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Abstract

Nostalgia has been defined as a bittersweet, so-
cial emotion, that is often induced through mu-
sic. In this paper, we examine how these may
be expressed in Japanese YouTube comments
of nostalgic (mid-2000s) and non-nostalgic
(recent) songs (music videos). Specifically,
we used sentiment analysis and Latent Dirich-
let Allocation (LDA) topic modeling to exam-
ine emotion word usage and broader themes
across comments. A gradient boosted de-
cision tree classifier was then able to clas-
sify nostalgic and non-nostalgic music videos
above chance level. This suggests that analy-
ses on video/music comments may be a possi-
ble method to quantify expressions of listener
emotions, and categorise musical stimuli.

1 Introduction

The last decade has seen a sharp increase
of nostalgia-related research in the psychology-
emotion literature. Nostalgia has been defined
primarily as a self-relevant emotion, in that the
self is experienced through narratives of autobi-
ographical events. Yet, it is also a social emo-
tion, in that these narratives also involve mem-
ories of social interaction, ultimately fostering a
sense of social connectedness (Tilburg et al., 2017,
2018; Reid et al., 2015; Vess et al., 2012). It
has been characterized as a bittersweet experience,
mixing feelings of pleasantness with appraisals of
irretrievable loss (Tilburg et al., 2018), particu-
larly in reflecting and savouring past social expe-
riences (Biskas et al., 2019). In music, it is often
induced by sadness (Taruffi and Koelsch, 2014),
and is stronger for music associated with reminis-
cence bumps (i.e., disproportionally recalled for
events in late adolescence and early childhood,
Krumhansl and Zupnick, 2013)

In this paper, we propose that since nostal-
gia has such distinct elicitors and appraisals, au-
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tomatic classification of nostalgic popular songs
should be possible by analysing listener responses.
Here, we operationalise these responses as com-
ments on music videos in YouTube. We first use
unsupervised learning (topic modelling) and senti-
ment analysis to quantify comments into features,
and use supervised learning (gradient boosted de-
cision trees (GBDT, Friedman, 2001)) to clas-
sify comments belonging to nostalgic (old) mu-
sic videos, or non-nostalgic (recent) music videos
based on the identified topics and sentiment cate-
gories.

2 Related Work

In the field of Music Information Retrieval, social
media (Twitter posts) has been previously used
in the context of music entity recognition. Por-
caro and Saggion (2019) developed a method of
identifying aspects of broadcast classical music
through corresponding Twitter activity. For nos-
talgia and music, Timoney, Davis and Raj (2018)
mined 556 comments from YouTube music videos
from British hit songs between 1960 — 1970, and
found that nostalgic comments could be classi-
fied with 86% accuracy (from non-nostalgic com-
ments). This mirrors research from Davalos and
colleagues (2015), who found distinctive charac-
teristics of nostalgic posts on Facebook: nostal-
gic posts tended to have more reflective and emo-
tional content, tinged with mixed positive and neg-
ative elements. Our analysis adds to this body
of research, in that we seek to use classify com-
ments belonging nostalgic and non-nostalgic mu-
sic videos in Japanese.

3 Method

We first conducted an online pilot study, where
N(participants) = 342 participants rated one ran-
domly selected song (out of a total set of 20 songs)



Track Artist Condition Year
No More Cry D-51 Nostalgic 2005
Kibun Jou Jou Mihimaru GT Nostalgic 2006
Goodbye Days YUI Nostalgic 2007
Sakura Naotaro Moriyama  Nostalgic 2002
Wataridori [Alexandros] Non-Nostalgic 2015
Stay Tune Suchmos Non-Nostalgic 2017
Chocho Musubi Aimer Non-Nostalgic 2016
Himawari no Yakusoku  Motohiro Hata Non-Nostalgic 2015

Table 1: List of songs per condition and release year. YouTube IDs for each video are available in our online

supplementary material.

on felt nostalgia. Each song received ratings from
approximately 10 participants. From this, we se-
lected 8 songs that scored the highest (and lowest)
on felt nostalgia via a single-item, 7-point Likert
scale. We defined nostalgic songs as songs that
were popular within Japan in the mid-2000s, that
likely induced nostalgia for those aged around 25-
35. Non-nostalgic songs were recently popular
songs released within the last 5 years (see Table 1).
We then identified 37 YouTube videos that corre-
sponded to these 8 songs and obtained a list of all
YouTube comments through the YouTube API via
the ‘tubeR’ wrapper in R (Sood, 2019). To ensure
the overall representativeness of our study, this
excluded videos that had less than 50000 views,
were not in Japanese, and collaboration videos.
Additionally, we filtered out exceptionally short
comments (that were deemed unsuitable for anal-
ysis), by excluding the shortest (25th percentile)
comments from the dataset. We also removed all
alphanumeric characters and non-Japanese text,
and tokenised the remaining Japanese comments
through the RMeCab (Ishida, 2018) wrapper for
the MeCab software (Kudo, 2005). This converted
Japanese terms and phrases into their simplest
(plain) forms, allowing for more consistency in
both topic modelling, and matching with the emo-
tion dictionary. We obtained a final N(comments)
= 710 (Nostalgic = 324, Non-Nostalgic = 386).
We obtain scores for emotion tags and LDA pos-
terior probabilities for all comments, and divided
them into training (0.6) and testing (0.4) sets. We
used GBDT (‘gbm’ package; Greenwell et al.,
2019, using the ‘caret’ wrapper; Kuhn, 2019) to
classify them as nostalgic or non-nostalgic, and
use partial dependency plots and variable impor-
tance measures to interpret these results. Note that
all analyses were conducted in R (R Core Team,
2019).

3.1 Text Analyses

For the sentiment analyses, we used the JIWC
emotion dictionary (Shibata et al., 2017). This
matched words to 7 emotion categories (happy,
sad, anger, surprise, trust, anxiety, hate/disgust;
fear was excluded) based on a translation of
Pluchik’s (1980) emotion wheel, and scores for
each comment (;;) were a ratio of number of
emotion terms in each category (W), to the total
number of terms (tokens; W;*) in each comment:

Wi
Sij = Wiilog(Wij +1) (1)

For topic modelling, in order to reduce the bias
caused by human supervision, this study em-
ployed the unsupervised Latent Dirichlet Alloca-
tion (LDA; Blei et al., 2003). LDA identifies latent
topics from documents (in this case, comments),
through modelling the probabilistic distribution of
topics in a document, and words in topics. LDA
topic modelling with Gibbs sampling was con-
ducted used the ‘topicmodels’ package (Grun and
Hornik, 2011), and the number of topics was deter-
mined used the method described in Griffiths and
Steyver (2004), which uses the posterior probabil-
ity for each model (with varying numbers of top-
ics) from all words in the corpus of YouTube com-
ments. For each document, we used the resultant
probability distribution for each topic as features
in a classification model alongside the JIWC emo-
tion categories.

4 Results

A total of 14 topics were identified (see Fig-
ure 1; a list of top terms for all topics are
available in our online supplementary material:
https://osf.io/52abe/). These were combined with
scores from the 7 JIWC emotion categories and
word count, and fitted in a GBDT classification
model, for a total of 22 features. Parameter se-



lection for the model was determined through 12-
fold cross validation on the training set, resulting
in n(trees) = 50 and interaction depth = 1. An
overall modest accuracy score of AUC = 0.60,
Mc Neymar p < .001 was achieved when fitted
on the test set. This suggested that the model
was weakly but significantly able to classify nos-
talgic and non-nostalgic songs based on YouTube
comments above chance-level. As such, we be-
lieve that small but significant differences exist be-
tween comments from nostalgic and non-nostalgic
songs.

To understand what these features were and how
they affected classification in nostalgic and non-
nostalgic songs, we interpreted the model through
permutation feature importance (PFI), and partial
dependence plots (PDP)s by the ‘iml’ (Molnar
etal.,2018) and ‘pdp’ (Greenwell, 2017) packages
(all PFI scores are available in our online supple-
mentary material: https://osf.io/52abe/). We insti-
tuted a cutoff of importance = 1.01 for PFI, which
selected 5 features of importance for interpreta-
tion. These were Topics 4, 1, 14, and 13, as well as
the JIWC-Happy emotion category. The PDPs re-
vealed that Topics 4, 1, 14, and Happy were higher
in nostalgic music comments, but Topic 13 dis-
played an inverted-U relationship.
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Figure 1: LDA Model likelihood at different numbers
of topics for model selection.

5 Discussion

We labelled Topic 4 as ‘Bittersweet’, as it con-
tained words that expressed both happiness and
sadness, that appear self-directed and focused
(e.g., “happiness’, ’tears’, ’self’, ’believe’, ’can-
do’, and ’find’). Topic 1 included several self-
directed, high-arousal words, such as ‘live (mu-
sic)’, ‘the best’, ‘favourite’, and ‘cool’, that we
labelled as ‘High-arousal’. Topic 13 consisted
of several words like ‘courage’, ‘sitting for en-
trance exams’, and ‘striving’, so we labelled it as
‘Entrance Exams’, and Topic 14 included words
like ‘good’, ‘family’, ‘children’, that we labelled
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Figure 2: PDPs for high importance features (topics):
the larger the probability (y-axis), the higher the prob-
ability of classification as nostalgic music. X-axis in-
dicates the posterior probability for each topic or JIWC
emotion category frequency scores



as ‘Family’. These topics, as well as happiness-
related words, had an influence on the model in
classifying comments. However, Topic 13 ’En-
trance Exams’ displayed a somewhat inconsistent
relationship, in that the comments of low to mid
probabilities on that topic were more likely to be-
long to nostalgic songs, but comments which were
very low, and also high on that topic were from
non-nostalgic songs.

Nevertheless, we conclude that comments on
nostalgic songs had a greater likelihood of men-
tioning topics that related to bittersweet and/or
high-arousal emotions, and happiness. Further-
more, they included mentions of social memo-
ries (such as family), and to a certain extent, col-
lective memory (such as sitting for entrance ex-
ams - commonly considered a rite of passage in
Japanese youth). These appear to be consistent
with previously-identified appraisals and constru-
als of Nostalgia in past literature (Sedikides and
Wildschut, 2019; Tilburg et al., 2018)

However, we note the low classification ac-
curacy of the model. It is likely that newer,
more powerful models, like Latent Feature topic
modeling (LFTM) and Long Short-Term Mem-
ory (LSTM) neural network classifiers, and larger
sample sizes may increase the overall accuracy.
Nevertheless, we believe that the consistency in
interpretation with past literature adds validity to
our findings, in showing for a preliminary utility
in classification of emotional content of music by
listener comments. This may have potential ap-
plication areas such as music therapy, where 'nos-
talgic’ songs can potentially be categorised effi-
ciently and used in music-based dementia inter-
ventions (Tang et al., 2018). Our research also fo-
cused on Japanese comments for Japanese songs,
but future research can extend this to different cul-
tures and languages.
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