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Abstract

The predominant approach to open-domain di-
alog generation relies on end-to-end training
of neural models on chat datasets. However,
this approach provides little insight as to what
these models learn (or do not learn) about en-
gaging in dialog. In this study, we analyze
the internal representations learned by neural
open-domain dialog systems and evaluate the
quality of these representations for learning
basic conversational skills. Our results sug-
gest that standard open-domain dialog systems
struggle with answering questions, inferring
contradiction, and determining the topic of
conversation, among other tasks. We also find
that the dyadic, turn-taking nature of dialog is
not fully leveraged by these models. By explor-
ing these limitations, we highlight the need for
additional research into architectures and train-
ing methods that can better capture high-level
information about dialog.1

1 Introduction

Open-domain dialog systems often rely on neural
models for language generation that are trained
end-to-end on chat datasets. End-to-end training
eliminates the need for hand-crafted features and
task-specific modules (for example, for question
answering or intent detection), while delivering
promising results on a variety of language genera-
tion tasks including machine translation (Bahdanau
et al., 2014), abstractive summarization (Rush et al.,
2015), and text simplification (Wang et al., 2016).

However, current generative models for dialog
suffer from several shortcomings that limit their
usefulness in the real world. Neural models can
be opaque and difficult to interpret, posing barri-
ers to their deployment in safety-critical applica-
tions such as mental health or customer service

∗Second author equal contribution.
1Our code is available at https://github.com/

AbdulSaleh/dialog-probing

(Belinkov and Glass, 2019). End-to-end training
provides little insight as to what these models learn
about engaging in dialog. Open-domain dialog
systems also struggle to maintain basic conversa-
tions, frequently ignoring user input (Sankar et al.,
2019) while generating irrelevant, repetitive, and
contradictory responses (Saleh et al., 2019; Li et al.,
2016, 2017a; Welleck et al., 2018). Table 1 shows
examples from standard dialog models which fail
at basic interactions – struggling to answer ques-
tions, detect intent, and understand conversational
context.

In light of these limitations, we aim to answer
the following questions: (i) Do neural dialog mod-
els effectively encode information about the con-
versation history? (ii) Do neural dialog models
learn basic conversational skills through end-to-end
training? (iii) And to what extent do neural dialog
models leverage the dyadic, turn-taking structure
of dialog to learn these skills?

To answer these questions, we propose a set of
eight probing tasks to measure the conversational
understanding of neural dialog models. Our tasks
include question classification, intent detection, nat-
ural language inference, and commonsense reason-
ing, which all require high-level understanding of
language. We also carry out perturbation experi-
ments designed to test if these models fully exploit
dialog structure during training. These experiments
entail breaking the dialog structure by training on
shuffled conversations and measuring the effects
on probing performance and perplexity.

We experiment with both recurrent (Sutskever
et al., 2014) and transformer-based (Vaswani et al.,
2017) open-domain dialog models. We also ana-
lyze models with different sizes and initialization
strategies, training small models from scratch and
fine-tuning large pre-trained models on dialog data.
Thus, our study covers a variety of standard models
and approaches for open-domain dialog generation.

https://github.com/AbdulSaleh/dialog-probing
https://github.com/AbdulSaleh/dialog-probing
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Our analysis reveals three main insights:

1. Dialog models trained from scratch on chat
datasets perform poorly on the probing tasks,
suggesting that they struggle with basic con-
versational skills. Large, pre-trained models
achieve much better probing performance but
are still on par with simple baselines.

2. Neural dialog models fail to effectively en-
code information about the conversation his-
tory and the current utterance. In most cases,
simply averaging the word embeddings is su-
perior to using the learned encoder represen-
tations. This performance gap is smaller for
large, pre-trained models.

3. Neural dialog models do not leverage the
dyadic, turn-taking nature of conversation.
Shuffling conversations in the training data
had little impact on perplexity and probing
performance. This suggests that breaking the
dialog structure did not significantly affect the
quality of learned representations.

Our code integrates with and extends ParlAI
(Miller et al., 2017), a popular open-source plat-
form for building dialog systems. We also pub-
licly release all our code at https://github.com/
AbdulSaleh/dialog-probing, hoping that prob-
ing will become a standard method for interpreting
and analyzing open-domain dialog systems.

2 Related Work

Evaluating and interpreting open-domain dialog
models is notoriously challenging. Multiple studies
have shown that standard evaluation metrics such
as perplexity and BLEU scores (Papineni et al.,
2002) correlate very weakly with human judge-
ments of conversation quality (Liu et al., 2016;
Ghandeharioun et al., 2019; Dziri et al., 2019).
This has inspired multiple new approaches for eval-
uating dialog systems. One popular evaluation
metric involves calculating the semantic similar-
ity between the user input and generated response
in high-dimensional embedding space (Liu et al.,
2016; Ghandeharioun et al., 2019; Dziri et al., 2019;
Park et al., 2018; Zhao et al., 2017; Xu et al., 2018).
Ghandeharioun et al. (2019) proposed calculating
conversation metrics such as sentiment and co-
herence on self-play conversations generated by
trained models. Similarly, Dziri et al. (2019) use

neural classifiers to identify whether the model-
generated responses entail or contradict user input
in a natural language inference setting.

To the best of our knowledge, all existing ap-
proaches for evaluating the performance of open-
domain dialog systems only consider external
model behavior in the sense that they analyze prop-
erties of the generated text. In this study, we ex-
plore internal representations instead, motivated by
the fact that reasonable internal behavior is crucial
for interpretability and is often a prerequisite for
effective external behavior.

Outside of open-domain dialog, probing has
been applied for analyzing natural language pro-
cessing models in machine translation (Belinkov
et al., 2017) and visual question answering (Sub-
ramanian et al., 2019). Probing is also commonly
used for evaluating the quality of “universal” sen-
tence representations which are trained once and
used for a variety of applications (Conneau et al.,
2018; Adi et al., 2016) (for example, InferSent
(Conneau et al., 2017), SkipThought (Kiros et al.,
2015), USE (Cer et al., 2018)). Along the same
lines, natural language understanding benchmarks
such as GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019) propose a set of diverse tasks
for evaluating general linguistic knowledge. Our
analysis differs from previous work since it is fo-
cused on probing for conversational skills that are
particularly relevant to dialog generation.

With regard to perturbation experiments, Sankar
et al. (2019) found that standard dialog models are
largely insensitive to perturbations of the input text.
Here we introduce an alternative set of perturba-
tion experiments to similarly explore the extent to
which dialog structure is being leveraged by these
models.

3 Methodology

3.1 Models and Data

In this study, we focus on the three most
widespread dialog architectures: recurrent neural
networks (RNNs) (Sutskever et al., 2014), RNNs
with attention (Bahdanau et al., 2014), and Trans-
formers (Vaswani et al., 2017). We use the Par-
lAI platform (Miller et al., 2017) for building and
training the models. We train models of two differ-
ent sizes and initialization strategies. Small mod-
els (≈ 14M parameters) are initialized randomly
and trained from scratch on DailyDialog (Li et al.,
2017b). Large models (≈ 70M parameters) are

https://github.com/AbdulSaleh/dialog-probing
https://github.com/AbdulSaleh/dialog-probing
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Question
Answering

Inference &
Entailment

Intent
Detection

Emotional
Understanding

[Usr]: What do you
do for a living?
[Bot]: I’m from
south america, lol

[Usr]: what’s your
favorite food?
[Bot]: I love food
[Usr]: you like food?
[Bot]: no, I don’t

[Usr]: Give me music
recommendations.
[Bot]: I don’t know
what I want to do with
my life.

[Usr]: I feel so
miserable
[Bot]: I’m afraid it’s
too much for me.

Table 1: Examples from open-domain dialog systems struggling with simple conversational skills.

Figure 1: Probing setup. Dotted arrows emphasize that
probing is applied to frozen models after dialog train-
ing. Only the parameters of the classifier module are
learned during probing.

pre-trained on WikiText-103 (Merity, 2016), and
then fine-tuned on DailyDialog.2

DailyDialog (Li et al., 2017b) is a dataset of
14K train, 1K validation, and 1K test multi-turn
dialogs collected from an English learning web-
site. The dialogs are of much higher quality than
datasets scraped from Twitter or Reddit. WikiText-
103 (Merity, 2016) is a dataset of 29K Wikipedia
articles. For pre-training the large models, we for-
mat WikiText-103 as a dialog dataset by treating
each paragraph as a conversation and each sentence
as an utterance.

3.2 Probing experiments

In open-domain dialog generation, the goal is to
generate the next utterance or response, ut+1, given
the conversation history, [u1, . . . , ut]. First, we
train our models on dialog generation using a
maximum-likelihood objective (Sutskever et al.,
2014). We then freeze these trained models and
use them as feature extractors. We run the dialog
models on text from the probing tasks and use the
internal representations as features for a two-layer
multilayer perceptron (MLP) classifier trained on
the probing tasks as in figure 1. This follows the
same methodology outlined in previous probing

2See the supplemental material for further training details.

studies (Belinkov et al., 2017; Belinkov and Glass,
2017; Conneau et al., 2018; Adi et al., 2016).

The assumption here is that if a model learns
certain conversational skills, then knowledge of
these skills should be reflected in its internal rep-
resentations. For example, a model that excels at
answering questions would be expected to learn
useful internal representations for question answer-
ing. Thus, the performance of the probing classifier
on question answering can be used as a proxy for
learning this skill. We extend this reasoning to
eight probing tasks designed to measure a model’s
conversational understanding.

The probing tasks require high-level reasoning,
sometimes across multiple utterances, therefore
we aggregate utterance-level representations for
probing. Our probing experiments consider three
types of internal representations:

Word Embeddings: To get the word embed-
ding representations, we first averaged word em-
beddings of all words in the previous utterances,
[u1, . . . , ut−1], then we separately averaged word
embeddings of all words in the current utterance,
ut, and concatenated the two resulting, equal-
length vectors. Encoding the past utterances and
the current utterance separately is important since
it provides some temporal information about utter-
ance order. We used the dialog model’s encoder
word embedding matrix.

Encoder State: For the the encoder state, we ex-
tracted the encoder outputs after running it on the
entire probing task input (i.e. the full conversa-
tion history, [u1, . . . , ut]). Crucially, encoder states
are the representations passed to the decoder for
generation and are thus different for each architec-
ture. For RNNs we used the last encoder hidden
and cell states. For RNNs with attention the de-
coder has access to all the encoder hidden states
(not just the final ones), through the attention mech-
anism. Thus, for RNNs with attention, we first
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averaged the encoder hidden states corresponding
to the previous utterances, [u1, . . . , ut−1], and then
we separately averaged the encoder hidden states
corresponding to the current utterance, ut, and con-
catenated the two resulting, equal-length vectors.
We also concatenated the last cell state. Similarly,
for Transformers, we averaged the encoder outputs
corresponding to the previous utterances and sepa-
rately averaged encoder outputs corresponding to
the current utterance and concatenated them.

Combined: The combined representations are
the concatenation of of the word embeddings and
encoder state representations.

We also use GloVe (Pennington et al., 2014)
word embeddings as a simple baseline. We encode
the probing task inputs using the word embeddings
approach described above. We ensure that GloVe
and all models of a certain size (small vs large)
share the same vocabulary for comparability.

3.3 Perturbation Experiments

We also propose a set of perturbation experiments
designed to measure whether dialog models fully
leverage dialog structure for learning conversa-
tional skills. We create a new training dataset by
shuffling the order of utterances within each conver-
sation in DailyDialog. This completely breaks the
dialog structure and utterances no longer naturally
follow one another. We train (or fine-tune) separate
models on the shuffled dataset and evaluate their
probing performance relative to models trained on
data as originally ordered.

4 Probing Tasks

The probing tasks selected for this study measure
conversational understanding and skills relevant
to dialog generation. Some tasks are inspired by
previous benchmarks (Wang et al., 2018), while
others have not been explored before for probing.
Examples are listed in the supplemental material.

TREC: Question answering is a key skill for ef-
fective dialog systems. A system that deflects user
questions could seem inattentive or indifferent. In
order to correctly respond to questions, a model
needs to determine what type of information the
question is requesting. We probe for question an-
swering using the TREC question classification
dataset (Li and Roth, 2002), which consists of ques-
tions labeled with their associated answer types.

DialogueNLI: Any two turns in a conversation
could entail each other (speakers agreeing, for ex-
ample), or contradict each other (speakers disagree-
ing), or be unrelated (speakers changing topic of
conversation). A dialog system should be sensi-
tive to contradictions to avoid miscommunication
and stay aligned with human preferences. We use
the Dialogue NLI dataset (Welleck et al., 2018),
which consists of pairs of dialog turns with entail-
ment, contradiction, and neutral labels to probe for
natural language inference. The original dataset
examines two utterances from the same speaker (“I
go to college”, “I am a student”), so we modify the
second utterance to simulate a second speaker (“I
go to college”, “You are a student”).

MultiWOZ: Every utterance in a conversation
can be considered as an action or a dialog act per-
formed by the speaker. A speaker could be making
a request, providing information, or simply greet-
ing the system. MultiWOZ 2.1 (Eric et al., 2019)
is a dataset of multi-domain, goal-oriented con-
versations. Human turns are labeled with dialog
acts and the associated domains (hotel, restaurant,
etc.), which we use to probe for natural language
understanding.

SGD: Tracking user intent is also important for
generating appropriate responses. The same intent
is often active across multiple dialog turns since
it takes more than one turn to book a hotel, for
example. Determining user intent requires reason-
ing over multiple turns in contrast to dialog acts
which are turn-specific. To probe for this task,
we use intent labels from the multi-domain, goal-
oriented Schema-Guided Dialog dataset (Rastogi
et al., 2019).

WNLI: Endowing neural models with common-
sense reasoning is an ongoing challenge in machine
learning (Storks et al., 2019). We use the Winograd
NLI dataset, a variant of the Winograd Schema
Challenge (Levesque et al., 2012), provided in the
GLUE benchmark (Wang et al., 2018) to probe
for commonsense reasoning. WNLI is a sentence
pair classification task where the goal is to iden-
tify whether the hypothesis correctly resolves the
referent of an ambiguous pronoun in the premise.

SNIPS: The Snips NLU benchmark (Coucke
et al., 2018) is a dataset of crowdsourced, single-
turn queries labeled for intent. We use this dataset
to probe for intent classification.
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ScenarioSA: An understanding of sentiment and
emotions is crucial for building social, human-
centered conversational agents. We use Scenar-
ioSA (Zhang et al., 2019) as a sentiment classifi-
cation probing task. The dataset is composed of
natural, multi-turn, open-ended dialogs with turn-
level sentiment labels.

DailyDialog Topic: The DailyDialog dataset
comes with conversation-level annotations for ten
diverse topics, such as ordinary life, school life,
relationships, and health. Inferring the topic of
conversation is an important skill that could help
dialog systems stay consistent and on topic. We
use dialogs from the DailyDialog test set to create a
probing tasks where the goal is to classify a dialog
into the appropriate topic.

5 Results

Figure 2: Bar plot showing difference between average
scores for word embeddings and encoder states.

5.1 Quality of Encoder Representations

Results from our probing experiments are pre-
sented in tables 2 and 3. We calculate an aver-
age score to summarize the overall accuracy on all
tasks. Here we explore whether the encoder learns
high quality representations of the conversation his-
tory. We focus on encoder states because these
representations are passed to the decoder and used
for generation (figure 1). Thus, effectively encod-
ing information in the encoder states is crucial for
dialog generation.

Figure 2 shows the difference in average probing
accuracy between the word embeddings and the
encoder state for each model. The word embed-
dings outperform the encoder state for all the small
models. This performance gap is most pronounced
for the Transformer but is non-existent for the large
recurrent models.

Figure 3: Bar plot showing difference between average
scores for combined representations (word embeddings
+ encoder state) and GloVe baseline.

One possible explanation is that the encoder
highlights information relevant to generating dia-
log at the cost of obfuscating or losing information
relevant to the probing tasks – given that the goals
of certain probing tasks do not perfectly align with
natural dialog generation. For example, the Daily-
Dialog dataset contains examples where a question
is answered with another question (perhaps for clar-
ification). The TREC question classification task
does not account for such cases and expects each
question to have a specific answer type. This ex-
planation is supported by the observation that the
information in the word embeddings and encoder
state is not necessarily redundant. The combined
representations often outperform using either one
separately (albeit by a minute amount).

Regardless of the reason behind this gap in per-
formance, multiple models still fail to effectively
encode information about the conversation history
that is already present in the word embeddings.

5.2 Probing for Conversational
Understanding

In this section, we compare the probing perfor-
mance of the ordered dialog models to the sim-
ple baseline of averaging GloVe word embeddings.
Here we consider the combined representations
since they achieve the best performance overall and
can act as a proxy for all the information captured
by the encoder about the conversation history.

Since our probing tasks test for conversational
skills important for dialog generation, we would ex-
pect the dialog models to outperform GloVe word
embeddings. However, this is generally not the
case. As figure 3 shows, the GloVe baseline outper-
forms the small recurrent models while being on
par with the large pre-trained models in terms of
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Model TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe Mini 83.8 70.8 91.9 71.2 98.0 48.2 75.3 54.0 74.2
RNN

Word Embs. 79.0 63.7 88.1 63.2 95.7 52.2 66.7 55.4 65.7
Enc. State 80.4 55.4 69.7 47.3 93.4 49.4 62.5 56.8 60.2
Combined 81.9 60.0 82.4 60.9 95.3 49.9 64.8 57.3 64.4

RNN + Attn
Word Embs. 75.6 64.5 87.5 65.9 96.5 50.1 62.6 55.1 69.7
Enc. State 77.2 59.5 80.0 57.0 95.1 49.9 64.7 59.0 67.8
Combined 79.2 64.6 86.3 66.8 96.7 51.3 65.3 58.5 71.1

Transformer
Word Embs. 81.2 71.6 90.9 70.9 97.7 48.6 74.4 62.3 74.7
Enc. State 67.9 54.1 68.7 47.2 85.1 49.4 57.4 55.4 60.7
Combined 81.5 71.3 91.2 70.3 97.9 50.1 72.8 59.6 74.3

Table 2: Accuracy on probing tasks for small models trained with random initialization on DailyDialog. Best Avg
result for each model underlined. Best Avg result in bold.

Model TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe 86.5 70.3 91.6 70.5 97.8 49.9 75.1 54.3 74.5
RNN

Word Embs. 84.0 71.6 91.4 69.8 98.1 51.4 72.0 52.3 73.8
Enc. State 84.6 66.8 89.9 72.9 97.2 48.6 67.8 61.0 73.6
Combined 85.6 69.4 91.1 74.0 97.6 49.6 69.1 61.4 74.7

RNN + Attn
Word Embs. 83.4 71.4 91.8 70.1 97.9 49.5 72.1 55.7 74.0
Enc. State 85.0 65.6 90.0 73.6 97.2 47.5 70.4 63.0 74.0
Combined 86.6 70.0 92.0 75.9 97.7 48.8 73.5 62.3 75.9

Transformer
Word Embs. 89.4 70.4 91.4 70.3 98.3 51.4 71.7 51.5 74.3
Enc. State 71.3 58.5 70.7 57.5 88.5 50.2 58.8 64.1 65.0
Combined 90.0 70.2 91.1 70.5 98.1 50.4 72.4 62.9 75.7

Table 3: Accuracy on probing tasks for large, Wikipedia pre-trained models fine-tuned on DailyDialog. Best Avg
result for each model underlined. Best Avg result in bold.
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Figure 4: Bar plot showing difference between average
scores for models trained on ordered and shuffled data.

average score. Tables 2 and 3 show that this pattern
also generally applies at the task level, not just in
terms of average score.

Closer inspection, however, reveals one excep-
tion. Combined representations from both the small
and large models consistently outperform GloVe
on the DailyDialog Topic task. This is the only
task that is derived from the DailyDialog test data,
which follows the same distribution as the dialogs
used for training the models. This suggests that
lack of generalization can partly explain the weak
performance on other tasks. It is also worth noting
that DailyDialog Topic is labeled at the conversa-
tion level rather than the turn level. Thus, identify-
ing the correct label does not necessarily require
reasoning about turn-level interactions (unlike Dia-
logueNLI, for example).

The poor performance on the majority of tasks,
relative to the simple GloVe baseline, leads us to
conclude that standard dialog models trained from
scratch struggle to learn the basic conversational
skills examined here. Large, pre-trained models do
not seem to master these skills either, with perfor-
mance on par with the baselines.

5.3 Effect of Dialog Structure

Tables 4 and 5 summarize the results of the pertur-
bation experiments. Figure 4 shows the difference
in average performance between the ordered and
shuffled models. We show results for the encoder
states since these representations are important for
encoding the conversation history, as discussed in
section 5.1. The encoder states are also sensitive
to word and utterance order, unlike averaging the
word embeddings. So if a model can fully exploit
the dyadic, turn-taking, structure of dialog, this is
likely to be reflected in the encoder state represen-
tations.

In most of our experiments, models trained on or-
dered data outperformed models trained on shuffled
data, as expected. We can see in figure 4, that av-
erage scores for ordered models were often higher
than for shuffled models. However, the absolute
gap in performance was at most 2%, which is a
minute difference in practice. And even though or-
dered models achieved higher accuracy on average,
if we examine individual tasks in tables 4 and 5, we
can find instances where the shuffled models out-
performed the ordered ones for each of the tested
architectures, sizes, and initialization strategies.

The average difference in test perplexity between
all the ordered and shuffled models was less than 2
points. This is also a minor difference in practice,
suggesting that model fit and predictions are not
substantially different when training on shuffled
data. We evaluated all the models on the ordered
DailyDialog test set to calculate perplexity. The
minimal impact of shuffling the training data sug-
gests that dialog models do not adequately lever-
age dialog structure during training. Our results
show that essentially all of the information captured
when training on ordered dialogs is also learned
when training on shuffled dialogs.

6 Limitations

Some of our conclusions assume that probing per-
formance is indicative of performance on the end-
task of dialog generation. Yet it could be the case
that certain models learn high quality representa-
tions for probing but cannot effectively use them
for generation, due to a weakness in the decoder for
example. To address this limitation, future work
could examine the relationship between probing
performance and human judgements of conversa-
tion quality. Belinkov (2018) argues more research
on the causal relation between probing and end-task
performance is required to address this limitation.

However, it is reasonable to assume that captur-
ing information about a certain probing task is a
pre-requisite to utilizing information relevant to
that task for generation. For example, a model that
cannot identify user sentiment is unlikely to use in-
formation about user sentiment for generation. We
also find that lower perplexity (better data fit) is cor-
related with better probing performance (table 6),
suggesting that probing is a valuable, if imperfect,
analysis tool for open-domain dialog systems.
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Model Test PPL TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority - 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe Mini - 83.8 70.8 91.9 71.2 98.0 48.2 75.3 54.0 74.2
RNN

Ordered 27.2 80.4 55.4 69.7 47.3 93.4 49.4 62.5 56.8 60.2
Shuffled 29.0 77.3 55.7 71.2 46.4 92.8 51.5 57.0 56.8 59.7

RNN + Attn
Ordered 26.0 77.2 59.5 80.0 57.0 95.1 49.9 64.7 59.0 67.8
Shuffled 28.8 80.2 60.8 80.8 60.7 92.9 50.8 57.9 59.3 67.9

Transformer
Ordered 29.3 67.9 54.1 68.7 47.2 85.1 49.4 57.4 55.4 60.7
Shuffled 30.8 58.6 52.1 62.6 46.4 83.5 50.4 53.5 63.8 58.9

Table 4: Perplexity and accuracy on probing tasks for small models trained with random initialization on ordered
and shuffled dialogs from DailyDialog. Results shown are for probing the encoder state. Best Avg result for each
model underlined.

Model Test PPL TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Majority - 18.8 34.5 17.0 6.5 14.3 56.3 37.8 34.7 27.5
GloVe - 86.5 70.3 91.6 70.5 97.8 49.9 75.1 54.3 74.5
RNN

Ordered 17.0 84.6 66.8 89.9 72.9 97.2 48.6 67.8 61.0 73.6
Shuffled 19.1 85.4 65.1 89.5 69.0 97.3 50.5 64.7 65.4 73.4

RNN + Attn
Ordered 16.5 85.0 65.6 90.0 73.6 97.2 47.5 70.4 63.0 74.0
Shuffled 19.6 84.1 64.9 89.9 71.1 96.6 50.3 64.7 65.4 73.4

Transformer
Ordered 19.8 71.3 58.5 70.7 57.5 88.5 50.2 58.8 64.1 65.0
Shuffled 21.4 66.1 58.0 68.8 58.0 89.6 49.0 56.3 64.2 63.8

Table 5: Perplexity and accuracy on probing tasks for large, Wikipedia pre-trained models fine-tuned on ordered
and shuffled dialogs from DailyDialog. Results shown are for probing the encoder state. Best Avg result for each
model underlined.

Models TREC DNLI MWOZ SGD SNIPS WNLI SSA Topic Avg

Scratch -0.72 -0.61 -0.65 -0.43 -0.82 -0.24 -0.99 0.40 -0.75
Pretrained -0.76 -0.80 -0.74 -0.81 -0.71 0.61 -0.93 0.65 -0.76
All -0.55 -0.84 -0.71 -0.87 -0.63 0.30 -0.73 -0.64 -0.92

Table 6: Probing performance of the encoder state negatively correlates with test perplexity. Results imply that
models with better data fit (lower perplexity) achieve better probing performance. Note that this is insufficient to
establish a causal relationship.
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7 Conclusion

We use probing to shed light on the conversational
understanding of neural dialog models. Our find-
ings suggest that standard neural dialog models
suffer from many limitations. They do not effec-
tively encode information about the conversation
history, struggle to learn basic conversational skills,
and fail to leverage the dyadic, turn-taking structure
of dialog. These limitations are particularly severe
for small models trained from scratch on dialog
data but occasionally also affect large pre-trained
models. Addressing these limitations is an inter-
esting direction of future work. Models could be
augmented with specific components or multi-task
loss functions to support learning certain skills. Fu-
ture work can also explore the relationship between
probing performance and human evaluation.
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A Supplemental Material

A.1 Training Details
For the small RNN trained from scratch, we used
a 2-layer encoder, 2-layer decoder network with
bidirectional LSTM units with a hidden size of 256
and a word embedding size of 128. For the small
RNN with attention, we used the same architecture
but also added multiplicative attention (Luong et al.,
2015). We set dropout to 0.3 and used a batch size
of 64. We used an Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.005, inverse
square root decay, and 4000 warm-up updates.

For the small Transformer, we used a 2-layer en-
coder, 2-layer decoder network with an embedding
size of 400, 8 attention heads, and a feedforward
network size of 300. We set dropout to 0.3 and used
a batch size of 64. We used an Adam optimizer
with a learning rate of 0.001, inverse square root
decay, and 6000 warm-up updates.

For the large RNN pretrained on Wikitext-103
(Merity, 2016), we used a 2-layer encoder, 2-layer
decoder network with bidirectional LSTM units
with a hidden size of 1024 and a word embeddings
size of 300. For the large RNN with attention, we
used the same architecture but also included multi-
plicative attention. We set dropout to 0.3 and used
a batch size of 40. We used an Adam optimizer
with a learning rate of 0.005, inverse square root
decay, and 4000 warm-up updates.

For the large Transformer we used a 2-layer en-
coder, 2-layer decoder network with an embedding
size of 768, 12 attention heads, and a feedforward
network size of 2048. We set dropout to 0.1 and
used a batch size of 32. We used an Adam opti-
mizer with a learning rate of 0.001, inverse square
root decay, and 4000 warm-up updates.

A.2 Probing Tasks Examples
Table 7 below, lists all the probing tasks and pro-
vides examples from each task. We also include
the possible classes and training set sizes.
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Dataset |Train| Example Classes Label

TREC 5.5K [Usr1]: Why do heavier objects travel downhill
faster?

entity, number
description,
location, . . .

description

Dialogue
NLI

310K
[Usr1]: I go to college part time.
[Usr2]: You are a recent college graduate look-
ing for a job.

entail,
contradict,
neutral

contradict

MultiWOZ 8.5K

[Usr1]: I need to book a hotel.
[Usr2]: I can help you with that. What is your
price range?
[Usr1]: That doesn’t matter as long as it has free
wifi and parking.

hotel-inform,
taxi-request,
general-thank,
. . .

hotel-
inform

Schema-
Guided

16K
[Usr1]: Help me find a restaurant.
[Usr2]: Which city are you looking in?
[Usr1]: Cupertino, please.

find-restaurant,
get-ride,
reserve-flight,
. . .

find-
restaurant

SNIPS 14K [Usr1]: I want to see Outcast.

search-screening,
play-music,
get-weather,
. . .

search-
screening

Winograd
NLI

0.6K
[User1]: John couldn’t see the stage with Billy
in front of him because he is so tall.
[User2]: John is so tall.

entail,
contradict

contradict

ScenrioSA 1.9K
[Usr1]: Thank you for coming, officer.
[Usr2]: What seems to be the problem?
[Usr1]: I was in school all day and came home
to a burglarized apartment.

positive,
negative,
neutral

negative

DailyDialog
Topic

0.9K

[Usr1]: I think Yoga is suitable for me.
[Usr2]: Why?
[Usr1]: Because it doesn’t require a lot of en-
ergy.
[Usr2]: But I see people sweat a lot doing Yoga
too.

ordinary life,
work, school,
tourism, politics,
relationship, ...

ordinary
life

Table 7: Examples from the selected probing tasks.


