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Abstract

Domain Adaptation for Automatic Speech
Recognition (ASR) error correction via ma-
chine translation is a useful technique for im-
proving out-of-domain outputs of pre-trained
ASR systems to obtain optimal results for
specific in-domain tasks. We use this tech-
nique on our dataset of Doctor-Patient conver-
sations using two off-the-shelf ASR systems:
Google ASR (commercial) and the ASPIRE
model (open-source). We train a Sequence-
to-Sequence Machine Translation model and
evaluate it on seven specific UMLS Semantic
types, including Pharmacological Substance,
Sign or Symptom, and Diagnostic Procedure
to name a few. Lastly, we breakdown, ana-
lyze and discuss the 7% overall improvement
in word error rate in view of each Semantic
type.

1 Introduction

Off-the-shelf ASR systems like Google ASR are be-
coming increasingly popular each day due to their
ease of use, accessibility, scalability and most im-
portantly, effectiveness. Trained on large datasets
spanning different domains, these services enable
accurate speech-to-text capabilities to companies
and academics who might not have the option of
training and maintaining a sophisticated state-of-
the-art in-house ASR system. However, for all the
benefits these cloud-based systems provide, there
is an evident need for improving their performance
when used on in-domain data such as medical con-
versations. Approaching ASR Error Correction
as a Machine Translation task has proven to be
useful for domain adaptation and resulted in im-
provements in word error rate and BLEU score
when evaluated on Google ASR output (Mani et al.,
2020).

However, it is important to analyze and under-
stand how domain adapted speech may vary from

Model Transcript
Reference you also have a pacemaker be-

cause you had sick sinus syn-
drome and it’s under control

Google ASR you also have a taste maker be-
cause you had sick sinus syn-
drome and it’s under control

S2S you also have a pacemaker be-
cause you had sick sinus syn-
drome and it’s under control

Reference like a heart disease uh atrial fib-
rillation

Google ASR like a heart disease asian popu-
lations

S2S like a heart disease atrial fibril-
lation

Table 1: Examples from Reference, Google ASR tran-
scription and corresponding S2S model output for two
medical words, “pacemaker” and “atrial fibrillation”.
In this work, we investigate how adapting transcription
to domain and context can help reduce such errors, es-
pecially with respect to medical words categorized un-
der different Semantic types of the UMLS ontology.

ASR outputs. We approach this problem by us-
ing two different types of metrics - 1) overall tran-
scription quality, and 2) domain specific medical
information. For the first one, we use standard
speech metric like word error rate for two differ-
ent ASR system outputs, namely, Google Cloud
Speech API1 (commercial), and ASPIRE model
(open-source) (Peddinti et al., 2015). For the sec-
ond type of evaluation, we use the UMLS2 ontol-
ogy (O., 2004) and analyze the S2S model output
for a subset of semantic types in the ontology using

1https://cloud.google.com/speech-to-text/
2The Unified Medical Language System is a collection of

medical thesauri maintained by the US National Library of
Medicine
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a variety of performance metrics to build an un-
derstanding of effect of the Sequence to Sequence
transformation.

2 Related Work

While the need for ASR correction has become
more and more prevalent in recent years with the
successes of large-scale ASR systems, machine
translation and domain adaptation for error cor-
rection are still relatively unexplored. In this pa-
per, we build upon the work done by Mani et al.
(Mani et al., 2020). However, D’Haro and Banchs
(D’Haro and Banchs, 2016) first explored the use
of machine translation to improve automatic tran-
scription and they applied it to robot commands
dataset and human-human recordings of tourism
queries dataset. ASR error correction has also been
performed based on ontology-based learning in
(Anantaram et al., 2018). They investigate the use
of including accent of speaker and environmental
conditions on the output of pre-trained ASR sys-
tems. Their proposed approach centers around bio-
inspired artificial development for ASR error cor-
rection. (Shivakumar et al., 2019) explore the use
of noisy-clean phrase context modeling to improve
ASR errors. They try to correct unrecoverable er-
rors due to system pruning from acoustic, language
and pronunciation models to restore longer con-
texts by modeling ASR as a phrase-based noisy
transformation channel. Domain adaptation with
off-the-shelf ASR has been tried for pure speech
recognition tasks in high and low resource scenar-
ios with various training strategies (Swietojanski
and Renals, 2014, 2015; Meng et al., 2017; Sun
et al., 2017; Shinohara, 2016; Dalmia et al., 2018)
but the goal of these models was to build better
ASR systems that are robust to domain change. Do-
main adaptation for ASR transcription can help
improve the performance of domain-specific down-
stream tasks such as medication regimen extraction
(Selvaraj and Konam, 2019).

3 Domain Adaptation for Error
Correction

Using the reference texts and pre-trained ASR hy-
pothesis, we have access to parallel data that is
in-domain (reference text) and out-of-domain (hy-
pothesis from ASR), both of which are transcrip-
tions of the same speech signal. With this parallel
data, we now frame the adaptation task as a trans-
lation problem.

Sequence-to-Sequence Models : Sequence-to-
sequence (S2S) models (Sutskever et al., 2014)
have been applied to various sequence learning
tasks including speech recognition and machine
translation. Attention mechanism (Bahdanau et al.,
2014) is used to align the input with the output
sequences in these models. The encoder is a deep
stacked Long Short-Term Memory Network and
the decoder is a shallower uni-directional Gated
Recurrent Unit acting as a language model for de-
coding the input sequence into either the transcrip-
tion (ASR) or the translation (MT). Attention-based
S2S models do not require alignment information
between the source and target data, hence useful for
monotonic and non-monotonic sequence-mapping
tasks. In our work, we are mapping ASR output
to reference hence it is a monotonic mapping task
where we use this model.

4 Experimental Setup

4.1 Dataset

We use a dataset of 3807 de-identified Doctor-
Patient conversations containing 288,475 utter-
ances split randomly into 230,781 training utter-
ances and 28,847 for validation and test each. The
total vocabulary for the machine translation task is
12,934 words in the ASR output generated using
Google API and ground truth files annotated by hu-
mans in the training set. We only train word-based
translation models in this study to match ASR
transcriptions and ground truth with further down-
stream evaluations. To choose domain-specific
medical words, we use a pre-defined ontology by
Unified Medical Language System (UMLS) (O.,
2004), giving us an exhaustive list of over 20,000
medications. We access UMLS ontology through
the Quickumls package (Soldaini and Goharian,
2016), and use seven semantic types - Pharmaco-
logical Substance (PS), Sign or Symptom (SS), Di-
agnostic Procedure (DP), Body Part, Organ, or Or-
gan Component (BPOOC), Disease or Syndrome
(DS), Laboratory or Test Result (LTR), and Organ
or Tissue Function (OTF). These are thereby re-
ferred by their acronyms in this paper. These seven
semantic types were chosen to cover a spread of var-
ied number of utterances available for each type’s
presence, from lowest (OTF) to the highest (PS) in
our dataset.

Alignment: Since the ground truth is at utter-
ance level, and ASR system output transcripts are
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Ontology Utts Unique Terms
Train, Test Train, Test

PS 35301, 4481 1233, 532
DS 17390, 2191 859, 310
BPOOC 15312, 1944 513, 222
SS 14245, 1805 429, 181
DP 4016, 484 217, 82
LTR 3466, 407 70, 33
OTF 1866, 228 68, 26

Table 2: Breakdown of the Full Data based on REF.

at word level, specific alignment handling tech-
niques are required to match the output of multiple
ASR systems. This is achieved using utterance
level timing information i.e., start and end time
of an utterance, and obtaining the corresponding
words in the ASR system output transcript based
on word-level timing information (start and end
time of each word). To make sure same utterance
ID is used across all ASR outputs and the ground
truth, we first process our primary ASR output tran-
scripts from Google Cloud Speech API based on
the ground truth and create random training, valida-
tion and test splits. For each ground truth utterance
in these dataset splits, we also generate correspond-
ing utterances from ASPIRE output transcripts sim-
ilar to the process mentioned above. This results
in two datasets corresponding to Google Cloud
Speech and ASPIRE ASR models, where utterance
IDs are conserved across datasets. However, this
does lead to ASPIRE dataset having a lesser utter-
ances as we process Google ASR outputs first in
an effort maximize the size of our primary ASR
model dataset.

Pre-trained ASR: We use the Google Cloud
Speech API for Google ASR transcription and the
JHU ASPIRE model (Peddinti et al., 2015) as two
off-the-shelf ASR systems in this work. Google
Speech API is a commercial service that charges
users per minute of speech transcribed, while the
ASPIRE model is an open-source ASR model. We
explore the trends we observe in both–a commer-
cial API as well as an open-source model.

5 Results and Discussions

5.1 Transcription Quality

We use WER and BLEU scores to evaluate im-
provement on ASR model outputs using the S2S
model. A consistent gain is observed across all

Transcript WER (⇓) BLEU (⇑)
Google ASR output 41.0 52.1
+ S2S Adapted 34.1 56.4
ASPIRE ASR output 35.8 54.3
+ S2S Adapted 34.5 55.8

Table 3: Results for adaptive training experiments with
Google ASR and ASPIRE model. We compare abso-
lute gains in WER and BLEU scores with un-adapted
ASR output.

metrics, with an absolute improvement of 7% in
WER and a 4 point absolute improvement in BLEU
scores on Google ASR. While the Google ASR
output can be stripped of punctuation for a better
comparison, it is an extra post-processing step and
breaks the direct output modeling pipeline. If nec-
essary, ASPIRE model output and the references
can be inserted with punctuation as well.

5.2 Qualitative Analysis

In Table 4, we compare S2S adapted outputs with
Google ASR for each semantic type, broken down
by Precision, Recall and F1 scores. The two out-
puts are also compared directly by counting utter-
ances where S2S model made the utterance better
with respect to a semantic term - it was present in
the reference and S2S output but not Google ASR,
and cases where S2S model made the utterance
worse - semantic term was present in the reference
and Google ASR but not S2S output. We refer to
this metric as semantic intersection in this work.

As observed, the F1 scores are higher for S2S
outputs for all the semantic types in the Ontology,
except for one (BPOOC) where it ties. In terms
of Precision and Recall too, S2S performs better
for most categories. These numbers can be dis-
cussed with a couple of underlying factors - how
common or rare the semantic terms are on average
for each semantic type, and how many training ex-
amples has the model seen for those terms. This is
important to consider as Google ASR learns on a
much larger vocabulary of words spanning many
different domains, where as S2S is trained on a do-
main specific dataset. For example, we see a large
gain on Precision for DP, which can be attributed
to the rarity of the terms under this category, like
‘echocardiogram’, ‘pacemaker’, etc. Its also for
this reason we see only a slight improvement in
Precision for PS even though it has the most num-
ber of training examples. Many of the medication
names are rare, but a lot of them are pretty common
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Ontology Unique Terms S2S adpt, ASR o/p
S, G, R P R F1 SI

PS 282, 393, 532 0.86 , 0.85 0.61 , 0.55 0.72 , 0.67 0.10, 0.02
DS 210, 302, 310 0.75 , 0.75 0.68 , 0.68 0.76 , 0.75 0.03, 0.02
BPOOC 173, 235, 222 0.82 , 0.81 0.70 , 0.70 0.75 , 0.75 0.02, 0.02
SS 144, 169, 181 0.87 , 0.88 0.74 , 0.72 0.8 , 0.79 0.03, 0.01
DP 54, 73, 82 0.89 , 0.75 0.65 , 0.70 0.75 , 0.72 0.02, 0.07
LTR 26, 26, 33 0.77 , 0.85 0.67 , 0.61 0.72 , 0.71 0.07, 0.01
OTF 26, 32, 26 0.79 , 0.74 0.79 , 0.77 0.79 , 0.75 0.04, 0.02

Table 4: Medical WER results per Ontology for adaptive training experiments on Test data. We use Precision,
Recall, F1 and Semantic Intersection (as defined in 5.2) metrics for comparing S2S model output to Google ASR.

nowadays even though they are domain specific,
like ‘aspirin’. Moreover, this is also supported by
the numbers observed for BPOOC, where terms
like ‘legs’, ‘heart’ and ‘lungs’ are the top 3 most
frequently occurring words.

The number of unique terms for the S2S output
are lower in comparison to Google ASR and refer-
ence as observed in Table 4. This might indicate
that the S2S model is incorrectly modifying some
Google ASR output medical terms which may not
have as many examples in the Training set. How-
ever, our semantic intersection metric indicates that
we get an overall improvement in all categories, ex-
cept for DP. We hypothesize this to be largely due
to a combination of how rare the words are, and
the overall number of training examples for DP
being low. When we calculate semantic intersec-
tion on the Full set, we get almost equal results for
S2S and Google ASR outputs, 0.5 and 0.6 respec-
tively. When we look at our top 5 and bottom 5
least frequent terms for each semantic types, almost
all the terms overlap between S2S, Google ASR
and reference, even though the number of unique
terms might be less for S2S. Overall, it is evident
from analyzing the results that as the number of
occurrences increases for each medical term, the
performance of the S2S model in identifying errors
and correcting them increases rapidly, as shown in
Table 2 and Table 4.

In a production environment, the S2S model may
be confidently used for correcting ASR errors for
top K most frequently occurring medical terms,
where the value of K must be decided based on
the dataset available for training. Future extension
of this work will also be looking into the class
imbalance problem for a more robust performance
on different semantic types.

6 Conclusion

We present an analysis of how ASR Error Correc-
tion using Machine Translation impacts the dif-
ferent semantic types of the UMLS ontology for
a medical conversation. We run the S2S model
on a dataset of Doctor-Patient conversations as a
post-processing step to optimize the Google off-the-
shelf ASR system. We use different input represen-
tations and compare the performance of our S2S
model using WER and BLEU scores on Google
ASR and ASPIRE outputs. We deep dive into how
our adaptation model affect medical WER for each
semantic type, and breakdown the results using
Precision, Recall, F1 and Semantic Intersection
numbers between S2S and Google ASR. We estab-
lish the robustness of S2S model performance for
more frequently occurring medical terms. In the
future, we want to explore other representations
like phonemes which might capture ASR errors
better, and address the class imabalance problem
for rarer medical terms in different semantic types.
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