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Abstract

Dialogue response generation models that use
template ranking rather than direct sequence
generation allow model developers to limit
generated responses to pre-approved messages.
However, manually creating templates is time-
consuming and requires domain expertise. To
alleviate this problem, we explore automating
the process of creating dialogue templates by
using unsupervised methods to cluster histori-
cal utterances and selecting representative ut-
terances from each cluster. Specifically, we
propose an end-to-end model called Deep Sen-
tence Encoder Clustering (DSEC) that uses an
auto-encoder structure to jointly learn the ut-
terance representation and construct template
clusters. We compare this method to a ran-
dom baseline that randomly assigns templates
to clusters as well as a strong baseline that per-
forms the sentence encoding and the utterance
clustering sequentially.

To evaluate the performance of the proposed
method, we perform an automatic evalua-
tion with two annotated customer service
datasets to assess clustering effectiveness, and
a human-in-the-loop experiment using a live
customer service application to measure the
acceptance rate of the generated templates.
DSEC performs best in the automatic evalu-
ation, beats both the sequential and random
baselines on most metrics in the human-in-the-
loop experiment, and shows promising results
when compared to gold/manually created tem-
plates.

1 Introduction

Dialogue response generation has been an active
area of research in recent years. Response gener-
ation can be used in human-to-bot conversational
systems (Qiu et al., 2017) or to generate quick
replies in human-to-human conversational systems
(Kannan et al., 2016; Pasternack et al., 2017).
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Response generation approaches fall under two
broad categories: (1) direct sequence generation
using an encoder-decoder architecture (Vinyals and
Le, 2015; Serban et al., 2016) or (2) response rank-
ing, in which the model developer specifies a pre-
defined template pool and an encoder model is used
to score pairs of conversation history and candidate
template response (Liu et al., 2018; Zhou et al.,
2018; Kannan et al., 2016). Using template rank-
ing rather than direct sequence generation allows
model developers to limit generated responses to
pre-approved messages, preventing the model from
producing impolite or ungrammatical responses. In
addition, sequence generation models have a ten-
dency to favor safe, generic responses (Baheti et al.,
2018; Shao et al., 2017; Zhang et al., 2018; Li et al.,
2016), and template ranking models can be used to
ensure that the system generates information-rich
responses that drive the conversation towards an
end goal. However, manually creating templates
is time-consuming and requires domain expertise.
For certain use cases such as customer service, tem-
plates need to be continually updated to reflect pol-
icy changes, further adding to this cost. In addition,
manually created templates may differ subtly from
actual agent utterances in model training data and
thus may not be selected by the ranking model.

In this paper, we explore automating the creation
of a template pool for a customer service chat appli-
cation through clustering historical agent utterances
and choosing representative utterances from each
cluster. To the best of our knowledge, research on
automatic template creation using utterance clus-
tering has been limited.

The structure of this paper is as follows. In sec-
tion 2, we describe the data and text preprocessing
methods we used to extract template candidates
from historical chat transcripts. In section 3, we
describe our proposed approach for template gen-
eration: an end-to-end approach that uses an auto-
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encoder structure to jointly learn the utterance rep-
resentation and construct template clusters. In addi-
tion, we describe a strong baseline that we propose
for comparison: a sequential approach in which we
first learn the utterance representation and then con-
struct template clusters. In section 4, we describe
the automatic and human-in-the-loop evaluations
that we conducted and our findings, and in section
5 we draw conclusions and propose future research
directions.

2 Data

We select template responses from a dataset of
agent utterances extracted from historical chat
transcripts. To construct this dataset, we collect
anonymized transcripts of conversations between
customers and customer service agents (CSAs) in
two domains: (1) Cancel Membership (CM), and
(2) Tracking shows delivered but order not received
(DNR). In the anonymized transcripts, all unique
customer identifiers (UCI) are replaced with a spe-
cial token: “GENERIC_SLOT”. We further extract
all agent utterances' in these transcripts and ex-
clude those occurring only once in the data. The
intuition behind this is that if an utterance only
occurred once, it is not likely to be useful as a tem-
plate. We end up with approximately 550K agent
utterances in each domain. The DNR domain con-
tains longer utterances than the CM domain (an
average of 12 words per sentence vs. 11 for CM)
and a larger vocabulary size (22.9K for DNR vs.
19.2K for CM).

2.1 Annotation Guidelines

To create our evaluation data, we select a random
sample of approximately 1,000 utterances from
each domain and have it annotated for “Cluster
ID”. For the annotation task, we ask the annotators
to come up with cluster IDs as they are annotating
the utterances and then consolidate these clusters
after they are done assigning all utterances to clus-
ters. We have one annotator per domain and a gold
annotator that further refines the clusters for both
domains. For each domain we ask the annotator to
do the following:

1. Starting with the first utterance, define the first
cluster to convey the semantic meaning of this
utterance and give a descriptive name for the
cluster.

!“Utterance” is defined as all that is typed before sending
the message to the customer.
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. For each utterance in the list, either assign it
to an existing cluster (if appropriate) or define
a new cluster.

. When assigning utterances to clusters, ignore

the tense and utterance type (statement versus
question).
E.g., “I canceled your membership”, “I will
cancel your membership”, and “Should I can-
cel your membership?” will all belong to the
same cluster.

. All noisy/unneeded utterances that are not re-
lated to the current domain or that do not con-
tain information that can be useful for resolv-
ing the customer’s issue should be excluded.

. After finishing all of the utterances, go
through the list of clusters to merge redun-
dant ones and map the utterances to the new
list of cluster IDs.

The annotation process resulted in 44 and 43 clus-
ters for the CM and DNR domains respectively.
Table 1 shows sample utterances from some clus-
ters.

3 Approach

We cluster agent utterances using a novel end-to-
end approach, Deep Sentence Encoder Clustering
(DSEC), in which the utterance representation and
the clustering model are jointly learned. We com-
pare this against two baselines: (1) a weak baseline
in which templates are sampled randomly from the
dataset, and (2) a sequential baseline in which the
utterance representation and the clustering model
are learned sequentially. For the baseline system,
we use dense features to represent each utterance
and explore the use of different embedding types—
GloVe (Pennington et al., 2014), ELMo (Peters
et al., 2018b,a), and BERT (Devlin et al., 2018)—
as well as the effect of using in-domain data on the
performance of the system.

For both DSEC and the sequential baseline, af-
ter the clusters have been obtained, we create the
template pool by selecting the highest-confidence
utterance in each cluster. The confidence is either
the probability that the utterance falls in the cluster
(for DSEC), or the distance between the utterance
and its cluster centroid (for the sequential baseline).



Domain

Cluster Description

Utterances

Your refund of GENERIC_SLOT will be credited to your original
payment method within 7 to 10 business days.

I see that you have used the membership benefits, and because
of that I can offer GENERIC_SLOT refund. Sounds good?

Can you please confirm the last four digits and the expiration
date of the payment method that has been charged?

Would you like the refund to be back on your gift or credit card?

I do apologize for the inconvenience if it was tagged as delivered

M Informing the customer

of confirmation e-mail
CM Confirming refund re-

quest
CM Greeting Good afternoon.
CM Asking for confirmation
DNR  Confirming refund op-

tions
DNR  Apology

but nowhere to be found.

DNR  Confirming order status

It seems that the package was already lost and mismarked as

delivered.

Table 1: Sample agent utterances for our two domains: Cancel membership (CM) and Tracking shows delivered

but item not received (DNR)
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Figure 1: DSEC: An LSTM auto-encoder representing the sentence encoder and a clustering layer

3.1 Deep Sentence Encoder Clustering
(DSEC)

We propose an end-to-end auto-encoder structure
(Figure 1) that learns a sentence encoding layer
that aims to achieve two goals simultaneously: (1)
generate a feature representation from which the
input utterance can be reconstructed as accurately
as possible, and (2) construct template clusters by
introducing a clustering-oriented loss. To achieve
these two goals, we minimize a weighted (w) sum

of reconstruction loss (L, ) and clustering loss (L.).

L=L+wxL,

To build the auto-encoder structure, we utilize
a deep bi-directional Long Short-Term Memory
(LSTM) network (Hochreiter and Schmidhuber,
1997). We first use a word embedding layer, and
then train a multi-layer bi-directional LSTM as
the encoder. We choose a bi-directional network
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since subsequent words can sometimes facilitate
the prediction of previous words. For example,
it is easy to infer that the previous word has a
high probability of being “I” if we know that
the current word is “am”. The final output of
the hidden layer is then used as the input to the
decoder. Padding is used to normalize sentence
length, and a softmax function is added on top of
the decoder to reconstruct the input. It is intuitive
that the vectors generated by the encoder are good
representations of the sentences they encode if
they contain enough information to reconstruct
these sentences.

For clustering, we define the loss using a soft
assignment between the sentence embedding and
the cluster centroids, similar to Xie et al. (2016). In
particular, we first use the Student’s ¢-distribution
as a kernel to measure the similarity between the
sentence encoder z; and each of the centroid points
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where ¢;; indicates the probability of assigning
sentence 7 to cluster 7. The degree of freedom « is
set to be 1. The sentence clustering loss is defined
as:

L=KL(P|Q) =33 pijlog 5—
i 4

in which the soft target distribution P is defined as:

D = q@'zj/zfi dij
N Zj(qz-?j/zi ij)

One potential deficiency of using the target dis-
tribution, as Guo et al. (2017) pointed out, is that
such a loss emphasizes data points with large p;;
(i.e. high confidence) hence is less impacted by
mistakes for the points farther away from the cen-
troid or ones that are close to the decision boundary
hence can lead to underfitting if many such points
exist. This problem can be more severe in sentence
clustering than image clustering since image clus-
tering usually has a more well defined objective
whereas sentence clustering can be ambiguous and
subjective. We find that different annotators often
suggest different cluster labels for many of the sen-
tences. To alleviate this issue, we suggest setting
a threshold on the probability ¢;; to filter out ut-
terances with weak cluster signals when tuning or
evaluating the model. Note that our goal is to select
representative utterances from each cluster to form
a reliable template pool. In this way it is most im-
portant to maximize the quality of utterances with
high estimated confidences.

In practice, we initialize the reconstruction coef-
ficients by first training the auto-encoder separately,
i.e. setting w = 0. This “warm-start” approach
helps accelerate the convergence rate.

Our proposed method borrows the loss from
Xie et al. (2016) but addresses a different prob-
lem. First, Xie et al. (2016) use a convolutional
network to learn an image representation. We tar-
get sentence reconstruction along with clustering,
and thus propose an LSTM structure to capture the
time series aspect of the sequence. Second, we
use a pre-trained model fit on our own customer
service data to initialize the parameters, and thus
our model does not have to be very deep, which
makes it less computationally intensive to train.
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3.2 Sequential Baseline

Since there is no prior research targeting the task
of automating template creation for ranking-based
dialogue models, we propose a strong baseline
that embeds the utterances and clusters them
sequentially. To ensure that the baseline we are
comparing against is effective, we explore the
use of publicly available/pretrained embedding
models versus models that are trained on in-
domain customer service data. Additionally, we
experiment with a traditional word embedding
model, GloVe, in which the representation of each
word in the vocabulary is the same regardless of
the context it is appearing in, as well as contextual
embeddings in which the representation depends
on the entire context in which a word is used,
namely ELMo and BERT. For in-domain data,
we use approximately 118 million utterances to
train a customer service (CS) GloVe model and an
attention-based ELMo model. Once we obtain the
representation for each utterance using a specific
embedding model, we then use a pooling layer
to obtain the utterance representation. For the
pooling layer, we use weighted-mean pooling,
in which each word is weighted by the “Term
Frequency Inverse Document Frequency” (tf-idf)
score (Aizawa, 2003), with documents defined as
utterances in this case.’

Finally, we cluster the utterance representations.
We experiment with K-means (MacQueen et al.,
1967), AffinityPropagation (Frey and Dueck, 2007),
spectral (Shi and Malik, 2000), Ward’s (Murtagh
and Legendre, 2014), Agglomerative (Miillner,
2011) and Birch (Zhang et al., 1997) clustering.
For K-means, we use the centroid as the represen-
tation of the cluster, while for other algorithms, we
take the mean pooling for all templates in the clus-
ter as the centroid, compute the distance from each
template to the centroid, and choose the template
that is the shortest distance from the centroid. In
the experiments described in Section 4, we select
the clustering method with the best normalized mu-
tual information score (NMI) as our baseline. We
find that this is always achieved by either Ward’s
or Birch.

2We also experimented with max and unweighted-mean
pooling but achieved better results using weighted-mean pool-
ing.



4 Experiments & Results

We evaluate clustering performance using both au-
tomatic and human-in-the-loop evaluations. For all
experiments, we fix the cluster number at 50 for all
models to ensure that the template pool has good
coverage of common situations.

4.1 Automatic Evaluation

To evaluate the quality of the generated clusters, we
compare the ground truth—from our gold labeled
data—with predicted labels using normalized mu-
tual information score (NMI), unsupervised clus-
tering accuracy (ACC; Xie et al. (2016)), and Rand
index adjusted for chance (ARI; Hubert and Arabie
(1985)). We evaluate the performance of DSEC
when compared to (1) the sequential baseline and
(2) a weak baseline that randomly assigns each
utterance to one of the clusters.

Tables 2 and 3 show the results of the auto-
matic evaluation on the labeled CM and DNR
datasets. For DSEC, the validation accuracy of
reconstruction is approximately 93% for both
datasets, indicating that the auto-encoder vector
extracts the sentence information well. On CM,
DSEC achieves the best NMI and ACC, while the
sequential method, with the ELMo-CS embedding
and weighted mean pooling of tf-idf features, has
the best ARI results overall. The models using
in-domain embeddings outperform others with pre-
trained embeddings. Note that the metrics NMI,
ACC, and ARI are not always consistent when
compared across different methods. For example,
Glove-CS has a high ARI score but under-performs
with all the other automatic metrics.

In addition, clustering performs better on DNR
dataset than on CM. This is potentially because the
CM domain contains a broader range of customer
issues corresponding to different membership types
and hence is more challenging to represent using
utterance clustering. For example, the templates
can be quite different for canceling a free trial, a
regular subscription, and certain memberships with
an additional subscription attached.

Overall, none of the proposed methods achieve
the accuracy of some image clustering work, such
as Guo et al. (2017). As discussed before, im-
age clustering and text clustering are very different
tasks, and sentence clustering can be quite subjec-
tive. Rephrasing or adding content to sentences can
make such clustering challenging even for humans.
For example, it is non-trivial to decide whether the
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following sentences should be clustered together:
“I will cancel your membership”, “I’ll cancel your
membership and issue a refund”, and “The mem-
bership will be canceled starting today and you will
not be able to use the free subscription”. Note that
the second and third sentences both contain addi-
tional information as opposed to the first sentence.
In practice, we encourage annotators to define each
cluster as precisely as possible, even if it results in a
large number of clusters. This can increase the cov-
erage of the generated template pool but decrease
the performance of clustering in the automatic eval-
uation. To determine the true impact of clustering
on our downstream task, response generation, we
conduct a human-in-the-loop evaluation in which
we use the generated template pool along with a
neural response ranking model to recommend re-
sponses to CSAs handling customer service con-
tacts.

4.2 Human-in-the-Loop Evaluation

To evaluate the effectiveness of clustering for the
downstream task of response generation, we use
a human-in-the-loop research platform through
which CSAs handle live customer contacts. Specifi-
cally, we train template-based neural response rank-
ing models for CM and DNR similar to the model
proposed by Lu et al. (2019), and then use them
to select responses from the template pools gener-
ated using the methods proposed above. Note that
training the response ranking model is independent
of template creation. We then test the resulting
model and template pool using this platform. In-
stead of showing CSAs the standard chat box, the
platform presents ten suggested responses chosen
by the trained model from the pool generated by
one of the clustering approaches. These 10 sugges-
tions come from different clusters since we only
send one template per cluster to the ranking model.
They are based on the complete conversation his-
tory up to this point and are updated each time
the customer or the agent sends a response. The
CSA can pick any of the suggested templates as
a response, or type their own text if none of the
templates appears appropriate. An ideal template
pool should minimize the chance that CSAs need
to type their own text, and also have no overlapping
templates in it.

We choose the following metrics for the human-
in-the-loop evaluation, reported in Table 4°:

3For the human-in-the-loop experiment, we only include



Rand-BL | Glove GloVe-CS BERT ELMo ELMo-CS | DSEC
NMI 0.22 0.43 0.54 0.31 0.30 0.54 0.60
ACC 0.10 0.24 0.33 0.16 0.16 0.31 0.39
ARI 0.00 0.11 0.20 0.04 0.03 0.18 0.12

Table 2: Results of Automatic Evaluation on CM Data

Rand-BL | Glove GloVe-CS BERT ELMo ELMo-CS | DSEC
NMI 0.23 0.49 0.62 0.39 0.40 0.61 0.63
ACC 0.10 0.31 0.47 0.2 0.24 0.41 0.51
ARI 0.00 0.15 0.32 0.12 0.09 0.26 0.34

Table 3: Results of Automatic Evaluation on DNR Data

1. Top-10 acceptance rate: The percentage of
utterances for which the CSA selects one of
the suggested responses.

2. Top-1 acceptance rate: The percentage of ut-
terances for which the CSA selects the first
suggested response.

3. All suggestions accepted: The percentage of
contacts that are handled using only suggested
utterances.

4. Average depth of first rejection: The percent-
age of utterances in the conversation that oc-
cur before the agent rejects all suggestions
and types their own text.

5. Unique rate: This measures the variation of
the template pool, calculated as one minus the
percentage of templates that can be removed
without reducing the coverage. Ideally, this
number would be 1.0.

6. Number of missing templates: The number
of utterances that are reported missing from
agents. Ideally, this number would be 0.

In this experiment, we compare the performance
of (1) the end-to-end approach (DSEC), (2) the
sequential setup that performs best in the automatic
evaluation (GloVe-CS with weighted-mean pooling
and Ward’s clustering), and (3) a random baseline
in which we randomly select 50 utterances from
the dataset to be used as templates. Additionally,
we include a human/gold baseline for which the
template pool is manually created and refined by
collecting feedback from agents over the course of
one month.

The utterance acceptance rate indicates that
DSEC outperforms both the random and the se-
quential baseline and performs only slightly worse
than the human template pool. As expected, the
“all suggestions accepted” rate is much lower for

the CM dataset due to limited agent resources.
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DSEC than for the gold/human pool, but better
than for the other automated methods. We find that
the sequential approach manages to minimize the
length of the conversation (i.e. the number of CSA
utterances). One possibility is that it results in a
better coverage rate so that it can guide the agents
to solve contacts more efficiently than the other
methods.

We measure coverage by asking agents to report
missing templates. Agents reported a few missing
templates for all of the automatically generated
pools. The variance in this metric is high because
the experiment is only run for about 200 contacts
for each experimental configuration. In this way,
corner examples may not show up for all of the
configurations, and a larger experiment is needed to
determine exactly how many templates are missing.

Lastly, the sequential baseline results in a higher
depth of first rejection than the manual approach. A
possible cause is that this approach leads to a larger
proportion of shorter contacts: The sequential ap-
proach has 4% more contacts that have less than 10
CSA utterances than the manual one. This could
indicate that automatically generated templates can
increase the efficiency of contact handling by steer-
ing CSAs away from utterances that could lead to
longer conversations.

5 Conclusion & Future Work

We present DSEC, an end-to-end sentence encod-
ing and clustering approach that can help auto-
mate template creation for template-based conver-
sational models. The purpose is to avoid the human
effort required to manually create a template pool
when training a response generation model for a
conversational system. We evaluate the proposed
approach on two customer service datasets and find
that it outperforms both a strong sequential baseline
and a random baseline in most cases. In addition,



Metric Rand | Gold | Seq | DSEC
Total contacts 187 | 250 | 211 | 209
Average number of CSA turns per contact | 12.0 | 12.5 | 10.1 | 12.0
Top-10 acceptance rate (% utterances) 48.8 | 56.4 | 50.5 | 52.0
Top-1 acceptance rate (% utterances) 209 | 26.7 | 22 23.8
All suggestions accepted (% contacts) 2.7 103 |42 |63
All but 1 accepted (% contacts) 7.8 13.1 | 103 | 124
Average depth of 1st rejection (% contacts) | 30.7 | 31.7 | 32.3 | 31.2
Unique rate 0.67 | 1.0 0.77 | 0.71
Number of missing templates 4 0 2 2

Table 4: Results of Human-in-the-Loop Experiment on CM Data

we use the resulting template pools in a human-in-
the-loop experiment and observe that the template
pool created using DSEC performs only slightly
worse than a manually created template pool that
takes over a month of human effort to develop.
In future work, we plan on exploring building a
pipeline that can automatically polish and update
the generated template pool using feedback from
agents.
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