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Abstract

Mapping local news coverage from textual
content is a challenging problem that re-
quires extracting precise location mentions
from news articles. While traditional named
entity taggers are able to extract geo-political
entities and certain non geo-political entities,
they cannot recognize precise location men-
tions such as addresses, streets and intersec-
tions that are required to accurately map the
news article. We fine-tune a BERT-based lan-
guage model for achieving high level of granu-
larity in location extraction. We incorporate
the model into an end-to-end tool that fur-
ther geocodes the extracted locations for the
broader objective of mapping news coverage.

1 Introduction

A media or news desert is an uncovered geographi-
cal area that has few or no news outlets and receives
little coverage. Mapping locations mentioned in
news articles is the primary step in identifying news
deserts. A key challenge in the process is to manu-
ally peruse the corpus of news articles, identify the
location mentions and assign spatial coordinates
which can then be placed on a map to identify a
newsroom’s coverage.

While conventional Named Entity Recognition
(NER) taggers such as those offered by spaCy
(Honnibal and Montani, 2017), Natural Language
Toolkit (NTLK) (Bird et al., 2009) and Stanford
NLP (Finkel et al., 2005) group contain tags to
identify organizations, geo-political entities (GPE)
and certain non-GPE locations such as mountain
ranges and bodies of water from text, they are not
able extract precise location mentions such as ad-
dresses, streets or intersections in their entirety.
For example, the sentence - “The family will hold
shivah from 7 to 9 p.m. Thursday, Oct. 13, and

∗ Equal contribution

again Saturday, Oct. 15, at Temple Sinai, 5505
Forbes Ave., Pittsburgh.” passed through the Stan-
ford Named Entity Tagger, returns “Temple Sinai”,
‘Forbes Ave.” and ‘Pittsburgh” as separate location
entities. However, to accurately map the location of
interest, one requires the whole address - ‘Temple
Sinai, 5505 Forbes Ave., Pittsburgh.’ to be returned
as a single location.

In recent years, there has been an advent of
powerful pre-trained deep learning based language
models such as Google’s Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2018), XLNet (Yang et al., 2019) and
OpenAI’s GPT-2 (Radford et al., 2018). These
models can be fine-tuned for specific classification
tasks in the absence of abundant training data and
thus are often helpful with weak supervision (Rat-
ner et al., 2017). We fine-tune the BERT model
to extract precise location mentions in their en-
tirety as iterated in the previous paragraph. We first
build a dataset of about 10,000 sentences extracted
from a corpus of 80,000 news articles spanning
Jan 2018 to June 2019 published in Philadelphia
Inquirer newspaper. We use Amazon Mechanical
Turk (MTurk) to label the locations of interest in
the sentences and fine-tune the BERT based NER
tagger to classify the words in a text. Finally, we
incorporate geocoding of the extracted locations
into the pipeline.

In this work, we present an end-to-end system to
extract geographic data from text. This tool could
be particularly useful for newsrooms to map the
coverage of their printed content helpful in iden-
tifying news deserts or by researchers and other
organizations to extract precise location mention
in text. Our main contributions are as follows:
(1) Preparing a dataset containing sentences with
words tagged as geopolitical entities, organizations,
streets and addresses. (2) Fine-tuning an existing
BERT based NER tagger to identify the aforemen-
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tioned location entities. (3) Building an end-to-end
system that consumes news content, transforms
into BERT readable format and returns a list of the
geocoded locations mentioned in the content.

The overall process is illustrated in Figure 1. We
will first discuss our modelling approach followed
by the process that we followed for geocoding the
extracted locations.

2 Related Work

Named Entity Recognition (NER) is a well studied
area in the field of Natural Language Processing
(NLP). It aims to identify different types of enti-
ties such as people, organizations, nationalities and
locations in text. Tools trained on conventional
NER models such as Conditional Random Fields
(Lafferty et al., 2001), Maximum Extropy (Rat-
naparkhi, 2016) and LabeledLDA (Ramage et al.,
2009) have been successful in identifying common
named entities. However, challenge comes when
high level of granularity is of interest in extracting
location entities such as specific addresses, streets
or intersections.

Lingad et al. (2013) evaluated the effective-
ness of existing NER tools such as Stanford NER,
OpenNLP and Yahoo! PlaceMaker on extracting lo-
cations from disaster-related tweets. Brunsting et al.
(2016) presented an approach combining NER and
Parts-of-Speech (POS) tagging to develop a set of
heuristics to achieve higher granularity for location
extraction in text.

There has been some work around the use of
end-to-end neural architecture on several sequence
labelling tasks including NER (Chiu and Nichols,
2015) and POS (Meftah and Semmar, 2018) tag-
ging. Magnolini et al. (2019) explored the use of
external gazetteers for entity recognition with neu-
ral models showing that extracting features from a
rich model of the gazetteer and then concatenating
such features with the input embeddings of a neural
model outperforms conventional approaches.

Fine-tuning pre-trained language model for
domain-specific machine learning tasks has be-
come increasingly convenient and effective. Lee
et al. (2019) introduced BioBERT, a BERT based
biomedical language representation model for
biomedical text mining and Xue et al. (2019) pre-
sented a fine-tuned BERT model for entity and
relation extraction in Chinese medical text. Liu
(2019) presented advances in extractive summa-
rization using a fine-tuned BERT model.

To our knowledge, no previous work has been
done to fine-tune a pre-trained language-based deep
learning model to achieve the level of precision and
granularity in location extraction that is required
for the purpose of mapping news coverage. Fur-
thermore, there does not exist an open source end-
to-end tool to extract and geocode precise locations
from a piece of text.

3 Model

Our approach to developing a named-entity tag-
ger for the task of precise location extraction in-
volves fine-tuning an existing neural network on
a target dataset. Fine-tuning a model updates its
pre-trained parameters, improving its performance
on the downstream NLP task.

We treat the task of named-entity tagging in
a sentence as that of token classification within
a sequence, assigning each word (token) in the
sentence (sequence) a label. The fine-tuning pro-
cess for token classification involves: (1) Preparing
the training dataset with expected labels for to-
kens within each sequence (2) Loading an existing
model with pre-trained weights (3) Extending the
model with a classification layer at the end with
number of nodes equal to the number of classes
in the task at hand (4) Training the model on the
target dataset.

We will use Bidirectional Encoder Representa-
tions from Transformers (BERT), developed by
Google AI in 2018 as the pre-trained model. BERT
makes use of multiple multi-head attention layers
to learn bidirectional embeddings for input tokens.
It is trained for masked language modeling, where
a fraction of the input tokens in a given sequence
are masked and the task is to predict the masked
word given its context (Devlin et al., 2018). Our
decision to choose BERT is motivated by the fact
that it is a general purpose language representa-
tion model pre-trained on millions of articles on
English Wikipedia and BookCorpus. Given the di-
versity of topics present on these two training sets,
we believe BERT would be able to generalize well
to our dataset containing news articles. BERT’s
use of WordPiece tokenizer mitigates the out-of-
vocabulary issue while tokenizing location names
which are often proper nouns. With minimal archi-
tecture modification, BERT can be applied to our
NER task.
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Figure 1: Overview of our methodology

3.1 Dataset Preparation
Our goal is to create a labelled dataset for token
classification with each token labelled as being part
of a location entity or not. For this purpose, we as-
sembled a dataset of 10,000 sentences drawn from
a corpus of 80,000 news articles ranging from Jan-
uary 2018 to June 2019 published in the Philadel-
phia Inquirer newspaper. The articles represented
‘beats’ including politics, opinions, sports, food
and travel among others, published by a number
of different authors. The articles originated from
10 different news sources which had their articles
published on Philadelphia Inquirer website.

Since, majority of the sentences in the articles
did not contain a location mention, sending the
whole article for tagging on Amazon MTurk was
not cost-efficient. To overcome this, we broke
down the articles into individual sentences using
spaCy’s Sentencizer and devised a set of heuristics
and custom rules on top of spaCy’s NER system
to capture sentences with mentions of addresses,
streets and intersections. Through exploratory anal-
ysis and manually perusing the articles, we identi-
fied three patterns based on the syntactic relation
between POS and NER tags present in the sentence:

Heuristic 1.

NERLOC + POSPREP +NERLOC

Two location entities separated by a prepositional
tag often highlighted a hierarchical location be-
tween two location entities. For example: In the
phrase ‘Arbor Street in Kensington.’ (Figure 2 -
Top), refers to the street - Arbor Street, which is
part of the neighborhood - Kensington.

Heuristic 2.

NERNUM+POSNOUN+POSPREP+NERLOC

Figure 2: Heuristics to identify locations of interest

A number, noun and a prepositional tag preceding a
place were collectively used to identify a precise lo-
cation in the referenced place. For example, ‘3100
block of Arbor Street.’ (Figure 2 - Middle)

Heuristic 3.

NERNUM + POSLOC

A number preceding a location entity, often a street,
collectively referred to a building in a street or area.
For example, ‘200 West Street’ (Figure 2 - Bottom)
refers to a building on the West Street.

Using the aforementioned, we filtered in sen-
tences that contained at least one of the above pat-
terns. Note that even though the defined heuristics
are not exhaustive and can not define all possible
syntactical patterns in which our locations of in-
terest could exist in text, they offer an effective
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strategy to create labelled data for higher-level, less
precise supervision required in transfer learning
(Ratner et al., 2019). We augmented the dataset
to include 20% of sentences that contained simple
geo-polical entities (such as United States, Penn-
sylvania, Philadelphia etc.) as it is easier for a
pre-trained language model to identify such men-
tions. A total of 10,000 sentences were randomly
selected from this set.

As a second pass, the crowd workers on Amazon
Mturk were instructed to identify locations of inter-
est in the 10,000 sentences and mark their starting
and ending character numbers in the sequence. The
sentences were then tokenized using WordPiece
tokenization (Wu et al., 2016) and the tokens were
assigned labels using Inside-outside-beginning (I-
O-B) notation (Ramshaw and Marcus, 1995). For
instance, LOCB represents the starting of a loca-
tion entity and LOCI represents subsequent tokens
that are part of that location entity. An example
is depicted in Figure 3 which shows tokens in a
sentence tagged using the I-O-B notation.

3.2 Model Training

We used BERT’s implementation provided by Hug-
ging Face (Wolf et al., 2019) in PyTorch (Paszke
et al., 2019). As the task was framed as a multi-
label classification problem, a softmax layer com-
prising of 6 nodes (LOCB , LOCI , X, O, SEP,
CLS) was added for token-level classification. The
weights were initialized using BERT pre-trained for
general purpose entity recognition (Link to GitHub
repository of the pre-trained model). We fine-tuned
both BERTLARGE and BERTBASE and used the
original cased vocabulary of the respective models.

The models were trained using the BERTAdam
(Adam (Kingma and Ba, 2014) optimizer with
weight decay regularization for BERT) optimizer,
with learning rate set to 3× 10−5. A weight decay
rate of 0.01 to the main weight matrices alongside
early stopping was used to add regularization. The
average length of WordPiece tokenized sequence
in our dataset was 40 (max: 241, min: 12, std: 16);
we used a maximum sequence length of 128 for
BERTBase and 64 for BERTLarge. A batch size of
32 was used for BERTBase and 16 for BERTLarge

and the models were trained for a total of 20 epochs.
NVIDIA Tesla K80 and NVIDIA Tesla P100 GPUs
on the Google Cloud Platform were used to fine-
tune BERTBase and BERTLarge respectively. Due
to computational limitations, we could not train

BERTLarge with larger sequence lengths and batch
sizes.

3.3 Experimental Results
In order to ensure the effectiveness of our experi-
ment, we divided the dataset into training, develop-
ment and test sets to maintain a ratio of 8:1:1. As
the task was framed as a multi-label classification
problem, we calculate common performance mea-
sures - Precision, Recall and F1 scores (Liu et al.,
2014) for each of our labels (LOCB , LOCI and O).
The results are presented in Table 1.

Table 1: Results on the Test Set for BERTBase and
BERTLarge

Metric

Model Tag Precision Recall F1

BERTBase LOCB 76.97 87.43 81.85
LOCI 74.83 71.97 73.38
O 99.25 99.10 99.18

BERTLarge LOCB 78.27 81.01 79.62
LOCI 73.01 70.16 71.56
O 98.14 98.22 98.18

As shown in Table 1, BERTBase performs better
than BERTLarge for all tags on all three evaluation
metrics. We believe this is due to the fact that
we used a shorter sequence length while training
the BERTLarge model, which ignores any location
mentions after token 64.

To assess the overall performance of our model,
we calculated the average precision, recall and
F1 scores weighted by the number of LOCB and
LOCI labels in the test set. As there were a total
of 2334 tokens tagged with the label LOCB and
3355 tokens tagged with LOCI in the test set, us-
ing weighted average scores helps in accounting for
this imbalance. We obtain a weighted average F1

of 76.83 on BERTBase and 74.87 on BERTLarge

(Table 2). Note that we have used a conservative
approach in measuring the performance of the mod-
els. While all tokens might not be essential in
identifying a location, our evaluation metrics re-
quires the beginning (LOCB) and all subsequent
tokens (LOCI ) to be identified for the location to
be marked as correct.

Figure 4 illustrates the comparison between our
fine-tuned BERTBase model and standard NER
tools such as those offered by spaCy and Stanford

https://github.com/kamalkraj/BERT-NER 
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Figure 3: WordPiece Tokenization and Tagging

Figure 4: Illustration of different NER taggers (a) Original Sentence (b) SpaCy NER (c) Stanford NLP Group
(d) Fine-tuned BERTBase Note: Desciption of SpaCy NER tags can be found at: https://spacy.io/api/

annotation

Table 2: Weighted Average Scores on the Test Set for
BERTBase and BERTLarge

Metric (Weighted Average)

Model Precision Recall F1

BERTBase 75.70 78.28 76.83
BERTLarge 75.17 74.62 74.87

NLP group. Our model is able to extract precise
location entities whereas the other tools split the
entities into sub-entities.

4 Mapping

By deploying the fine-tuned BERT model, we
present a system that (1) consumes textual news
content (or any other text for that matter), (2)
extracts the raw text of the locations referenced
and (3) returns the corresponding geocodes. The
geocodes can be plotted on a map using any stan-

dard mapping tool.

4.1 Location Extraction

The BERT models in (3) have been fine-tuned
to perform entity recognition at a sentence level.
Hence, the first step in location extraction is to split
the content into individual sentences. Similar to the
approach taken in the data preparation step, we use
spaCy’s Sentencizer to break the content into in-
dividual sentences. The sentences are then passed
through the fine-tuned BERT model which return
a list of precise location mentions in the sentence.
The locations are regrouped at the content level.

4.2 Geocoding

Geocoding is the process of taking input text, such
as an address or the name of a place, and returning
a latitude/longitude location on the Earth’s surface
for that place. For instance, geocoding “Atlantic
City” will yield 39.3643, 74.4229.

The locations are gecoded using geocoding APIs
offered by Google Places and OpenStreetMap. The

https://spacy.io/api/annotation
https://spacy.io/api/annotation
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Figure 5: An example output of the mapping system

Text Search Service within the Google Places API
returns information about a set of places based
on a string, which makes it particularly useful for
ambiguous address queries. However, due to lim-
ited number of free queries available every month,
we utilize the open source OpenStreetMap API in
conjunction with Google Places API to minimize
the cost associated with geocoding. The Open-
StreetMap API does not have an in-built text disam-
biguation service like Google Places’ TextSearch
but it is able to return geocodes for geo-political
entities with high accuracy. To this extent, we use
OpenSteetMap for geocoding locations which are
geo-political entities and Google Places for other
locations. Locations are identified as geo-political
by passing the entity list through spaCy’s NER
tagger.

To facilitate disambiguation, we utilize the loca-
tion and radius parameters in Google Places API
and the viewbox parameter in the OpenStreetMap
API which allows users to specify the preferred
region of search. This is particularly useful for
mapping local news coverage which is generally
confined to a single region. Geo-political entities
are geocoded as polygons with series of coordinates
defining the enclosed area. For other locations a
single point coordinate representing the centroid is
returned. The final output is a GeoJSON containing
a list of all extracted locations with their geocodes
which can readily be consumed by a third-party
mapping software.

In Figure 5, we can see an example of a input

text and the corresponding GeoJSON output of the
locations referenced in the text.

5 Conclusion and Future Work

Figure 6: 1000 articles from Philadelphia Inquirer plot-
ted on the map. The green polygons represent Philadel-
phia neighborhoods with color indicating number of
times they have been referenced. Dots represents the
locations referenced. The tooltip shows the metadata
for the article that references one of the locations.

To map local news coverage, it is important to
extract precise location mentions from textual news
content. In this paper, we presented a fine-tuned
BERT based language model to achieve high level
of granularity that is required for this task. Com-
pared to traditional NER taggers, our model is able
to extract locations such as addresses, streets and
intersections in their entirety, making it possible to
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accurately place them on a map. We also present
an end-to-end system by deploying the model to
extract locations from textual content and geocode
them in a format that can be directly consumed by
a mapping software for plotting.The system can be
integrated with an interactive user interface to visu-
alize location-related features of news content. An
example is illustrated in Figure 6 of 1000 random
news articles from Philadelphia Inquirer plotted
using Mapbox API. The map shows the locations
referenced in these news articles (denoted by the
points) and the coverage across different Philadel-
phia neighborhoods (green polygons with color
indicating the frequency).

Our work can be advanced and extended from
many different perspectives. First, a more compre-
hensive dataset could be developed with specific
tags for different location types. The BERT model
can be further fine-tuned using this dataset to ex-
tract different location types from the text. Sec-
ond, the disambigation of the extracted location
can be further strengthened using contextual clues
to enhance the accuracy of the geocoding process.
Lastly, many other state-of-art pre-pretrained lan-
guage models can be fine-tuned using our dataset
and a comparison can be established to select the
best performing model to be used for tagging.
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