (127/81) Percent pause | Volume (a,f), HNR (m),
time (a,f) Mean FO (m)
10 (168/40) - Jitter (f)
15 (193/15) Volume (a,f,m) | Mean FO (a),
Volume (f)

Table 1: Speech metrics for which a statistically signifi-
cant (p < 0.05) difference between sample populations
is observed. In parentheses: f - females, m - males,
a - all.

Free Read | Auto- | Held | DDK

speech | speech | mated | vowels
SpRate v
ArtRate v
SylRate v
PPT v v v
Mean FO v
Jitter v
HNR v
Volume v v v v v
Shimmer v

Table 2: Speech metrics for each type of speech sample.
SpRate = speaking rate, ArtRate = articulation rate, Syl-
Rate = syllable rate, PPT = percent pause time, DDK =
dysdiadochokinesia.

4.2 Visual Metrics

For each utterance, 14 facial metrics were calcu-
lated in three steps: (i) face detection, (ii) facial
landmark extraction, and (iii) facial metrics calcula-
tion. For face detection, the DIib> face detector was
employed, which uses 5 histograms of oriented gra-
dients to determine the (X, y)-coordinates of one or
more faces for every input frame (Dalal and Triggs,
2005). For facial landmark detection the DIib facial
landmark detector was employed, which uses an
ensemble of regression trees proposed by Kazemi
and Sullivan (2014), to extract 68 facial landmarks
according to MultiPIE (Gross et al., 2010). Fig-
ure 2 illustrates the 14 facial landmarks: RB (right
eyebrow), URER (right eye, upper right), RERC
(right eye, right corner), LRER (right eye, lower
right), LB (left eyebrow), ULEL (left eye, upper
left), LELC (left eye, left corner), LLEL (left eye,
lower left), NT (nose tip), UL (upper lip center),
RC (right corner of mouth), LC (left corner of
mouth), LL. (lower lip center), and JC (jaw cen-
ter). These are then used to calculate the following
facial metrics:

*http://dlib.net/



Cutpoint | Gender H Free speech

Read speech

All width, vJC, S_R, S_ratio, utter_dur SR
5 Female S_ratio, utter_dur eye_blinks
Male S_ratio, eyebrow_vpos, eye_open, eye_blinks
All S_ratio, utter_dur SR
10 Female open, width, LL_path, JC_path, S, S_R, S_L, eyebrow_vpos, eye_open
Male || open, width, LL_path, JC_path, S, S_R, S_L, S_ratio, eyebrow_vpos, eye_open, eye_blinks | open, width, S, S_R, S_L, eyebrow_vpos
All vLL, vIC vLL, S_ratio
15 Female width, vLL, vJC, S_ratio vLL, S_ratio
Male width, S, S_L, eyebrow_vpos, eye_open, eye_blinks eyebrow_vpos

Table 3: Facial metrics for which a statistically significant (p < 0.05) difference between sample populations is
observed. For gender A/l not only female and male samples, but also samples for which no gender was reported

are used.

e Movement measures: Average lips opening
and width (open, width) were calculated as
the Euclidean distances between UL and LL,
and RC and LC, respectively. Average dis-
placement of LL and JC (LL_path, JC_path)
were calculated as the module of the vector
between the origin and LL and JC. Average
eye opening (eye_open) was calculated as
the Euclidean distances between URER and
LRER, and ULEL and LLEL. Average ver-
tical eyebrow displacement (eyebrow_vpos)
was calculated as the difference between
the vertical positions of RB and NT, and
LB and NT. All measures were computed in
millimeters.

Velocity measures: The average velocity of
LL and JC (vLL, vJC) in mm/s was calculated
as the first derivative of LL_path and JC_path
with time.

Surface measures: The average total mouth
surface (S) in mm? was calculated as the
sum of the surfaces of the two triangles with
vertices RC, UL, LL (S_R) and LC, UL,
LL (S_L). Additionally, the mean symmetry
ratio (S_ratio_avg) between S_R and S_L was
determined.

Duration measures: Utterance duration

(utter_dur) in seconds.

Eye blink measures: The number of eye
blinks (eye_blinks) in blinks per second cal-
culated using the eye aspect ratio as proposed
by Soukupova and Cech (2016).

S Analyses and Observations

The central research question of this study is the
following: for a given metric, is there a statistically
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Figure 2: Illustration of the 68 obtained and 14 used
facial landmarks.

significant difference between participant cohorts
with and without depression of a given severity
(i.e., above and below a certain cut-point PHQ-
8 score)? The PHQ-8 has established cutpoints
above which the probability of a major depression
increases substantially (Kroenke and Spitzer, 2002).
Ten is commonly recommended as cutpoint for
defining current depression (see (Kroenke et al.,
2009) for a comprehensive overview). For our anal-
ysis, we use the cutpoints 5, 10, and 15 which align
with the PHQ-8 score intervals of mild, moderate
and moderately severe depression. Concretely, for
each metric and cutpoint, we divide the data into
two sample populations: (a) PHQ-8 score below
and (b) PHQ-8 equal or above the cutpoint. We
conducted a non-parametric Kruskal-Wallis test
for every combination to find out whether certain
obtained metrics show a statistically significant dif-
ference between cohorts.*

“We decided to exclude the /pa ta ka/ exercise (measure of
diadochokineic rate) from the analysis, because we observed
that many participants did not execute it correctly (e.g. making
pauses between repetitions).



5.1 Analysis of Speech Metrics

Table 1 presents the acoustic measures and speech
sample types, for which a significant difference
between sample populations was observed (p <
0.05). For read speech, there is no significant dif-
ference for any of the metrics. For free speech,
percentage of pause time and volume are indicators
to distinguish groups. For sustained vowels, we
observe significant differences for volume, mean
fundamental frequency, harmonics-to-noise ratio
and jitter. There are differences between females
and males, as indicated in the table.

5.2 Analysis of Visual Metrics

Table 3 shows the visual metrics for which a signif-
icant difference between sample populations was
observed (p < 0.05) for free and read speech. Vi-
sual metrics are only analyzed for free speech and
read speech because only limited movement of fa-
cial muscles can be observed for automated speech
and sustained vowels. For read speech only, a few
metrics show significant differences independent of
the cutpoint and gender, while the number of met-
rics for free speech depends on both cutpoint and
gender. For males, the measures that involve the
eyes, i.e. eye_open, eyebrow_vpos and eye_blinks,
show significant differences independent of the em-
ployed cutpoint. In contrast, when considering
all samples, independent of the reported gender,
and females, the metrics for which significant dif-
ferences are observed depend on the cutpoint and
speech sample. Cutpoint 5 mostly includes eye,
surface and duration measures, while cutpoint 10
also includes movement measures. For cutpoint
15, significant differences can be observed for the
velocity of the lower lip and jaw center for both
free and read speech, when considering all samples
or females.

6 Conclusion and Outlook

We investigated whether various audio and video
metrics extracted from audiovisual conversational
data obtained through a cloud-based multimodal
dialog system exhibit statistically significant differ-
ences between depressed and non-depressed popu-
lations. For several of the investigated metrics such
differences were observed indicating that the em-
ployed audiovisual dialog system has a potential to
be used for remote monitoring of depression. How-
ever, more detailed investigations on the nature of
value distributions of metrics, their dependency on
subject age or native language, the quality of input
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signals or used devices, among other studies, are
necessary to to see to which degree the results are
generalizable. Additionally, the used PHQ-scores
were self-reported and might therefore be less ac-
curate than scores obtained under the supervision
of a clinician. In future work, we will also col-
lect additional interactions from larger and more
diverse populations. Furthermore, we will perform
additional analysis on the obtained data, such as re-
gression analysis. Finally, we will extend the set of
investigated metrics and investigate their efficacy
for other neurological or mental health conditions.
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